首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Persistence of methylpurines in DNA methylated in vitro and in vivo inEscherichia coli WP2 cells, by dimethyl sulphate (DMS) was studied, with particular reference to the minor products 7-methyladenine and 3-methyl-guanine, not previously investigated in this respect, but known to be removed from DNA in vitro by spontaneous hydrolysis at neutral pH.The half-life of 7-methyladenine in vivo was relatively short (2.6 ± 0.2 h) but not significantly shorter than in vitro at pH 7.2, 37°C. The half-life of 3-methylguanine was 3.6 ± 0.3 h in vivo, markedly shorter than in vitro, where its stability was somewhat greater than that of 7-methylguanine. Enzymatic excision of 3-methylguanine was therefore indicated to occur inE. coli.Previous findings that 7-methylguanine is probably not enzymatically excised from DNA in vivo, whereas 3-methyladenine is rapidly removed, were confirmed, and additional support for the concept of enzymatic removal of 3-methyladenine was obtained by showing extensive inhibition of its removal from cells treated with iodoacetamide prior to methylation.It is suggested that methylations of adenine or guanine in DNA at N-3 constitute blocks to template activity of DNA and stimulate a “repair” response of enzymatic removal of 3-methylpurines. Possible valence bond structures for 3-methylpurine residues in DNA are discussed, leading to the suggestion that ionized forms with positively charged amino groups may be the most effective blocks to template activity.  相似文献   

2.
The in vivo formation and repair of specific DNA lesions produced by alkylating agents of contrasting carcinogenic potencies were investigated. Male Sprague-Dawley rats were treated with direct-acting alkylating agents methylmethane sulfonate (MMS) or methylnitrosourea (MNU). The amounts of N-3-methyladenine (3-meA), N-7-methylguanine (7-meG), and methylphosphotriesters (mePTE) in the DNA of liver and brain were determined following selective removal of the methylated bases by enzyme 3-meA N-glycosylase from Micrococcus luteus and thermal depurination at neutral pH. Both enzyme- and heat-induced alkali-labile apurinic sites were converted to single-strand breaks on incubation with 0.1 M NaOH. The number of such sites was quantitated following centrifugation of the DNA in alkaline sucrose gradients, fluorescent detection of unlabeled DNA, and estimation of number-average molecular weight. The results show a carcinogen dose-dependent initial linear increase in the number of enzyme- and heat-induced DNA strand breakage in both liver and brain DNA. With a half-life of approximately 3 h, 3-meA was removed from the tissues, whereas 45 to 55% of 7-meG remained unrepaired at 48 h. The study of the alkylation damage induced by MNU treatment of rats showed that the kinetics of repair for 3-meA and 7-meG was similar to the MMS-treated tissues and that mePTE persisted over a 7-day period. The technique developed does not require the use of radiolabeled reagents of DNA and allows for the selective quantitation of DNA alkylation lesions like 3-meA and 7-meG in the presence of nitrosourea-induced phosphotriesters.  相似文献   

3.
3-Methyladenine-DNA glycosylase was partially purified from human lymphoblasts and used as an enzymatic probe to assay the amounts of 3-methyladenine in DNA from cultured human fibroblasts after treatment with dimethyl sulfate. Aside from this specific alkylation product, the total number of alkylated bases was estimated after depurination by heating. Both enzyme-induced and heat-induced apurinic sites were converted to strand breaks and estimated after alkaline sucrose-gradient sedimentation. The results indicate that 3-methyladenine in cultured human fibroblasts is rapidly excised, with a half-life of about 2 hours. The rest of the alkylated purines (mostly 7-methylguanine) are removed much more slowly, with a half-life of about 20 hours.  相似文献   

4.
An enzyme extract from Micrococcus luteus excises 3-methyladenine and 3-methylguanine but not O6-methylguanine, 7-methylguanine, 1-methyladenine or 7-methyladenine from DNA reacted with N-methyl-N-nitrosourea. The extract was used to detect lesions in the DNA of Chinese hamster cells treated in culture with N-methyl-N-nitrosourea. It was concluded that 3-methyladenine is excised from these cells with a half-life of about 2.3 h.  相似文献   

5.
DNA from untreated L-cells had a weight average molecular weight (Mw) of 5.7 ± 0.58·108 daltons as measured by sedimentation in an alkaline sucrose gradient. This value was reduced by one half after the cells were treated for 1 h with 8 μg/ml of N-methyl-N-nitrosourea (MNUA), 34 μg/ml of methyl methanesulfonate (MMS) or 0.16 μg/ml of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). That dose of MNUA produced 52 methylations per 5.7·108 daltons DNA. 20% of these were not purine derivatives and were assumed to contain some phosphotriesters. That dose of MMS (above) produced 290 methylations per 5.7·108 daltons DNA and about 14% of these were not purine derivatives. The rates of loss of methylated purines from DNA were 2.3% per hour for 7-methylguanine (7-MeG), 7.4% per hour for 3-methyladenine (3-MeA) and no detectable loss of O6-methylguanine (O6-MeG) over a 12 h period. Since phosphotriesters are alkali-labile the single-strand breaks probably arose from this structure and did not form within the cell. This conclusion is supported by the following considerations. MNUA was more effective than MMS at reducing the molecular weight of DNA, as measured in alkaline medium. The greater SN1 character of MNUA would cause a greater formation of phosphotriesters than would MMS.  相似文献   

6.
An activity from mouse liver with catalyzes the disappearance of O6-methylguanine from DNA methylated with methylnitrosourea has been partially purified by ammonium sulfate fractionation and DNA-cellulose chromatography. The activity does not require divalent metal ions and is not affected by EDTA. It is specific for the repair of O6-methylguanine lesions and does not affect the removal of 7-methylguanine, 7-methyladenine or 3-methyladenine. The disappearance of O6-methylguanine is linear with respect to the concentration of protein and is dependent on incubation temperature. The kinetics and substrate dependence experiments suggest that the protein factor is product-inactivated. Amino acid analysis of hydrolysates of protein obtained after incubation of methylated DNA with the protein factor indicates the presence of radiolabeled S-methyl-L-cysteine, suggesting that during the repair of O6-methylguanine from methylated DNA, the methyl group is transferred to a sulfhydryl of a cysteine residue of a protein. This represents the first such demonstration in a mammalian system.  相似文献   

7.
DNA is constantly exposed to endogenous andexogenous alkylating agents that can modify its bases,resulting in mutagenesis in the absence of DNA repair [1,2]. Alkylation damage is removed by the action of DNA glycosylases, which initiate the base excision repair pathway and protect the sequence information of the genome [3-5]. We have identified a new class of methylpurine DNA glycosylase, designated MpgII, that is a member of the endonuclease III family of DNA repair enzymes. We expressed and purified MpgII from Thermotoga maritima and found that the enzyme releases both 7-methylguanine and 3-methyladenine from DNA. We cloned the MpgII genes from T. maritima and from Aquifex aeolicus and found that both genes could restore methylmethanesulfonate (MMS) resistance to Escherichia coli alkA tagA double mutants, which are deficient in the repair of alkylated bases. Analogous genes are found in other Bacteria and Archaea and appear to be the only genes coding for methylpurine DNA glycosylase activity in these organisms. MpgII is the fifth member of the endonuclease III family of DNA repair enzymes, suggesting that the endonuclease III protein scaffold has been modified during evolution to recognize and repair a variety of DNA damage.  相似文献   

8.
In two clones ofTradescantia (4430 and 02) differing in the sensitivity to the mutagenic action of alkylating agents, equimolar doses of [14C] methyl methanesulphonate (MMS) elicited a similar degree of protein, RNA and DNA alkylation and a similar amount of DNA-7-methylguanine and DNA-3-methyladenine in cells of inflorescence. Moreover, in the same clones and tissues the same doses of nonlabelled MMS produced a similar amount of DNA single strand breaks and/or alkali labile sites as measured in alkaline sucrose gradients. None of the DNA lesions followed is therefore decisive for explanation of the different mutagenic sensitivity ofTradescantia clones.  相似文献   

9.
The effect of pretreatment of rats with various symmetrical dialkylnitrosamines on the repair of O6-methylguanine produced in liver DNA by a low dose of [14C]dimethylnitrosamine (DMN) has been examined. DMN, diethylnitrosamine (DEN), dipropylnitrosamine (DPN) or dibutylnitrosamine (DBN) were administered to rats for 14 consecutive weekdays at a daily dose of 5% of the LD50. Animals were given [14C]DMN 24 h after the last dose and were killed 6 h later. DNA was extracted from the liver and analysed for methylpurine content after mild acid hydrolysis and Sephadex G-10 chromatography. While the amounts of 3-methyladenine and 7-methylguanine were only slightly different from controls, the amounts of O6-methylguanine in the DNA of the dialkylnitrosamine pretreated rats were about 30% of those in control rats, indicating a considerable increase in the capacity to repair this base. Liver ribosomal RNA from control and dialkylnitrosamine pretreated rats contained closely similar amounts of O6-methylguanine suggesting that the induced enzyme system does not act on this base in ribosomal RNA in vivo. Pretreatment with these dialkylnitrosamines also enhanced the repair of O6-methylguanine in liver DNA when they were given as a single dose (50% of the LD50) either 3 or 7 days before the [14C]DMN. In addition, single low doses of DMN or DEN (5% of the LD50) given either 1 or 6 days before [14C]DMN increased O6-methylguanine repair and the magnitude of the effect after DEN was similar to that produced by the other pretreatment schedules. The possible mechanism(s) of the induction of O6-methylguanine repair and its relation to hepatotoxicity, DNA alkylation, carcinogenesis and the adaptive response in Escherichia coli are discussed.  相似文献   

10.
11.
1. The amounts of 7-methylguanine and O6-methylguanine present in the DNA of liver and kidney of rats 4h and 24h after administration of low doses of dimethylnitrosamine were measured. 2. O6-Methylguanine was rapidly removed from liver DNA so that less than 15% of the expected amount (on the basis of 7-methylguanine found) was present within 4h after doses of 0.25mg/kg body wt. or less. Within 24h of administration of dimethylnitrosamine at doses of 1mg/kg or below, more than 85% of the expected amount of O6-methylguanine was removed. Removal was most efficient (defined in terms of the percentage of the O6-methylguanine formed that was subsequently lost within 24h) after doses of 0.25–0.5mg/kg body wt. At doses greater or less than this the removal was less efficient, even though the absolute amount of O6-methylguanine lost during 24h increased with the dose of dimethylnitrosamine over the entire range of doses from 0.001 to 20mg/kg body wt. 3. Alkylation of kidney DNA after intraperitoneal injections of 1–50μg of dimethylnitrosamine/kg body wt. occurred at about one-tenth the extent of alkylation of liver DNA. Removal of O6-methylguanine from the DNA also took place in the kidney, but was slower than in the liver. 4. After oral administration of these doses of dimethylnitrosamine, the alkylation of kidney DNA was much less than after intraperitoneal administration and represented only 1–2% of that found in the liver. 5. Alkylation of liver and kidney DNA was readily detectable when measured 24h after the final injection in rats that received daily injections of 1μg of [3H]dimethylnitrosamine/kg for 2 or 3 weeks. After 3 weeks, O6-methylguanine contents in the liver DNA were about 1% of the 7-methylguanine contents. The amount of 7-methylguanine in the liver DNA was 10 times that in the kidney DNA, but liver O6-methylguanine contents were only twice those in the kidney. 6. Extracts able to catalyse the removal of O6-methylguanine from alkylated DNA in vitro were isolated from liver and kidney. These extracts did not lead to the loss of 7-methylguanine from DNA. 7. The possible relevance of the formation and removal of O6-methylguanine in DNA to the risk of tumour induction by exposure to low concentrations of dimethylnitrosamine is discussed.  相似文献   

12.
Chloroquine (ClQ) inhibited the repair of DNA damage produced in cultured rat liver cells by methyl methanesulfonate (MMS). MMS caused fragmentation of single-strand DNA in alkaline sucrose gradients. Repair of the damage was followed by observing the restoration of the normal sedimentation pattern at intervals after treatment. Repair was significant by 7 h and nearly complete at 24 h. Addition of ClQ during the repair peiod markedly reduced the rate of repair. Also, ClQ increased the lethality of MMS, which could be due to the inhibition of repair. ClQ was found to inhibit protein synthesis, but the effect on repair is probably not due entirely to this action since comparable inhibition of protein synthesis by cycloheximide produced a lesser degree of delay in repair.  相似文献   

13.
1. DNA was extracted from livers, kidneys and lungs of Syrian golden hamsters at various times (up to 96h) after injection of a hepatocarcinogenic dose of [14C]dimethylnitrosamine. Purine bases were released from the DNA by mild acid hydrolysis and separated by Sephadex G-10 chromatography. 2. At 7h after dimethylnitrosamine administration liver DNA was alkylated to the greatest extent, followed by that of lung and kidney, the values for which were 8 and 3% respectively of those for liver. 3. The O6-methylguanine/7-methylguanine ratios were initially the same in all three organs and in the liver DNA of rats under similar conditions of dose. 4. O6-Methylguanine was the most persistent alkylated purine in all three hamster tissues. There was evidence for excision of 7-methyl-guanine, the highest activity for this being present in the liver. 5. Detectable amounts of the minor products 3-methyladenine, 1-methyladenine, 3-methylguanine and 7-methyladenine were present in most hamster tissues, and their individual rates of loss from liver DNA were determined. 6. Ring-labelling of the normal purines in DNA was highest in the liver, followed closely by the lung (80% of that in liver) whereas the kidney had very low incorporation (3% of that in liver). 7. The results are discussed with respect to the hepatotoxicity of dimethylnitrosamine, the miscoding potential of the various alkylation products and the induction of liver tumours in hamsters.  相似文献   

14.
Suspension cultures of Chinese hamster ovary (CHO) cells were exposed to methyl methanesulfonate (MMS) or methylnitrosourea (MNU) and assayed for mutation induction (6-thioguanine resistance) and for specific DNA adducts. DNA methylation at the 1-, 3- and 7-positions of adenine, the 3-, O6- and 7-positions of guanine, and phosphate was detected in cultures exposed to MMS, while MNU produced 3- and 7-methyladenine, 3-methylcytosine, 3-, O6- and 7-methylguanine, O4-methylthymidine and methylated phosphodiesters. When mutations induced by MMS and MNU were compared by linear correlation analysis with levels of each of these adducts, only O6-methylguanine displayed a strong correlation with mutations (r = 0.879, p less than 0.001). The relationship between O6-methylguanine and induced mutations in CHO cells is similar to that previously reported in CHO cells for O6-ethylguanine and mutations (Heflich et al., 1982) and indicates that alkylation-induced mutations at the HGPRT locus in CHO cells are primarily associated with O6-alkylguanine formation.  相似文献   

15.
《Mutation Research Letters》1990,243(3):219-224
27-1 is a mutant of Chinese hamster ovary cells (CHO cells) that is hypersenstivie to the toxic effects of ultraviolet light, N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and other monofunctional alkylating agents. We show here that the enhanced MNNG sensitivity of these cells is not due to alterations in the amount of DNA methylation products introduced nor by a defect in the first step of removal of the main alkylation products 7-methylguanine and 3-methyladenine. However, these mutant cells perform more DNA repair synthesis after treatment with MNNG than normal CHO-9 cells. This observation might indicate a possible defect of a ligase involved in sealing DNA repair patches.27-1 cells did not show elevated frequencies of sister-chromatid exchange and chromosomal aberration induced by MNNG. The data show that MNNG-induced cell killing is not necessarily related to increased chromosomal instability.  相似文献   

16.
Monofunctional alkylating agents react with DNA by S(N)1 or S(N)2 mechanisms resulting in formation of a wide spectrum of cytotoxic base adducts. DNA polymerase beta (beta-pol) is required for efficient base excision repair of N-alkyl adducts, and we make use of the hypersensitivity of beta-pol null mouse fibroblasts to investigate such alkylating agents with a view towards understanding the DNA lesions responsible for the cellular phenotype. The inability of O(6)-benzylguanine to sensitize wild-type or beta-pol null cells to S(N)1-type methylating agents indicates that the observed hypersensitivity is not due to differential repair of cytotoxic O-alkyl adducts. Using a 3-methyladenine-specific agent and an inhibitor of such methylation, we find that inefficient repair of 3-methyladenine is not the reason for the hypersensitivity of beta-pol null cells to methylating agents, and further that 3-methyladenine is not the adduct primarily responsible for methyl methanesulfonate (MMS)- and methyl nitrosourea-induced cytotoxicity in wild-type cells. Relating the expected spectrum of DNA adducts and the relative sensitivity of cells to monofunctional alkylating agents, we propose that the hypersensitivity of beta-pol null cells reflects accumulation of cytotoxic repair intermediates, such as the 5'-deoxyribose phosphate group, following removal of 7-alkylguanine from DNA. In support of this conclusion, beta-pol null cells are also hypersensitive to the thymidine analog 5-hydroxymethyl-2'-deoxyuridine (hmdUrd). This agent is incorporated into cellular DNA and elicits cytotoxicity only when removed by glycosylase-initiated base excision repair. Consistent with the hypothesis that there is a common repair intermediate resulting in cytotoxicity following treatment with both types of agents, both MMS and hmdUrd-initiated cell death are preceded by a similar rapid concentration-dependent suppression of DNA synthesis and a later cell cycle arrest in G(0)/G(1) and G(2)M phases.  相似文献   

17.
Human cancer, carcinogenic exposures and mutation spectra   总被引:5,自引:0,他引:5  
Exposure of mammalian cells to alkylating agents causes transfer of alkyl groups to N- as well as O-atoms of DNA bases. Especially the O-alkylated G and T bases have strong mutagenic properties, since they are capable of mispairing during replication. The mutagenic potential of N-alkylbases is less clear although specific base excision repair (BER) pathways exist which remove those lesions from the DNA. We investigated the relative contribution of N-alkylations to mutation induction at the Hprt gene in cultured Chinese hamster ovary cells (CHO). To this end BER activity in CHO cells was modulated by introduction of an expression vector carrying the rat N-alkylpurine-DNA glycosylase (APDG) gene, which codes for a glycosylase that is able to remove 3-methyladenine and 7-methylguanine from DNA thereby generating apurinic sites. Upon selection of a CHO clone which 10 times overproduced APDG compared to control CHO cells, mutation induction, the mutational spectrum, and cell survival were determined in both cell lines following treatment with methyl methanesulfonate (MMS). The results show that over-expression of APDG renders CHO cells more sensitive for mutation induction as well as cytotoxicity induced by MMS. The involvement of apurinic sites in induction of base pair changes at positions where 3-methyladenine was induced is inferred from the observation that the mutational spectrum of MMS-induced mutations in APDG-CHO cells showed twice as much base pair changes at AT base pairs (33.3%) compared to the spectrum of MMS-induced mutations in CHO-control cells (15.8%).  相似文献   

18.
Endonuclease III (Nth) enzyme from Escherichia coli is involved in base excision repair of oxidised pyrimidine residues in DNA. The Schizosaccharomyces pombe Nth1 protein is a sequence and functional homologue of E. coli Nth, possessing both DNA glycosylase and apurinic/apyrimidinic (AP) lyase activity. Here, we report the construction and characterization of the S. pombe nth1 mutant. The nth1 mutant exhibited no enhanced sensitivity to oxidising agents, UV or gamma-irradiation, but was hypersensitive to the alkylating agent methyl methanesulphonate (MMS). Analysis of base excision from DNA exposed to [3H]methyl-N-nitrosourea showed that the purified Nth1 enzyme did not remove alkylated bases such as 3-methyladenine and 7-methylguanine whereas methyl-formamidopyrimidine was excised efficiently. The repair of AP sites in S. pombe has previously been shown to be independent of Apn1-like AP endonuclease activity, and the main reason for the MMS sensitivity of nth1 cells appears to be their lack of AP lyase activity. The nth1 mutant also exhibited elevated frequencies of spontaneous mitotic intrachromosomal recombination, which is a phenotype shared by the MMS-hypersensitive DNA repair mutants rad2, rhp55 and NER repair mutants rad16, rhp14, rad13 and swi10. Epistasis analyses of nth1 and these DNA repair mutants suggest that several DNA damage repair/tolerance pathways participate in the processing of alkylation and spontaneous DNA damage in S. pombe.  相似文献   

19.
Hybrids were made between a ouabain-resistant, thioguanine-resistant human lymphoma line able to remove O6-methylguanine from its DNA (Mex+) and human lymphoblastoid lines deficient in this capability (Mex-). The formation of hybrids was confirmed by chromosomal analysis. Hybrid cells had an O6-methylguanine removal capacity per mole of guanine about one third to one half that of the Mex+ parents, i.e., about the same per cell. Cell hybrids removed the same amount of the alkylation adduct 3-methyladenine as did their parents per mole of guanine, i.e., about twice as much per cell. Although the cell hybrids had intermediate resistance to the cytotoxic action of N-methyl-N'-nitro-N-nitrosoguanidine used to induce O6-methylguanine and 3-methyladenine, there is evidence that the ability to remove O6-methylguanine and resistance to the cytotoxic effect of N-methyl-N'-nitro-N-nitrosoguanidine are dissociable characteristics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号