首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The availability of H5N1 vaccines that can elicit a broad cross-protective immunity against different currently circulating clade 2 H5N1 viruses is a pre-requisite for the development of a successful pre-pandemic vaccination strategy. In this regard, it has recently been shown that adjuvantation of a recombinant clade 1 H5N1 inactivated split-virion vaccine with an oil-in-water emulsion-based adjuvant system also promoted cross-immunity against a recent clade 2 H5N1 isolate (A/Indonesia/5/2005, subclade 2.1). Here we further analyse the cross-protective potential of the vaccine against two other recent clade 2 isolates (A/turkey/Turkey/1/2005 and A/Anhui/1/2005 which are, as defined by WHO, representatives of subclades 2.2 and 2.3 respectively).

Methods and Findings

Two doses of the recombinant A/Vietnam/1194/2004 (H5N1, clade 1) vaccine were administered 21 days apart to volunteers aged 18–60 years. We studied the cross-clade immunogenicity of the lowest antigen dose (3.8 µg haemagglutinin) given with (N = 20) or without adjuvant (N = 20). Immune responses were assessed at 21 days following the first and second vaccine doses and at 6 months following first vaccination. Vaccination with two doses of 3.8 µg of the adjuvanted vaccine induced four-fold neutralising seroconversion rates in 85% of subjects against A/turkey/Turkey/1/2005 (subclade 2.2) and 75% of subjects against A/Anhui/1/2005 (subclade 2.3) recombinant strains. There was no response induced against these strains in the non-adjuvanted group. At 6 months following vaccination, 70% and 60% of subjects retained neutralising antibodies against the recombinant subclade 2.2 and 2.3 strains, respectively and 40% of subjects retained antibodies against the recombinant subclade 2.1 A/Indonesia/5/2005 strain.

Conclusions

In addition to antigen dose-sparing, adjuvantation of inactivated split H5N1 vaccine promotes broad and persistent cross-clade immunity which is a pre-requisite for a pre-pandemic vaccine.

Trial Registration

ClinicalTrials.gov NCT00309634  相似文献   

2.
A Phase I trial conducted in 2009–2010 demonstrated that oral vaccination with a replication competent Ad4-H5 (A/Vietnam) vector with dosages ranging from 107-1011 viral particles was well tolerated. HA-specific T-cell responses were efficiently induced, but very limited hemagglutination-inhibiting (HI) humoral responses were measured. However, a single boost of Ad4-H5-Vtn vaccinated individuals with a unadjuvanted licensed H5N1 (A/Vietnam) subunit vaccine resulted in superior HI titers compared with unprimed subjects. In the current study, the impact of Ad4-H5 priming on the quality of the polyclonal humoral immune response was evaluated using a real-time kinetics assay by surface plasmon resonance (SPR). Total binding of serum polyclonal antibodies from the Ad4-H5-Vtn primed groups against both homologous H5N1-A/Vietnam/1194/2004 (clade 1) and heterologous A/Indonesia-5/2005 (clade 2.1) HA1 head domain was significantly higher compared with sera from individuals that received subunit H5N1 vaccination alone. SPR measurements also demonstrated that the antigen-antibody complex dissociation rates (a surrogate for antibody affinity) of serum antibodies against the HA1 of H5N1-A/Vietnam were significantly higher in the Ad4-H5 primed groups compared with those from the unprimed group. Furthermore, strong correlations were observed between the antibody affinities for HA1 (but not HA2) and the virus neutralization titers against the homologous strain and a panel of heterologous clade 2 H5N1 strains. These findings support the concept of oral prime-boost vaccine approaches against pandemic influenza to elicit long-term memory B cells with high affinity capable of rapid response to variant pandemic viruses likely to emerge and adapt to human transmissions.  相似文献   

3.
Ge J  Deng G  Wen Z  Tian G  Wang Y  Shi J  Wang X  Li Y  Hu S  Jiang Y  Yang C  Yu K  Bu Z  Chen H 《Journal of virology》2007,81(1):150-158
H5N1 highly pathogenic avian influenza virus (HPAIV) has continued to spread and poses a significant threat to both animal and human health. Current influenza vaccine strategies have limitations that prevent their effective use for widespread inoculation of animals in the field. Vaccine strains of Newcastle disease virus (NDV), however, have been used successfully to easily vaccinate large numbers of animals. In this study, we used reverse genetics to construct a NDV that expressed an H5 subtype avian influenza virus (AIV) hemagglutinin (HA). Both a wild-type and a mutated HA open reading frame (ORF) from the HPAIV wild bird isolate, A/Bar-headed goose/Qinghai/3/2005 (H5N1), were inserted into the intergenic region between the P and M genes of the LaSota NDV vaccine strain. The recombinant viruses stably expressing the wild-type and mutant HA genes were found to be innocuous after intracerebral inoculation of 1-day-old chickens. A single dose of the recombinant viruses in chickens induced both NDV- and AIV H5-specific antibodies and completely protected chickens from challenge with a lethal dose of both velogenic NDV and homologous and heterologous H5N1 HPAIV. In addition, BALB/c mice immunized with the recombinant NDV-based vaccine produced H5 AIV-specific antibodies and were completely protected from homologous and heterologous lethal virus challenge. Our results indicate that recombinant NDV is suitable as a bivalent live attenuated vaccine against both NDV and AIV infection in poultry. The recombinant NDV vaccine may also have potential use in high-risk human individuals to control the pandemic spread of lethal avian influenza.  相似文献   

4.
Du L  Leung VH  Zhang X  Zhou J  Chen M  He W  Zhang HY  Chan CC  Poon VK  Zhao G  Sun S  Cai L  Zhou Y  Zheng BJ  Jiang S 《PloS one》2011,6(1):e16555
Development of effective vaccines to prevent influenza, particularly highly pathogenic avian influenza (HPAI) caused by influenza A virus (IAV) subtype H5N1, is a challenging goal. In this study, we designed and constructed two recombinant influenza vaccine candidates by fusing hemagglutinin 1 (HA1) fragment of A/Anhui/1/2005(H5N1) to either Fc of human IgG (HA1-Fc) or foldon plus Fc (HA1-Fdc), and evaluated their immune responses and cross-protection against divergent strains of H5N1 virus. Results showed that these two recombinant vaccines induced strong immune responses in the vaccinated mice, which specifically reacted with HA1 proteins and an inactivated heterologous H5N1 virus. Both proteins were able to cross-neutralize infections by one homologous strain (clade 2.3) and four heterologous strains belonging to clades 0, 1, and 2.2 of H5N1 pseudoviruses as well as three heterologous strains (clades 0, 1, and 2.3.4) of H5N1 live virus. Importantly, immunization with these two vaccine candidates, especially HA1-Fdc, provided complete cross-clade protection against high-dose lethal challenge of different strains of H5N1 virus covering clade 0, 1, and 2.3.4 in the tested mouse model. This study suggests that the recombinant fusion proteins, particularly HA1-Fdc, could be developed into an efficacious universal H5N1 influenza vaccine, providing cross-protection against infections by divergent strains of highly pathogenic H5N1 virus.  相似文献   

5.

Background

Antigen sparing and cross-protective immunity are regarded as crucial in pandemic influenza vaccine development. Both targets can be achieved by adjuvantation strategy to elicit a robust and broadened immune response. We assessed the immunogenicity of an inactivated H5N1 whole-virion vaccine (A/Vietnam/1194/2004 NIBRG-14, clade 1) formulated with emulsified nanoparticles and investigated whether it can induce cross-clade protecting immunity.

Methodology/Principal Findings

After formulation with PELC, a proprietary water-in-oil-in-water nanoemulsion comprising of bioresorbable polymer/Span®85/squalene, inactivated virus was intramuscularly administered to mice in either one-dose or two-dose schedule. We found that the antigen-specific serum antibody responses elicited after two doses of non-adjuvanted vaccine were lower than those observed after a single dose of adjuvanted vaccine, PELC and the conventional alum adjuvant as well. Moreover, 5 µg HA of PELC-formulated inactivated virus were capable of inducing higher antibodies than those obtained from alum-adjuvanted vaccine. In single-dose study, we found that encapsulating inactivated virus into emulsified PELC nanoparticles could induce better antibody responses than those formulated with PELC-adsorbed vaccine. However, the potency was rather reduced when the inactivated virus and CpG (an immunostimulatory oligodeoxynucleotide containing unmethylated cytosine-guanosine motifs) were co-encapsulated within the emulsion. Finally, the mice who received PELC/CpG(adsorption)-vaccine could easily and quickly reach 100% of seroprotection against a homologous virus strain and effective cross-protection against a heterologous virus strain (A/Whooper swan/Mongolia/244/2005, clade 2.2).

Conclusions/Significance

Encapsulating inactivated H5N1 influenza virus and CpG into emulsified nanoparticles critically influences the humoral responses against pandemic influenza. These results demonstrated that the use of PELC could be as antigen-sparing in preparation for a potential shortage of prophylactic vaccines against local infectious diseases, in particular pandemic influenza. Moreover, the cross-clade neutralizing antibody responses data verify the potential of such adjuvanted H5N1 candidate vaccine as an effective tool in pre-pandemic preparedness.  相似文献   

6.
The highly pathogenic avian influenza (HPAI) H5N1 viruses, especially the laboratory-generated H5N1 mutants, have demonstrated the potential to cross the species barrier and infect mammals and humans. Consequently, the design of an effective and safe anti-H5N1 vaccine is essential. We previously demonstrated that the full-length hemagglutinin 1 (HA1) could induce significant neutralizing antibody response and protection. Here, we intended to identify the critical neutralizing domain (CND) in an optimal conformation that can elicit strong cross-neutralizing antibodies and protection against divergent H5N1 strains. We thus constructed six recombinant proteins covering different regions of HA1 of A/Anhui/1/2005(H5N1), each of which was fused with foldon (Fd) and Fc of human IgG. We found that the critical fragment fused with Fd/Fc (HA-13–263-Fdc, H5 numbering) that could elicit the strongest neutralizing antibody response is located in the N-terminal region of HA1 (residues 13–263), which covers the receptor-binding domain (RBD, residues 112–263). We then constructed three additional recombinants fused with Fd plus His tag (HA-13–263-Fd-His), Fc only (HA-13–263-Fc), and His tag only (HA-13–263-His), respectively. We found that the HA-13–263-Fdc, which formed an oligomeric conformation, induced the strongest neutralizing antibody response and cross-protection against challenges of two tested H5N1 virus strains covering clade 1: A/VietNam/1194/2004 (VN/1194) or clade 2.3.4: A/Shenzhen/406H/06 (SZ/406H), while HA-13–263-Fc dimer and HA-13–263-Fd-His trimer elicited higher neutralizing antibody response and protection than HA-13–263-His monomer. These results suggest that the oligomeric form of the CND containing the RBD can be further developed as an effective and safe vaccine for cross-protection against divergent strains of H5N1 viruses.  相似文献   

7.
In an open label clinical study (2007), MF59-adjuvanted hemagglutinin (HA) vaccine from H5N1-A/Vietnam/1194/2004 (clade 1) was administered to subjects previously vaccinated (primed) with clade 0 H5N3 (A/duck/Singapore/97) vaccine at least 6 years earlier (in 1999 or 2001). The primed individuals responded rapidly and generated high neutralizing antibody titers against the H5N1-Vietnam strain within 7 days of a single booster vaccination. Furthermore, significant cross-neutralization titers were measured against H5N1 clade 0, 1, and 2 viruses. In the current study, the impact of MF59 adjuvant during heterologous priming on the quality of humoral polyclonal immune response in different vaccine arms were further evaluated using real time kinetics assay by surface plasmon resonance (SPR). Total anti-H5N1 HA1 polyclonal sera antibody binding from the heterologous prime-boost groups after a single MF59-H5N1 boost was significantly higher compared with sera from unprimed individuals that received two MF59-H5N1 vaccinations. The antigen-antibody complex dissociation rates (surrogate for antibody affinity) of the polyclonal sera against HA1 of H5N1-A/Vietnam/1194/2004 from the MF59-H5N3 primed groups were significantly higher compared to sera from unadjuvanted primed groups or unprimed individuals that received two MF59-H5N1 vaccines. Furthermore, strong inverse correlations were observed between the antibody dissociation off-rates of the immune sera against HA1 (but not HA2) and the virus neutralization titers against H5 vaccine strains and heterologous H5N1 strains. These findings supports the use of oil-in-water-adjuvanted pandemic influenza vaccines to elicit long term memory B cells with high affinity BCR capable of responding to potential variant pandemic viruses likely to emerge and adapt to human transmissions.  相似文献   

8.
The threat of a highly pathogenic avian influenza (HPAI) H5N1 virus causing the next pandemic remains a major concern. In this study, we evaluated the immunogenicity and efficacy of an inactivated whole-virus H5N1 pre-pandemic vaccine (MG1109) formulated by Green Cross Co., Ltd containing the hemagglutinin (HA) and neuraminidase (NA) genes of the clade 1 A/Vietnam/1194/04 virus in the backbone of A/Puerto Rico/8/34 (RgVietNam/04xPR8/34). Administration of the MG1109 vaccine (2-doses) in mice and ferrets elicited high HI and SN titers in a dose-dependent manner against the homologous (RgVietNam/04xPR8/34) and various heterologous H5N1 strains, (RgKor/W149/06xPR8/34, RgCambodia/04xPR8/34, RgGuangxi/05xPR8/34), including a heterosubtypic H5N2 (A/Aquatic bird/orea/W81/05) virus. However, efficient cross-reactivity was not observed against heterosubtypic H9N2 (A/Ck/Korea/H0802/08) and H1N1 (PR/8/34) viruses. Mice immunized with 1.9 μg HA/dose of MG1109 were completely protected from lethal challenge with heterologous wild-type HPAI H5N1 A/EM/Korea/W149/06 (clade 2.2) and mouse-adapted H5N2 viruses. Furthermore, ferrets administered at least 3.8 μg HA/dose efficiently suppressed virus growth in the upper respiratory tract and lungs. Vaccinated mice and ferrets also demonstrated attenuation of clinical disease signs and limited virus spread to other organs. Thus, this vaccine provided immunogenic responses in mouse and ferret models even against challenge with heterologous HPAI H5N1 and H5N2 viruses. Since the specific strain of HPAI H5N1 virus that would potentially cause the next outbreak is unknown, pre-pandemic vaccine preparation that could provide cross-protection against various H5 strains could be a useful approach in the selection of promising candidate vaccines in the future.  相似文献   

9.
Recombinant hemagglutinin from influenza viruses with pandemic potential can be produced rapidly in various cell substrates. In this study, we compared the functionality and immunogenicity of bacterially produced oligomeric or monomeric HA1 proteins from H5N1 (A/Vietnam/1203/04) with those of the egg-based licensed subunit H5N1 (SU-H5N1) vaccine in ferrets challenged with homologous or heterologous H5N1 highly pathogenic influenza strains. Ferrets were vaccinated twice with the oligomeric or monomeric rHA1 or with SU-H5N1 (Sanofi Pasteur) emulsified with Titermax adjuvant and were challenged with wild-type homologous (A/Vietnam/1203/04; clade 1) or heterologous (A/Whooperswan/Mongolia/244/2005; clade 2.2) virus. Only the oligomeric rHA1 (not the monomeric rHA1) immunogen and the SU-H5N1 vaccine provided protection against the lethality and morbidity of homologous and heterologous highly pathogenic H5N1. Oligomeric rHA1 generated more cross-neutralizing antibodies and higher levels of serum antibody binding to HA1, with stronger avidity and a better IgG/IgM ratio, than monomeric HA1 and SU-H5N1 vaccines, as determined by surface plasmon resonance (SPR). Importantly, viral loads after heterologous H5N1 challenge were more efficiently controlled in ferrets vaccinated with the oligomeric rHA1 immunogen than in SU-H5N1-vaccinated ferrets. The reduction of viral loads in the nasal washes correlated strongly with higher-avidity antibodies to oligomeric rHA1 derived from H5N1 clade 1 and clade 2.2 viruses, as measured by SPR. This is the first study to show the role of antibody avidity for the HA1 globular head domain in reduction of viral loads in the upper respiratory tract, which could significantly reduce viral transmission.  相似文献   

10.
The role of wild birds in the spread of highly pathogenic avian influenza H5N1 has been greatly debated and remains an unresolved question. However, analyses to determine involvement of wild birds have been hindered by the lack of basic information on their movements in central Asia. Thus, we initiated a programme to document migrations of waterfowl in Asian flyways to inform hypotheses of H5N1 transmission. As part of this work, we studied migration of waterfowl from Qinghai Lake, China, site of the 2005 H5N1 outbreak in wild birds. We examined the null hypothesis that no direct migratory connection existed between Qinghai Lake and H5N1 outbreak areas in central Mongolia, as suggested by some H5N1 phylogeny studies. We captured individuals in 2007 from two of the species that died in the Qinghai Lake outbreaks and marked them with GPS satellite transmitters: Bar-headed Geese Anser indicus ( n  =   14) and Ruddy Shelduck Tadorna ferruginea ( n  =   11). Three of 25 marked birds (one Goose and two Shelducks) migrated to breeding grounds near H5N1 outbreak areas in Mongolia. Our results describe a previously unknown migratory link between the two regions and offer new critical information on migratory movements in the region.  相似文献   

11.
Yang P  Duan Y  Zhang P  Li Z  Wang C  Dong M  Tang C  Xing L  Gu H  Zhao Z  Liu X  Zhang S  Wang X 《PloS one》2012,7(1):e30252

Background

The increase in recent outbreaks and unpredictable changes of highly pathogenic avian influenza (HPAI) H5N1 in birds and humans highlights the urgent need to develop a cross-protective H5N1 vaccine. We here report our development of a multiple-clade H5N1 influenza vaccine tested for immunogenicity and efficacy to confer cross-protection in an animal model.

Methodology/Principal Findings

Mice received two doses of influenza split vaccine with oil-in-water emulsion adjuvant SP01 by intranasal administration separated by two weeks. Single vaccines (3 µg HA per dose) included rg-A/Vietnam/1203/2004(Clade 1), rg-A/Indonesia/05/2005(Clade 2.1), and rg-A/Anhui/1/2005(Clade 2.3.4). The trivalent vaccine contained 1 µg HA per dose of each single vaccine. Importantly, complete cross-protection was observed in mice immunized using trivalent vaccine with oil-in-water emulsion adjuvant SP01 that was subsequently challenged with the lethal A/OT/SZ/097/03 influenza strain (Clade 0), whereas only the survival rate was up to 60% in single A/Anhui/1/2005 vaccine group.

Conclusion/Significance

Our findings demonstrated that the multiple-clade H5N1 influenza vaccine was able to elicit a cross-protective immune response to heterologous HPAI H5N1 virus, thus giving rise to a broadly cross-reactive vaccine to potential prevention use ahead of the strain-specific pandemic influenza vaccine in the event of an HPAI H5N1 influenza outbreak. Also, the multiple-clade adjuvanted vaccine could be useful in allowing timely initiation of vaccination against unknown pandemic virus.  相似文献   

12.

Background

Continuing transmissions of highly pathogenic H5N1 viruses in poultry and humans underscores the need for a rapid response to potential pandemic in the form of vaccine. Recombinant technologies for production of immunogenic hemagglutinin (HA) could provide an advantage over the traditional inactivated vaccine manufacturing process. Generation of stably transfected mammalian cells secreting properly folded HA proteins is important for scalable controlled manufacturing.

Methodology/Principal Findings

We have developed a Flp-In based 293 stable cell lines through targeted site-specific recombination for expression of secreted hemagglutinin (HA) proteins and evaluated their immunogenicity. H5N1 globular domain HA1(1-330) and HA0(1-500) proteins were purified from the supernatants of 293 Flp-In stable cell lines. Both proteins were properly folded as confirmed by binding to H5N1-neutralizing conformation-dependent human monoclonal antibodies. The HA0 (with unmodified cleavage site) was monomeric, while the HA1 contained oligomeric forms. Upon rabbit immunization, both HA proteins elicited neutralizing antibodies against the homologous virus (A/Vietnam/1203/2004, clade 1) as well as cross-neutralizing antibodies against heterologous H5N1 clade 2 strains, including A/Indonesia/5/2005. These results exceeded the human antibody responses against the inactivated sub-virion H5N1 vaccine.

Conclusions/Significance

Our data suggest that the 293 Flp-In system could serve as a platform for rapid expression of HA immunogens in mammalian cells from emerging influenza strains.  相似文献   

13.
Human infections with highly pathogenic avian influenza viruses of the H5N1 subtype, frequently reported since 2003, result in high morbidity and mortality. It is feared that these viruses become pandemic, therefore the development of safe and effective vaccines is desirable. MVA-based H5N1 vaccines already proved to be effective when two immunizations with high doses were used. Dose-sparing strategies would increase the number of people that can be vaccinated when the amount of vaccine preparations that can be produced is limited. Furthermore, protective immunity is induced ideally after a single immunization. Therefore the minimal requirements for induction of protective immunity with a MVA-based H5N1 vaccine were assessed in mice. To this end, mice were vaccinated once or twice with descending doses of a recombinant MVA expressing the HA gene of influenza virus A/Vietnam/1194/04. The protective efficacy was determined after challenge infection with the homologous clade 1 virus and a heterologous virus derived from clade 2.1, A/Indonesia/5/05 by assessing weight loss, virus replication and histopathological changes. It was concluded that MVA-based vaccines allowed significant dose-sparing and afford cross-clade protection, also after a single immunization, which are favorable properties for an H5N1 vaccine candidate.  相似文献   

14.
The avian H5N1 influenza virus has the potential to cause a new pandemic. Since it is difficult to predict which strain of influenza will cause a pandemic, it is advantageous to produce vaccines that confer cross-protective immunity. Mucosal vaccine administration was reported to induce cross-protective immunity by inducing secretion of IgA at the mucosal surface. Adjuvants can also enhance the development of fully protective mucosal immunity. Here we show that a new mucosal adjuvant, poly I:poly C12U (Ampligen), a Toll-like receptor 3 agonist proven to be safe in a Phase III human trial, is an effective adjuvant for H5N1 influenza vaccination. Intranasal administration of a candidate influenza vaccine with Ampligen resulted in secretion of IgA, and protected mice that were subsequently challenged with homologous A/Vietnam/1194/2004 and heterologous A/HK/483/97 and A/Indonesia/6/2005 virus.  相似文献   

15.
A strain‐specific vaccine represents the best possible response to the threat of an influenza pandemic. Rapid delivery of such a vaccine to the world's population before the peak of the first infection wave seems to be an unattainable goal with the current influenza vaccine manufacturing capacity. Plant‐based transient expression is one of the few production systems that can meet the anticipated surge requirement. To assess the capability of plant agroinfiltration to produce an influenza vaccine, we expressed haemagglutinin (HA) from strains A/Indonesia/5/05 (H5N1) and A/New Caledonia/20/99 (H1N1) by agroinfiltration of Nicotiana benthamiana plants. Size distribution analysis of protein content in infiltrated leaves revealed that HA was predominantly assembled into high‐molecular‐weight structures. H5‐containing structures were purified and examination by transmission electron microscopy confirmed virus‐like particle (VLP) assembly. High‐performance thin layer chromatography analysis of VLP lipid composition highlighted polar and neutral lipid contents comparable with those of purified plasma membranes from tobacco plants. Electron microscopy of VLP‐producing cells in N. benthamiana leaves confirmed that VLPs accumulated in apoplastic indentations of the plasma membrane. Finally, immunization of mice with two doses of as little as 0.1 µg of purified influenza H5‐VLPs triggered a strong immune response against the homologous virus, whereas two doses of 0.5 µg of H5‐VLPs conferred complete protection against a lethal challenge with the heterologous A/Vietnam/1194/04 (H5N1) strain. These results show, for the first time, that plants are capable of producing enveloped influenza VLPs budding from the plasma membrane; such VLPs represent very promising candidates for vaccination against influenza pandemic strains.  相似文献   

16.
Highly pathogenic avian influenza (HPAI) and Newcastle disease (ND) are 2 devastating diseases of poultry, which cause great economic losses to the poultry industry. In the present study, we developed a bivalent vaccine containing antigens of inactivated ND and reassortant HPAI H5N1 viruses as a candidate poultry vaccine, and we evaluated its immunogenicity and protective efficacy in specific pathogen-free chickens. The 6∶2 reassortant H5N1 vaccine strain containing the surface genes of the A/Chicken/Korea/ES/2003(H5N1) virus was successfully generated by reverse genetics. A polybasic cleavage site of the hemagglutinin segment was replaced by a monobasic cleavage site. We characterized the reverse genetics-derived reassortant HPAI H5N1 clade 2.5 vaccine strain by evaluating its growth kinetics in eggs, minimum effective dose in chickens, and cross-clade immunogenicity against HPAI clade 1 and 2. The bivalent vaccine was prepared by emulsifying inactivated ND (La Sota strain) and reassortant HPAI viruses with Montanide ISA 70 adjuvant. A single immunization with this vaccine induced high levels of hemagglutination-inhibiting antibody titers and protected chickens against a lethal challenge with the wild-type HPAI and ND viruses. Our results demonstrate that the bivalent, inactivated vaccine developed in this study is a promising approach for the control of both HPAI H5N1 and ND viral infections.  相似文献   

17.
Highly pathogenic avian influenza A (HPAI) viruses of the H5N1 subtypes caused enormous economical loss to poultry farms in China and Southeastern Asian countries. The vaccination program is a reliable strategy in controlling the prevalence of these disastrous diseases. The six internal genes of the high-yield influenza virus A/Goose/Dalian/3/01 (H9N2), the haemagglutinin (HA) gene of A/Goose/HLJ/QFY/04 (H5N1) strain, and the neuraminidase gene from A/Duck/Germany/1215/73 (H2N3) reference strain were amplified by RT-PCR technique. The HA gene was modified by the deletion of four basic amino acids of the connecting peptide between HA1 and HA2. Eight gene expressing plasmids were constructed, and the recombinant virus rH5N3 were generated by cell transfection. The infection of chicken embryos and the challenge tests involving chickens demonstrated that the recombinant H5N3 (rH5N3) influenza virus is avirulent. The allantoic fluids of rH5N3-infected eggs contain high-titer influenza viruses with haemagglutination unit of 1:2 048, which are eight times those of the parental H5N1 virus. The rH5N3 oil-emulsified vaccine could induce haemagglutination inhibition (HI) antibodies in chickens in 2 weeks post-vaccination, and the maximum geometric mean HI-titers were observed 4–5 weeks post-vaccination and were kept under observation for 18 weeks. The rH5N3-vaccinated chickens were fully protected against morbidity and mortality of the lethal challenge of the H5N1 HPAI viruses, A/Goose/Guangdong/1/96 and A/Goose/HLJ/QFY/04, which had 8 years expansion and differences among multiple amino acids in HA protein. The N3 neuraminidase protein marker makes it possible to distinguish between H5N1-infected and H5N3-vaccinated animals.  相似文献   

18.
Y Gao  Z Wen  K Dong  G Zhong  X Wang  Z Bu  H Chen  L Ye  C Yang 《PloS one》2012,7(7):e41332
The evolution of the H5N1 highly pathogenic avian influenza virus (HPAIV) has resulted in high sequence variations and diverse antigenic properties in circulating viral isolates. We investigated immune responses induced by HA DNA vaccines of two contemporary H5N1 HPAIV isolates, A/bar-headed goose/Qinghai/3/2005 (QH) and A/chicken/Shanxi/2/2006 (SX) respectively, against the homologous as well as the heterologous virus isolate for comparison. Characterization of antibody responses induced by immunization with QH-HA and SX-HA DNA vaccines showed that the two isolates are antigenically distinctive. Interestingly, after immunization with the QH-HA DNA vaccine, subsequent boosting with the SX-HA DNA vaccine significantly augmented antibody responses against the QH isolate but only induced low levels of antibody responses against the SX isolate. Conversely, after immunization with the SX-HA DNA vaccine, subsequent boosting with the QH-HA DNA vaccine significantly augmented antibody responses against the SX isolate but only induced low levels of antibody responses against the QH isolate. In contrast to the antibody responses, cross-reactive T cell responses are readily detected between these two isolates at similar levels. These results indicate the existence of original antigenic sin (OAS) between concurrently circulating H5N1 HPAIV strains, which may need to be taken into consideration in vaccine development against the potential H5N1 HPAIV pandemic.  相似文献   

19.
The global spread of highly pathogenic avian influenza A H5N1 viruses raises concerns about more widespread infection in the human population. Pre-pandemic vaccine for H5N1 clade 1 influenza viruses has been produced from the A/Viet Nam/1194/2004 strain (VN1194), but recent prevalent avian H5N1 viruses have been categorized into the clade 2 strains, which are antigenically distinct from the pre-pandemic vaccine. To understand the antigenicity of H5N1 hemagglutinin (HA), we produced a neutralizing monoclonal antibody (mAb12-1G6) using the pre-pandemic vaccine. Analysis with chimeric and point mutant HAs revealed that mAb12-1G6 bound to the loop (amino acid positions 140-145) corresponding to an antigenic site A in the H3 HA. mAb12-1G6 failed to bind to the mutant VN1194 HA when only 3 residues were substituted with the corresponding residues of the clade 2.1.3.2 A/Indonesia/5/05 strain (amino acid substitutions at positions Q142L, K144S, and S145P), suggesting that these amino acids are critical for binding of mAb12-1G6. Escape mutants of VN1194 selected with mAb12-1G6 carried a S145P mutation. Interestingly, mAb12-1G6 cross-neutralized clade 1 and clade 2.2.1 but not clade 2.1.3.2 or clade 2.3.4 of the H5N1 virus. We discuss the cross-reactivity, based on the amino acid sequence of the epitope.  相似文献   

20.
利用反向遗传学技术构建H5亚型禽流感高产疫苗株   总被引:13,自引:0,他引:13  
采用RT-PCR技术分别扩增了鹅源高产禽流感病毒的6条内部基因片段,近期分离的H5N1亚型禽流感病毒的血凝素基因以及N3亚型参考毒株的神经氨酸酶基因,分别构建了8个基因的转录与表达载体,利用反向遗传学技术拯救出了全部基因都源于禽源的重组流感病毒疫苗株rH5N3。通过对血凝素蛋白HA1和HA2连接肽处的5个碱性氨基酸(R-R-R-K-K)基因缺失与修饰,从而消除了病毒基因的毒力相关序列,拯救的rH5N3疫苗株对鸡和鸡胚均无致病性,病毒在鸡胚尿囊液和细胞培养上清的HA效价得到极大提高,分别为12048和1512。制备的禽流感疫苗免疫动物后4~5周即可诱导产生高效价的HI抗体,鸡免疫后18周依然保持高水平的HI抗体。重组疫苗不论是对于国内早期分离的禽流感病毒A/Goose/Guangdong/1/96还是近期分离的A/Goose/HLJ/QFY/04都能够产生完全的免疫保护作用,免疫鸡攻毒后不发病、不排毒、不死亡。带有N3鉴别诊断标记禽流感疫苗株的研制为H5N1高致病性禽流感的防治提供了新的技术保障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号