首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily. They are divided into three subtypes (alpha, beta or delta, and gamma) and are involved in lipid and glucose homeostasis and in the control of inflammation. In this study, we analyzed the expression of PPARs in murine dendritic cells (DCs), the most potent antigen presenting cells. We find that immature as well as mature spleen-derived DCs express PPARgamma, but not PPARalpha, mRNA and protein. We also show that the PPARgamma activator rosiglitazone does not interfere with the maturation of DCs in vitro nor modifies their ability to activate naive T lymphocytes in vivo. Finally, we present evidence that PPARgamma activators down-modulate the CD40-induced secretion of interleukin-12, a potent Th1-driving factor. These data suggest a possible role for PPARgamma in the regulation of immune responses.  相似文献   

3.
N R Woodruff  K E Neet 《Biochemistry》1986,25(24):7967-7974
Pheochromocytoma (PC12) cells have been found to differ from dorsal root ganglionic cells with respect to the modulation of the beta nerve growth factor (beta NGF) binding properties elicited by alpha NGF and gamma NGF. In contrast to our previous results with intact dorsal root ganglionic cells in which only high-affinity binding was blocked, alpha NGF and gamma NGF were found to block competitively all steady-state binding of iodinated beta NGF to PC12 cells at both 37 and 0.5 degrees C. The EC50 that was found for the alpha NGF displacement was 9-10 microM, and the gamma NGF effect had an EC50 of 200 nM, in the predicted range based upon the apparent Kd for dissociation of the alpha beta or the beta gamma complex in solution. The concurrence of the binding EC50 and the Kd for each complex indicates that the formation of alpha beta or beta gamma complexes in solution competes with the process of PC12 receptor binding with 125I-beta NGF. Experiments were carried out examining the dissociation kinetics following the addition of excess unlabeled beta NGF or alpha NGF at both 37 and 0.5 degrees C. Three dissociation components were observed with alpha NGF, in contrast to the two normally found with beta NGF. Lowering the chase temperature to 0.5 degrees C changed the relative contributions made by each component without dramatically changing any of the rate constants. The "slow" receptor was further examined by the dependence on 125I-beta NGF concentration of the slowest component with a chase of either excess alpha NGF or excess gamma NGF at 0.5 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The progesterone receptor (PR) plays a critical role during ovulation. Mice lacking the PR gene are anovulatory due to a failure in the rupture of the preovulatory follicles. The pathways that operate downstream of PR to control ovulation are poorly understood. Using gene expression profiling, we identified peroxisome proliferator-activated receptor γ (PPARγ) as a target of regulation by PR in the granulosa cells of the preovulatory follicles during the ovulatory process. To investigate the function of PPARγ during ovulation, we created a conditional knockout mouse in which this gene was deleted via Cre-Lox-mediated excision in granulosa cells. When these mutant mice were subjected to gonadotropin-induced superovulation, the preovulatory follicles failed to rupture and the number of eggs released from the mutant ovaries declined drastically. Gene expression analysis identified endothelin-2, interleukin-6, and cyclic GMP-dependent protein kinase II as novel targets of regulation by PPARγ in the ovary. Our studies also suggested that cycloxygenase 2-derived metabolites of long-chain fatty acids function as endogenous activating ligands of PPARγ in the preovulatory follicles. Collectively, these studies revealed that PPARγ is a key mediator of the biological actions of PR in the granulosa cells and activation of its downstream pathways critically controls ovulation.  相似文献   

5.
Cells of the rat pheochromocytoma clone PC12 possess receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF), thus enabling the study of the interaction of these receptors in the regulation of proliferation and differentiation. Treatment of the cells with NGF induces a progressive and nearly total decrease in the specific binding of EGF beginning after 12 h and completed within 4 d. Three different measures of receptor show that the decreased binding capacity represents, in fact, a decreased amount of receptor: (a) affinity labeling of PC12 cell membranes by cross-linking of receptor-bound 125I-EGF showed a 60-90% decrease in the labeling of 170- and 150-kD receptor bands in cells treated with NGF for 1-4 d; (b) EGF-dependent phosphorylation of a src-related synthetic peptide or EGF receptor autophosphorylation with membranes from NGF-differentiated cells showed a decrease of 80 and 90% in the tyrosine kinase activity for the exogenous substrate and for receptor autophosphorylation, respectively; (c) analysis of 35S-labeled glycoproteins isolated by wheat germ agglutinin-Sepharose chromatography from detergent extracts of PC12 membranes showed a 70-90% decrease in the 170-kD band in NGF-differentiated cells. These findings permit the hypothesis that long-term heterologous down-regulation of EGF receptors by NGF in PC12 cells is mediated by an alteration in EGF receptor synthesis. It is suggested that this heterologous down-regulation is part of the mechanism by which differentiating cells become insensitive to mitogens.  相似文献   

6.
v-Crk is a member of a class of SH2 and SH3-containing adaptor proteins that have been implicated in regulating the TrkA receptor tyrosine kinase and potentiating Nerve Growth Factor (NGF)-mediated neurite outgrowth in pheochromocytoma (PC12) cells (Hempstead et al, Mol. Cell Biol. 14: 1964 - 1971). Given the fact that NGF induces both differentiation and survival by binding to TrkA, we examined the rate of apoptotic cell death elicited by NGF-withdrawal in native, v-Crk, and TrkA-expressing PC12 cells. While more than 50% of native PC12 cells underwent apoptosis within 48 h of NGF withdrawal, the v-Crk and TrkA-expressing cells were much more resistant to apoptosis under these conditions, whereby approximately 70 and 95%, respectively, of the cells were alive. The ability of v-Crk to delay apoptosis required prior NGF-dependent differentiation, since naive undifferentiated v-Crk expressing PC12 cells or cells that express v-Crk mutants that are defective in NGF signaling were not protected from apoptosis during growth factor withdrawal. Moreover, addition of 50 ng/ml EGF to serum and NGF deprived v-Crk expressing cells, which also causes neurite outgrowth, promoted complete and long-term survival, although such EGF replacement had no neurotrophic effect on wild-type PC12 cells or PC12 cells overexpressing Human Bcl-2. These experiments suggest that v-Crk potentiation of a receptor tyrosine kinase under conditions of growth factor deprivation is essential for preventing apoptosis. However, unlike native PC12 cells, neither v-Crk or TrkA-expressing PC12 cells exhibited a G1 arrest when incubated for 2 weeks in NGF. Thus, v-Crk and TrkA may protect NGF deprived PC12 by preventing cell cycle arrest and hence an aborted entry into a defective cell cycle. Moreover, during NGF-withdrawal, v-CrkPC12 cells exhibited down regulation in MAP kinase and JNK activities while in native cells, these activities increased within 6 - 8 h after NGF deprivation. Thus, unlike v-Crk-mediated augmentation of differentiation, sustained activation of MAP kinase may not be required for v-Crk-induced cell survival.  相似文献   

7.
Nerve growth factor (NGF) is required for the development of sympathetic neurons and subsets of sensory neurons. Our current knowledge on the molecular mechanisms underlying the biological functions of NGF is in part based on the studies with PC12 rat pheochromocytoma cells, which differentiate into sympathetic neuron-like cells upon NGF treatment. Here we report that the expression of leukemia inhibitory factor receptor (LIFR), one of the signaling molecules shared by several neuropoietic cytokines of the interleukin-6 family, is specifically up-regulated in PC12 cells following treatment with NGF. Attenuation of LIFR signaling through stable transfection of antisense- or dominant negative-LIFR constructs enhances NGF-induced neurite extension in PC12 cells. On the contrary, overexpression of LIFR retards the growth of neurites. More importantly, whereas NGF-induced Rac1 activity is enhanced in antisense-LIFR and dominant negative-LIFR expressing PC12 cells, it is reduced in LIFR expressing PC12 cells. Following combined treatment with NGF and ciliary neurotrophic factor, sympathetic neurons exhibit attenuated neurite growth and branching. On the other hand, in sympathetic neurons lacking LIFR, neurite growth and branching is enhanced when compared with wild type controls. Taken together, our findings demonstrate that LIFR expression can be specifically induced by NGF and, besides its known function in cell survival and phenotype development, activated LIFR signaling can exert negative regulatory effects on neurite extension and branching of sympathetic neurons.  相似文献   

8.
Lysophosphatidic acid (LPA) is a lipid metabolite that induces the activation of mitogen-activated protein kinase (MAPK) through binding to the G protein-coupled receptor in a number of cell lines and cultures. Recent studies have revealed that LPA is able to rapidly induce the phosphorylation of MAPK through an epidermal growth factor (EGF) receptor-dependent pathway. We investigated the role of the EGF receptor in the signaling pathway initiated by LPA stimulation in nerve growth factor (NGF)-responsive PC12 cells well known to transiently retract their own neurites upon LPA stimulation. LPA-stimulated MAPK signaling was suppressed by the selective EGF receptor inhibitor and in the dominant negative mutant EGF receptor cell line. As in the EGF signaling pathway, the complex of EGF receptor with adapter proteins Shc and Sos was formed in response to LPA stimulation, suggesting there is an intracellular mechanism for transactivation. A neurite retraction assay was also performed to examine the role of the EGF receptor in PC12 cell differentiation, which related to the involvement of LPA-induced neurite retraction. These results suggest that the receptor tyrosine kinase can be activated in a ligand-independent manner through intracellular crosstalk between the signaling pathways.  相似文献   

9.
Hidden receptors for nerve growth factor in PC12 cells   总被引:7,自引:0,他引:7  
The binding of nerve growth factor (NGF) to its receptors in PC12 cells was studied in two experimental conditions: (a) cell fixation with paraformaldehyde followed by permeabilization of the plasma membrane with methanol and (b) metabolic poisoning of living cells with sodium azide. Paraformaldehyde fixation of PC12 cells causes a 60-70% reduction of NGF binding capacity; the original binding capacity is restored following permeabilization with methanol. A kinetic analysis of NGF binding under these conditions reveals a single homogeneous population of receptors at variance with experiments performed in living cells where two kinetically distinct types of NGF receptors were demonstrated [Landreth, G. E. and Shooter, E. M. (1980) Proc. Natl Acad. Sci. USA, 77, 4751-4755; Schechter, A. L. and Bothwell, M. A. (1981) Cell, 24, 867-874]. Our results suggest that a proportion of the NGF receptors in PC12 cells is hidden, i.e. not available for binding to the ligand, and in a dynamic equilibrium with exposed receptors. The existence of hidden receptors is confirmed by treatment of PC12 cells with sodium azide, which causes a 50% reduction in NGF binding capacity and protection from trypsin digestion of the remaining pool of hidden receptors. The latter become exposed at the cell surface following removal of sodium azide. Our data provide an interpretation for the as yet unsatisfactorily explained data on NGF receptors.  相似文献   

10.
The Nogo-A protein, originally discovered as a potent myelin-associated inhibitor of neurite outgrowth, is also expressed by certain neurons, especially during development and after injury, but its role in neuronal function is not completely known. In this report, we overexpressed Nogo-A in PC12 cells to use as a model to identify potential neuronal signaling pathways affected by endogenously expressed Nogo-A. Unexpectedly, our results show that viability of Nogo-A-overexpressing cells was reduced progressively due to apoptotic cell death following NGF treatment, but only after 24 h. Inhibitors of neutral sphingomyelinase prevented this loss of viability, suggesting that NGF induced the activation of a ceramide-dependent cell death pathway. Nogo-A over-expression also changed NGF-induced phosphorylation of TrkA at tyrosines 490 and 674/675 from sustained to transient, and prevented the regulated intramembrane proteolysis of p75NTR, indicating that Nogo-A was altering the function of the two neurotrophin receptors. Co-immunoprecipitation studies revealed that there was a physical association between TrkA and Nogo-A which appeared to be dependent on interactions in the Nogo-A-specific region of the protein. Taken together, our results indicate that Nogo-A influences NGF-mediated mechanisms involving the activation of TrkA and its interaction with p75NTR.  相似文献   

11.
12.
The effects of nerve growth factor (NGF) and epidermal growth factor (EGF) on the regulation of phosphatidylinositol 3-kinase (PtdIns 3-kinase) activity were assessed in rat pheochromocytoma (PC12) cells. Both NGF and EGF induced a rapid activation of PtdIns 3-kinase as assessed by a dramatic rise in growth factor-induced PtdIns 3-kinase activity found in antiphosphotyrosine immunoprecipitates. The intracellular levels of two of the lipid products of PtdIns 3-kinase, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), also rose dramatically, exhibiting time courses very similar to the appearance of PtdIns 3-kinase in immunoprecipitates. The activation of PtdIns 3-kinase is, therefore, a common event in the signal transduction processes elicited by growth factors stimulating distinct cellular end points in PC12 cells, namely the NGF-induced neuronal differentiation and EGF-stimulated mitogenesis. Thus the intracellular products of this enzyme may function in early biochemical events that are common components of the pathways controlling both differentiation and proliferation.  相似文献   

13.
Activation of peroxisome proliferator-activated receptor gamma (PPAR gamma) after balloon injury significantly inhibits VSMC proliferation and neointima formation. However, the precise mechanisms of this inhibition have not been determined. We hypothesized that activation of PPAR gamma in vascular injury could attenuate VSMC growth and matrix production during vascular lesion formation. Since connective tissue growth factor (CTGF) is a key factor regulating extracellular matrix production, abrogation of transforming growth factor beta (TGF-beta)-induced CTGF production by PPAR gamma activation may be one of the mechanisms through which PPAR gamma agonists inhibit neointima formation after vascular injury. In this study, we demonstrate that the PPAR gamma natural ligand (15-deoxyprostaglandin J(2)) and a synthetic ligand (GW7845) significantly inhibit TGF-beta-induced CTGF production in a dose-dependent manner in HASMCs. In addition, suppression of CTGF mRNA expression is relieved by pretreatment with an antagonist of PPAR gamma (GW9662), suggesting that the inhibition of CTGF expression is mediated by PPAR gamma. To elucidate further the molecular mechanism by which PPAR gamma inhibits CTGF expression, an approximately 2-kilobase pair CTGF promoter was cloned. We found that PPAR gamma activation inhibits TGF-beta-induced CTGF promoter activity in a dose-dependent manner, and suppression of CTGF promoter activity by PPAR gamma activation is completely rescued by overexpression of Smad3, but not by Smad4. Furthermore, PPAR gamma physically interacts with Smad3 but not Smad4 in vitro in glutathione S-transferase pull-down experiments. Taken together, the data suggest that PPAR gamma inhibits TGF-beta-induced CTGF expression in HASMCs by directly interfering with the Smad3 signaling pathway.  相似文献   

14.
Peroxisome proliferator-activated receptor gamma (PPARγ) plays an important role in the differentiation of intestinal cells and tissues. Our previous reports indicate that PPARγ is expressed at considerable levels in human colon cancer cells. This suggests that PPARγ expression may be an important factor for cell growth regulation in colon cancer. In this study, we investigated PPARγ expression in 4 human colon cancer cell lines, HT-29, LOVO, DLD-1, and Caco-2. Real-time polymerase chain reaction (PCR) and Western blot analysis revealed that the relative levels of PPARγ mRNA and protein in these cells were in the order HT-29>LOVO>Caco-2>DLD-1. We also found that PPARγ overexpression promoted cell growth inhibition in PPARγ lower-expressing cell lines (Caco-2 and DLD-1), but not in higher-expressing cells (HT-29 and LOVO). We observed a correlation between the level of PPARγ expression and the cells' sensitivity for proliferation.  相似文献   

15.
Alpha2-adrenergic receptors have been reported to induce subtype-specific neuronal differentiation in vitro, but the signaling mechanisms that mediate this effect have not been characterized. In the present study we found that stimulated alpha2-ARs induce delayed transactivation of TrkA in PC12 cells. The transactivation of TrkA was sensitive to the PP1 inhibitor of the Src family kinases and required prior transactivation of the EGF receptor. Moreover, alpha2-adrenergic receptors induced sustained activation of MAPK and Akt. The sustained activation of Akt, but not of MAPK, was subtype-specific and correlated with the neuronal differentiation of PC12 cells, with the order alpha2A相似文献   

16.
17.
Clonal PC12 rat pheochromocytoma cells were sequentially incubated with 125I-labeled nerve growth factor and the photoreactive bifunctional agent hydroxysuccinimidyl-p-azidobenzoate. This treatment effected the crosslinking of 125I nerve growth factor to a PC12 cell component that exhibits an apparent Mr = 148 000-158 000, and consists of a single polypeptide chain with internal disulfide bonds. The amount of label associated with this Mr = 148 000-158 000 species was proportional to the degree of occupancy of nerve growth factor receptors by 125I-labeled nerve growth factor. Affinity labeling of this species was inhibited by the presence of 0.2 microM unlabeled nerve growth factor during incubation of PC12 cells with 125I nerve growth factor. In membranes prepared from PC12 cells hydroxysuccinimidyl-p-azidobenzoate effected the crosslinking of 125I-labeled nerve growth factor to an Mr = 120 000-130 000 species but not to the Mr = 148 000-158 000 component observed in intact cells. The kinetics of 125I nerve growth factor affinity labeling of the Mr = 148 000-158 000 species closely paralleled the time-course of 125I nerve growth factor association to two kinetically distinct forms of nerve growth factor receptors in PC12 cells. The data indicate that the Mr = 148 000-158 000 species affinity-labeled by 125I nerve growth factor is the native form of a component associated with kinetically different nerve growth factor receptors in PC12 cells.  相似文献   

18.
It has been assumed that prostaglandin (PG)I2 signaling contributes to the negative growth control of lung cancer cells; however, the mechanism remains unresolved. PGI2 functions through a cell surface G protein-coupled receptor (prostaglandin I2-binding receptor, IP) and also exerts an effect by interacting with a nuclear hormone receptor, peroxisome proliferator-activated receptor delta (PPARdelta). We found that PPARdelta was a key molecule of PGI2 signaling to give negative growth control of lung cancer cells (A549), using carbarprostacyclin, a PGI2 agonist for IP and PPARdelta, and L-165041, a PPARdelta agonist. Furthermore, PPARdelta-induced cell growth control was reinforced by the inhibition of cyclooxygenase. These results suggest that PPARdelta activation under the suppression of PG synthesis is important to regulate lung cancer cell growth.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号