首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Accurate dosimetry for chemical mutagens is extremely difficult, and precise manipulation of the frequency of a particular lesion is ordinarily impossible. With 8-MOP plus UVA, however, both are possible because 8-MOP, when photoactivated by one photon of UVA, forms monoadducts whilst crosslinks are formed only if a second photon of light photoactivates the monoadducts. If 8-MOP molecules that are unreacted after a UVA exposure are removed from cells by washing, the effect of a subsequent UVA irradiation can be attributed only to the conversion of monoadducts to DNA interstrand crosslinks. Using this experimental procedure and L5178Y mouse lymphoma cells, we have shown that DNA interstrand crosslinks are at least 10-fold more effective at causing both sister-chromatid exchanges and chromosomal aberrations than are monoadducts. In contrast, crosslinks are no more effective than monoadducts in mutation induction. These experiments identify directly for the first time that a particular chemically induced lesion, DNA interstrand crosslinks, can, like thymine dimers, cause chromosomal aberrations and sister-chromatid exchanges. The results also show that sister-chromatid exchanges can be induced independently of mutations.  相似文献   

2.
The clastogenic effect of furocoumarins psoralen and angelicin in the presence of near-UV (320-380 nm) differs greatly, as do their modes of interaction with DNA. Psoralen, which requires only one-fifth as much light energy to produce the same lethal effect as angelicin at equimolar concentrations, is able to cross-link DNA whereas angelicin cannot. The frequency of micronuclei which arise from chromosomal fragments shows the same differential effect as lethality. Indeed aberrations account for much or all of the lethality observed. Metaphase analysis at comparable aberration frequencies revealed that angelicin and psoralen both induce chromatid deletions and a wide spectrum of chromatid exchanges. These data show that both cross-links and monoadducts to the DNA can result in chromosomal aberrations. The relative contributions of cross-links and monoadducts to chromosomal aberrations still remain to be determined. It is noteworthy that extensive chromosomal damage is induced in mammalian cells by the combination of psoralen and near-UV, a treatment which is currently widely used in the therapy of psoriasis.  相似文献   

3.
5-methoxypsoralen (5-MOP) binds to human serum low density lipoproteins (LDL) according to a two-step process. Scatchard analysis of the first step yields K = 1.4 × 105 M?1 and 4 binding sites. It involves the LDL apoprotein. The second step corresponds to a solubilization, in the lipidic core, of ? 45 molecules of 5MOP per LDL molecule. It is accompanied by a large blue shift of the 5MOP fluorescence. The ability of LDL to bind 5MOP and to carry it into various cells may explain some biological effects sometimes encountered during PUVA therapy.  相似文献   

4.
Dictamnine, a naturally occurring furoquinoline, produces bacterial frameshift mutations in the dark. It does not form DNA interstrand crosslinks in bacterial cells in the presence of near-ultraviolet light (300-380 nm). It is more active than angelicin but slightly less active than 8-MOP as a phototoxic agent with E. coli. It is however a more active mutagen than 8-MOP at equivalent concentration. Dictamnine is slightly more potent than the same concentration of angelicin in producing photosensitized lethality in Chinese hamster cells. It does, however, produce almost twice as many sister-chromatid exchanges per lethal event than angelicin. The concept of 'unit dose' relating the observable photoinduced damage by the photosensitizer and the total irradiation appears to apply reasonably well to the actions of dictamnine in killing bacterial and mammalian cells, in the formation of sister-chromatid exchanges, but not to the induction of bacterial mutations.  相似文献   

5.
The anti-tumor agent cis-platinum(II) diamine dichloride caused dose-dependent toxicity in V79 Chinese hamster cells and in secondary Syrian hamster embryo cells. Chromosome aberrations were induced and positive dose--response relationships were observed for induction of sister-chromatid exchanges and 6-thioguanine-resistant mutations in V79 cells and morphologic transformation of secondary Syrian hamster embryo cells. The findings suggest that this chemical is a potential human carcinogen.  相似文献   

6.
The induction of sister-chromatid exchanges (SCE) and chromosomal aberrations (Ch.Ab.) by the herbicide maleic hydrazide (MH) has been investigated in Chinese hamster ovary (CHO) cells grown in vitro and in bone marrow cells of mice treated in vivo. MH induces SCE and Ch.Ab. in CHO cells without metabolic activation; however, no induction of SCE was found in the in vivo experiments.  相似文献   

7.
We have recently shown that Bloom syndrome fibroblasts have elevated levels of superoxide dismutase activity compared to those of normal fibroblasts. Based on this observation we decided to test whether an increased rate of superoxide radical production could be responsible for the induction of superoxide dismutase and of chromosomal aberrations and sister-chromatid exchanges characteristic of Bloom syndrome. Utilizing the superoxide-generating herbicide paraquat in Chinese hamster fibroblasts, we assayed the cells for dismutase activity, chromosomal aberrations and sister-chromatid exchanges. All 3 parameters investigated demonstrated a dose-dependent increase with paraquat and, consequently, with the superoxide produced. Since the induction of the enzyme is mediated by its substrate, the superoxide anion radical, we concluded that the increased dismutase activity (in Bloom syndrome and paraquat-treated cells) may be a secondary manifestation of an overall imbalance in oxygen metabolism and that this elevated enzymatic activity is insufficient to detoxify the high superoxide levels, which results in elevated levels of chromosomal damage.  相似文献   

8.
A H Uggla 《Mutation research》1988,201(1):229-239
A comparison has been made between the ability of different acridine compounds to act as sensitizers for visible light (400-700 nm) induced chromosomal aberrations and sister-chromatid exchanges (SCE) in unsynchronized Chinese hamster ovary (CHO) cells. Cells were treated for 20 min with acridines (0.1-5.0 microgram/ml), washed free of excess dye and subsequently exposed to visible light (2 x 40 W/8 W m-2) either in air or in nitrogen for 5-15 min. The 4 acridines tested, proved to be effective sensitizers for the induction of both chromosomal aberrations and SCE by visible light. The most pronounced effect was observed when the light exposure of the fluorochrome-pretreated cells was performed in air. Hypoxic conditions during light exposure reduced the effect dramatically, especially in the case of induced chromosomal aberrations. The order of efficiency for the induction of both chromosomal aberrations and SCE was acridine orange greater than acridine yellow greater than proflavine greater than 3,6-diamino-10-methylacridine. The results are discussed in terms of S-independent versus S-dependent mechanisms for inducing chromosomal alterations and the potential involvement of oxygen-derived free radicals in this process.  相似文献   

9.
M Osmak  D Horvat 《Mutation research》1992,282(4):259-263
Chinese hamster V79 cells were irradiated daily with 0.3 Gy of gamma-rays 5 times per week for 12 weeks (total 18 Gy). These cells were challenged with an additional dose of 15. Gy gamma-rays or treated with 5 micrograms/ml of mitomycin C (MMC) for 2 h. In spite of the high total accumulated dose of gamma-rays, the number of chromosomal aberrations and sister-chromatid exchanges (SCEs) did not significantly increase in the preirradiated cells, as compared to control cells. If preirradiated cells were challenged with an additional 1.5 Gy of gamma-rays, an insignificant decrease in the yield of chromatid aberrations was observed. In contrast, preirradiated cells became significantly more resistant to the induction of chromosomal damage when challenged with mitomycin C. Our results suggest that multiple fractions of gamma-rays can induce the adaptive response to mitomycin C in preirradiated cells.  相似文献   

10.
Cells from patients with the inherited disorder, Fanconi's anemia (FA), were analyzed for endonucleases which recognize DNA interstrand cross-links and monoadducts produced by psoralen plus UVA irradiation. Two chromatin-associated DNA endonuclease activities, defective in their ability to incise DNA-containing adducts produced by psoralen plus UVA light, have been identified and isolated in nuclei of FA cells. In FA complementation group A (FA-A) cells, one endonuclease activity, pI 4.6, which recognizes psoralen intercalation and interstrand cross-links, has 25% of the activity of the normal human endonuclease, pI 4.6, on 8-methoxypsoralen (8-MOP) plus UVA-damaged DNA. In FA complementation group B (FA-B) cells, a second endonuclease activity, pI 7.6, which recognizes psoralen monoadducts, has 50% and 55% of the activity, respectively, of the corresponding normal endonuclease on 8-MOP or angelicin plus UVA-damaged DNA. Kinetic analysis reveals that both the FA-A endonuclease activity, pI 4.6, and the FA-B endonuclease activity, pI 7.6, have decreased affinity for psoralen plus UVA-damaged DNA. Both the normal and FA endonucleases showed approximately a 2.5-fold increase in activity on psoralen plus UVA-damaged reconstituted nucleosomal DNA compared to damaged non-nucleosomal DNA, indicating that interaction of these FA endonucleases with nucleosomal DNA is not impaired. These deficiencies in two nuclear DNA endonuclease activities from FA-A and FA-B cells correlate with decreased levels of unscheduled DNA synthesis (UDS), in response to 8-MOP or angelicin plus UVA irradiation, in these cells in culture.  相似文献   

11.
C Nowak  G Obe 《Mutation research》1985,149(3):469-474
Human peripheral lymphocytes and Chinese hamster ovary cells were treated in the G1 phase of the cell cycle with the trifunctional alkylating agent trenimon (TRN) and post-treated with a single-strand specific endonuclease from Neurospora crassa (NE). TRN induces chromosomal aberrations of the chromatid type (CA) and sister-chromatid exchanges (SCE). NE post-treatment leads to an elevation of the frequencies of CA but not of SCEs. This indicates that TRN induced CA are the result of DNA double-strand breaks and that the SCEs originate from other types of lesions, most probably base damage.  相似文献   

12.

• Induction of gene mutations by SV40 was studied in aneuploid human and Chinese hamster cells. In Chinese hamster cells SV40-induced chromosome aberrations were also studied.

• SV40 penetrated into the cells of both lines and induced synthesis of the T antigen. The efficiency of infection in Chinese hamster cells was tested additionallby their ability to form colonies in medium lacking the serum growth factor. The maximal number of cells with growth factor independence was observed on the first day after infection. When hamster cells had been maintained in “factor-free medium” for the first two passages after infection a sub-line was isolated, which synthesized T antigen 60 days after exposure to SV40. This was considered to be an indirect proof of the integration of viral genome into host chromosome.

• A significant increase in the frequency of chromosomal aberrations was detected in SV40-infected Chinese hamster cells. It was observed on the first and second days after treatment. The most numerous were the chromosome and chromatid breaks, which were distributed randomly in 5 morphological groups according to the chromosome length.

• SV40-induced mutations of resistance to 8-AG and 6-MP in human and Chinese hamster cells respectively were detected, when cells were plated in selective medium one to five days after infection. Induction was detected in all the 4 experiments with human cells and in 9 out of 11 experiments with Chinese hamsters cells. Induction was highly significant according to the Wilcoxon test (P>0.99), when the results of all experiments carried out in human and Chinese hamster cells were summarized. Resistance was stable after prolonged cultivation of 13 isolated clones under non-selective conditions.

• It is suggested that viral genome integration, gene mutations and chromosomal aberrations may have common molecular mechanisms. The role of gene mutations in virus-induced carcinogenesis is discussed.

Abbreviations: 8-AG, 8-azaguanine; FFM, factor-free medium; 6-MP, mercaptopurine; HGRT, hypoxantine-guanine phosphoribosyltransferase  相似文献   


13.
Chinese hamster cells (CHO line) were treated in vitro for 30--39 h with hexavalent chromium compounds (K2Cr2O7 and Na2CrO7), at concentrations ranging from 0.1 to 1.0 microgram of Cr6+ per ml, in medium containing BUdr. Chromosomal aberrations and sister-chromatid exchanges were scored on BUdr-labelled 2nd division metaphases, collected at the end of treatment and stained with Giemsa. Treatment with mitomycin C 0.009--0.030 microgram/ml) was carried out as a control for the responsiveness of the cell system to chromosomal damage. Both chromium compounds induced marked mitotic delays. Chromosomal aberrations were increased about 10-fold by exposure to Cr6+ (1.0 microgram/ml). The principal aberrations observed were single chromatid gaps, breaks and interchanges, whose frequencies increased proportionally to the concentration of chromium. Dicentric chromosomes, isochromatid breaks, chromosome and chromatid rings were also induced. The frequenyc of sister-chromatid exchanges was hardly doubled 30 h after exposure to Cr6+ at 0.3 microgram/ml, whereas it was trebled 39 h after treatment, in the cells whose division cycle had been slowed down by chromium.  相似文献   

14.
Sulfapyridine (SP) and 5-aminosalicylic acid (5-ASA) are the two primary metabolites of the anti-inflammatory drug salicylazosulfapyridine (SASP). These two metabolites were studied for induction of chromosomal damage in mammalian cells, in vitro and in vivo, in an attempt to understand better the genetic effects produced by SASP in humans and laboratory mice. To this end, SP and 5-ASA were tested for induction of sister-chromatid exchanges (SCE) and chromosomal aberrations (Abs) in Chinese hamster ovary (CHO) cells in vitro. In addition, they were tested in vivo for induction of micronuclei (MN) in mouse bone marrow polychromatic erythrocytes (PCE). SP gave positive results in the in vitro SCE test and the in vivo MN test, and negative results in the in vitro Abs test. 5-ASA was negative in all three tests. These results indicate that it is the SP metabolite of SASP that is necessary for the induction of chromosomal damage reported to occur in humans and mice after treatment with SASP.  相似文献   

15.
The synthesis of DNA, RNA and protein was measured in L1210 cells following treatment with 8-methoxypsoralen in combination with long wavelength ultraviolet irradiation. The results show that the DNA synthesis is strongly inhibited (approximately 95%) at 200 ng/ml reaching a minimum within 2 hours while RNA synthesis is only weakly affected at this concentration (approximately 40% inhibition). At 2 micrograms/ml the RNA synthesis is inhibited approximately 90%. Even at this concentration only a moderate effect is seen on the protein synthesis. These results strongly indicate that the phototoxic action of 8-methoxypsoralen is primarily due to inhibition of DNA synthesis.  相似文献   

16.
The induction of chromosomal aberrations and sister-chromatid exchanges (SCE) was studied in human lymphocyte cultures treated with camptothecin (CM), an inhibitor of mammalian topoisomerase I. While no chromosome-type aberrations were found in G1-treated cells, instead there was a dose-dependent induction of chromatid-type aberrations. These types of chromosomal alteration were not induced during the treatment itself but during the S phase, as CM is not efficiently removed with the normal washing procedure after treatment.  相似文献   

17.
The induction of sister-chromatid exchanges (SCE) by photoaddition of a monofunctional furocoumarin (pyrido[3,4-c]psoralen, PyPs) and a bifunctional furocoumarin (8-methoxypsoralen, 8-MOP) in a normal and three Fanconi anemia (FA) fibroblastic cell lines was investigated. When compared to normal cells, the three FA cell lines demonstrated: a higher sensitivity to 8-MOP photoaddition; an equal or reduced sensitivity to PyPs photoaddition in the low dose range. Normal cells demonstrated a higher sensitivity to photoaddition of PyPs than to 8-MOP in the range of doses used; this is likely to be related to the higher amount of lesions induced by PyPs in DNA. Since FA cells were almost equally sensitive to 8-MOP and PyPs photoaddition and demonstrated a higher sensitivity to SCE induction by 8-MOP than normal cells, it can be concluded that this latter difference is mainly due to cross-links.  相似文献   

18.
Effects of vanillin on the induction of sister-chromatid exchanges (SCEs) and structural chromosome aberrations by mitomycin C (MMC) were investigated in cultured Chinese hamster ovary cells. Vanillin induced neither SCEs nor chromosome aberrations by itself. However, an obvious increase in the frequency of SCEs was observed when MMC-treated cells were cultured in the presence of vanillin. The effect of vanillin was S-phase-dependent. On the contrary, the frequency of cells with chromosome aberrations was significantly decreased by the post-treatment with vanillin at G2 phase.  相似文献   

19.
Sister-chromatid exchanges (SCEs) induced by mitomycin C (MMC), 4-nitroquinoline-1-oxide (4NQO) or UV-light in cultured Chinese hamster ovary cells (CHO K-1 cells) were enhanced by cinoxate (2-ethoxyethyl p-methoxycinnamate) or methyl sinapate (methyl 3,5-dimethoxy 4-hydroxycinnamate). Both substances are cinnamate derivatives and cinoxate is commonly used as a cosmetic UV absorber. Methyl sinapate also increased the frequency of cells with chromosome aberrations in the CHO K-1 cells treated with MMC, 4NQO or UV. These increasing effects of methyl sinapate were critical in the G1 phase of the cell cycle and the decline of the frequencies of UV-induced SCEs and chromosome aberrations during liquid holding was not seen in the presence of methyl sinapate. Both compounds were, however, ineffective in cells treated with X-rays. In cells from a normal human embryo and from a xeroderma pigmentosum (XP) patient, MMC-induced SCEs were also increased by the post-treatment with methyl sinapate. The SCE frequencies in UV-irradiated normal human cells were elevated by methyl sinapate, but no SCE-enhancing effects were observed in UV-irradiated XP cells. Our results suggest that the test substances inhibit DNA excision repair and that the increase in the amount of unrepaired DNA damage might cause the enhancement of induced SCEs and chromosome aberrations.  相似文献   

20.
The effects of tannic acid (m-galloyl gallic acid) and 7 of its analogues on the frequencies of sister-chromatid exchanges (SCEs) were investigated in cultured Chinese hamster cells. SCEs induced by UV-light or mitomycin C (MMC) were suppressed by post-treatment with tannic acid and 5 of its analogues. These effects were independent of the extension of the cell cycle. The compounds which showed an SCE-suppressing effect have a common structure of 3 neighboring hydroxy or methoxy groups substituted on the phenyl group in benzoic acid or ester. These decreasing effects of tannic acid were observed in the G1 phase but not in the S or G2 phase of the cell cycle and a greater decline of the frequencies of UV-induced SCEs during liquid holding was seen in the presence of tannic acid. However, cells irradiated with X-rays were not influenced by tannic acid. In cells from a xeroderma pigmentosum (XP) patient, a Fanconi's anemia (FA) patient, and a normal human embryo, MMC-induced SCEs were also decreased by post-treatment with tannic acid. Tannic acid reduced the SCE frequencies in UV-irradiated FA and normal human cells but not in UV-irradiated XP cells. Our results suggest that tannic acid modifies DNA-excision repair and that the decrease in the amount of unrepaired DNA damage might cause the reduction of induced SCEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号