首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 164 毫秒
1.
Reelin is a secreted glycoprotein that regulates neuronal positioning in cortical brain structures through the VLDLR and ApoER2 receptors and the adaptor protein Dab1. In addition to cellular disorganization, dendrite abnormalities are present in the brain of reeler mice lacking Reelin. It is unclear whether these defects are due primarily to cellular ectopia or the absence of Reelin. Here we examined dendrite development in the hippocampus of normal and mutant mice and in dissociated cultures. We found that dendrite complexity is severely reduced in homozygous mice deficient in Reelin signaling both in vivo and in vitro, and it is also reduced in heterozygous mice in the absence of cellular ectopia. Addition of Reelin interfering antibodies, receptor antagonists, and Dab1 phosphorylation inhibitors prevented dendrite outgrowth from normal neurons, whereas addition of recombinant Reelin rescued the deficit in reeler cultures. Thus, the same signaling pathway controls both neuronal migration and dendrite maturation.  相似文献   

2.
One pathway regulating the migration of neurons during development of the mammalian cortex involves the extracellular matrix protein Reelin. Reelin and components of its signaling cascade, the lipoprotein receptors ApoER2 and Vldlr and the intracellular adapter protein Dab1 are pivotal for a correct layer formation during corticogenesis. The olfactory bulb (OB) as a phylogenetically old cortical region is known to be a prominent site of Reelin expression. Although some aspects of Reelin function in the OB have been described, the influence of Reelin on OB layer formation has so far been poorly analyzed. Here we studied animals deficient for either Reelin, Vldlr, ApoER2 or Dab1 as well as double-null mutants. We performed organotypic migration assays, immunohistochemical marker analysis and BrdU incorporation studies to elucidate roles for the different components of the Reelin signaling cascade in OB neuroblast migration and layer formation. We identified ApoER2 as being the main receptor responsible for Reelin mediated detachment of neuroblasts and correct migration of early generated interneurons within the OB, a prerequisite for correct OB lamination.  相似文献   

3.
Disabled-1 (Dab1) is an essential adaptor protein that functions in the Reelin signaling pathway and is required for the regulation of neuronal migration during embryonic development. Dab1 interacts with NPXY motifs in the cytoplasmic tails of the lipoprotein receptors ApoER2 and very low density lipoprotein receptor through an amino-terminal phosphotyrosine binding (PTB) domain. Binding of Reelin to these receptors leads to tyrosine phosphorylation of Dab1 and the initiation of a signaling cascade that results in remodeling of the cytoskeleton. Structural and biochemical studies of the Dab1 PTB domain have demonstrated that this domain binds to both the NPXY peptide motif in the lipoprotein receptor tails as well as to the head group of phosphoinositide 4,5-P2 through energetically independent mechanisms. Here we have investigated how phosphoinositide binding by the Dab1 PTB domain influences Reelin signal transduction. Our findings in cultured primary neurons that have been transduced with lentiviral constructs expressing mutant Dab1 forms reveal that phosphoinositide binding by the Dab1 PTB domain is necessary for proper membrane localization of Dab1 and for effective transduction of a Reelin signal.  相似文献   

4.
Reelin is a glycoprotein secreted by specific neuronal populations of the adult and developing nervous system of vertebrates. The morphological abnormalities in the brain of reeler, the Reelin deficient mutant mice, indicate that Reelin is essential for the brain morphogenesis. However, biochemical function of Reelin signal is not well understood. Here, we examined possible function of Reelin signal in regulation of gene expression by performing a microarray analysis. We found that expression level of a mouse homologue of Strawberry Notch (mSno1) is markedly reduced in the reeler embryos. In situ hybridization showed that mSno1 is expressed in the developing nervous system colocalizing with expression of ApoER2, a Reelin receptor. Treatment of P19 cells with Reelin protein enhanced mSno1 expression. Overexpression of ApoER2 with Reelin treatment gave a synergistic effect on mSno1 expression level. These observations suggest that Reelin signal is involved in embryonic expression of a novel vertebrate gene, mSno1.  相似文献   

5.
BACKGROUND: Disabled-1 (Dab1) is an intracellular adaptor protein that regulates migrations of various classes of neurons during mammalian brain development. Dab1 function depends on its tyrosine phosphorylation, which is stimulated by Reelin, an extracellular signaling molecule. Reelin increases the stoichiometry of Dab1 phosphorylation and downregulates Dab1 protein levels. Reelin binds to various cell surface receptors, including two members of the low-density lipoprotein receptor family that also bind to Dab1. Mutations in Dab1, its phosphorylation sites, Reelin, or the Reelin receptors cause a common phenotype. However, the molecular mechanism whereby Reelin regulates Dab1 tyrosine phosphorylation is poorly understood.RESULTS: We found that Reelin-induced Dab1 tyrosine phosphorylation in neuron cultures is inhibited by acute treatment with pharmacological inhibitors of Src family, but not Abl family, kinases. In addition, Reelin stimulates Src family kinases by a mechanism involving Dab1. We analyzed the Dab1 protein level and tyrosine phosphorylation stoichiometry by using brain samples and cultured neurons that were obtained from mouse embryos carrying mutations in Src family tyrosine kinases. We found that fyn is required for proper Dab1 levels and phosphorylation in vivo and in vitro. When fyn copy number is reduced, src, but not yes, becomes important, reflecting a partial redundancy between fyn and src.CONCLUSIONS: Reelin activates Fyn to phosphorylate and downregulate Dab1 during brain development. The results were unexpected because Fyn deficiency does not cause the same developmental phenotype as Dab1 or Reelin deficiency. This suggests additional complexity in the Reelin signaling pathway.  相似文献   

6.
The Reelin signaling cascade plays a crucial role in the correct positioning of neurons during embryonic brain development. Reelin binding to apolipoprotein E receptor 2 (ApoER2) and very-low-density-lipoprotein receptor (VLDLR) leads to phosphorylation of disabled 1 (Dab1), an adaptor protein which associates with the intracellular domains of both receptors. Coreceptors for Reelin have been postulated to be necessary for Dab1 phosphorylation. We show that bivalent agents specifically binding to ApoER2 or VLDLR are sufficient to mimic the Reelin signal. These agents induce Dab1 phosphorylation, activate members of the Src family of nonreceptor tyrosine kinases, modulate protein kinase B/Akt phosphorylation, and increase long-term potentiation in hippocampal slices. Induced dimerization of Dab1 in HEK293 cells leads to its phosphorylation even in the absence of Reelin receptors. The mechanism for and the sites of these phosphorylations are identical to those effected by Reelin in primary neurons. These results suggest that binding of Reelin, which exists as a homodimer in vivo, to ApoER2 and VLDLR induces clustering of ApoER2 and VLDLR. As a consequence, Dab1 becomes dimerized or oligomerized on the cytosolic side of the plasma membrane, constituting the active substrate for the kinase; this process seems to be sufficient to transmit the signal and does not appear to require any coreceptor.  相似文献   

7.
The brain morphology of vertebrates exhibits huge evolutionary diversity, but one of the shared morphological features unique to vertebrate brain is laminar organization of neurons. Because the Reelin signal plays important roles in the development of the laminar structures in mammalian brain, investigation of Reelin signal in lower vertebrates will give some insights into evolution of vertebrate brain morphogenesis. Although zebrafish homologues of Reelin, the ligand, and Dab1, a cytoplasmic component of the signaling pathway, have been reported, the Reelin receptor molecules of zebrafish are not reported yet. Here, we sought cDNA sequence of zebrafish homologue of the receptors, vldlr and apoer2, and examined their expression patterns by in situ hybridization. Developmental gene expression pattern of reelin, dab1, vldlr, and apoer2 in the central nervous system of zebrafish was compared, and their remarkable expression was detected in the developing laminar structures, such as the tectum and the cerebellum, and also non-laminated structures, such as the pallium. The Reelin receptors exhibited different spatial and temporal gene expression. These results suggest a possibility that duplication and subsequent functional diversity of Reelin receptors contributed to the morphological and functional evolution of vertebrate brain.  相似文献   

8.
Disabled-1 (Dab1) is a cytoplasmic adaptor protein that regulates neuronal migrations during mammalian brain development. Dab1 function in vivo depends on tyrosine phosphorylation, which is stimulated by extracellular Reelin and requires Src family kinases. Reelin signaling also negatively regulates Dab1 protein levels in vivo, and reduced Dab1 levels may be part of the mechanism that regulates neuronal migration. We have made use of mouse embryo cortical neuron cultures in which Reelin induces Dab1 tyrosine phosphorylation and Src family kinase activation. We have found that Dab1 is normally stable, but in response to Reelin it becomes polyubiquitinated and degraded via the proteasome pathway. We have established that tyrosine phosphorylation of Dab1 is required for its degradation. Dab1 molecules lacking phosphotyrosine are not degraded in neurons in which the Dab1 degradation pathway is active. The requirements for Reelin-induced degradation of Dab1 in vitro correctly predict Dab1 protein levels in vivo in different mutant mice. We also provide evidence that Dab1 serine/threonine phosphorylation may be important for Dab1 tyrosine phosphorylation. Our data provide the first evidence for how Reelin down-regulates Dab1 protein expression in vivo. Dab1 degradation may be important for ensuring a transient Reelin response and may play a role in normal brain development.  相似文献   

9.
The adaptor protein Disabled1 (Dab1) interacts with amyloid precursor protein (APP) and decreases its pathological processing, an effect mediated by Fyn tyrosine kinase. Fyn is highly enriched in lipid rafts, a major site of pathological APP processing. To investigate the role of Fyn in the localization and phosphorylation of APP and Dab1 in lipid rafts, we isolated detergent-resistant membrane (DRM) fractions from wild-type and Fyn knock-out mice. In wild-type mice, all of the Fyn kinase, 17% of total APP, and 33% of total Dab1 were found in DRMs. Nearly all of the tyrosine phosphorylated forms of APP and Dab1 were in DRMs. APP and Dab1 co-precipitated both in and out of DRM fractions, indicating an association that is independent of subcellular localization. Fyn knock-out mice had decreased APP, Dab1, and tyrosine-phosphorylated Dab1 in DRMs but increased co-immunoprecipitation of DRM APP and Dab1. Expression of phosphorylation deficient APP or Dab1 constructs revealed that phosphorylation of APP increases, whereas phosphorylation of Dab1 decreases, the interaction between APP and Dab1. Consistent with these observations, Reelin treatment led to increased Dab1 phosphorylation and decreased association between APP and Dab1. Reelin also caused increased localization of APP and Dab1 to DRMs, an effect that was not seen in Fyn knock-out neurons. These findings suggest that Reelin treatment promotes the localization of APP and Dab1 to DRMs, and affects their phosphorylation by Fyn, thus regulating their interaction.  相似文献   

10.
Disabled1 regulates the intracellular trafficking of reelin receptors   总被引:8,自引:0,他引:8  
Reelin is a huge secreted protein that controls proper laminar formation in the developing brain. It is generally believed that tyrosine phosphorylation of Disabled1 (Dab1) by Src family tyrosine kinases is the most critical downstream event in Reelin signaling. The receptors for Reelin belong to the low density lipoprotein receptor family, most of whose members undergo regulated intracellular trafficking. In this study, we propose novel roles for Dab1 in Reelin signaling. We first demonstrated that cell surface expression of Reelin receptors was decreased in Dab1-deficient neurons. In heterologous cells, Dab1 enhanced cell surface expression of Reelin receptors, and this effect was mediated by direct interaction with the receptors. Moreover, Dab1 did not stably associate with the receptors at the plasma membrane in the resting state. When Reelin was added to primary cortical neurons, Dab1 was recruited to the receptors, and its tyrosine residues were phosphorylated. Although Reelin and Dab1 colocalized well shortly after the addition of Reelin, Dab1 was no longer associated with internalized Reelin. When Src family tyrosine kinases were inhibited, internalization of Reelin was severely abrogated, and Reelin colocalized with Dab1 near the plasma membrane for a prolonged period. Taken together, these results indicate that Dab1 regulates both cell surface expression and internalization of Reelin receptors, and these regulations may play a role in correct laminar formation in the developing brain.  相似文献   

11.
Activation of a Dab1/CrkL/C3G/Rap1 pathway in Reelin-stimulated neurons   总被引:1,自引:0,他引:1  
During brain development, many neurons migrate long distances before settling and differentiating. These migrations are coordinated to ensure normal development. The secreted protein Reelin controls the locations of many types of neurons, and its absence causes the classic "Reeler" phenotype. Reelin action requires tyrosine phosphorylation of the intracellular protein Dab1 by Src-family kinases. However, little is known about signaling pathways downstream of Dab1. Here, we identify several proteins in embryonic brain extract that bind to tyrosine-phosphorylated, but not non-phosphorylated, Dab1. Of these, the Crk-family proteins (CrkL, CrkI, and CrkII ), bind significant quantities of Dab1 when embryonic cortical neurons are exposed to Reelin. CrkL binding to Dab1 involves two tyrosine phosphorylation sites, Y220 and 232, that are critical for proper positioning of migrating cortical plate neurons. CrkL also binds C3G, an exchange factor (GEF) for the small GTPase Rap1 that is activated in other systems by tyrosine phosphorylation. We report that Reelin stimulates tyrosine phosphorylation of C3G and activates Rap1. C3G and Rap1 regulate adhesion of fibroblasts and other cell types. Regulation of Crk/CrkL, C3G, and Rap1 by Reelin may be involved in coordinating neuron migrations during brain development.  相似文献   

12.
Reelin is a large secreted signaling protein that binds to two members of the low density lipoprotein receptor family, the apolipoprotein E receptor 2 and the very low density lipoprotein receptor, and regulates neuronal positioning during brain development. Reelin signaling requires activation of Src family kinases as well as tyrosine phosphorylation of the intracellular adaptor protein Disabled-1 (Dab1). This results in activation of phosphatidylinositol 3-kinase (PI3K), the serine/threonine kinase Akt, and the inhibition of glycogen synthase kinase 3beta, a protein that is implicated in the regulation of axonal transport. Here we demonstrate that PI3K activation by Reelin requires Src family kinase activity and depends on the Reelin-triggered interaction of Dab1 with the PI3K regulatory subunit p85alpha. Because the Dab1 phosphotyrosine binding domain can interact simultaneously with membrane lipids and with the intracellular domains of apolipoprotein E receptor 2 and very low density lipoprotein receptor, Dab1 is preferentially recruited to the neuronal plasma membrane, where it is phosphorylated. Efficient Dab1 phosphorylation and activation of the Reelin signaling cascade is impaired by cholesterol depletion of the plasma membrane. Using a neuronal migration assay, we also show that PI3K signaling is required for the formation of a normal cortical plate, a step that is dependent upon Reelin signaling.  相似文献   

13.
The cytoplasmic adaptor protein Disabled-1 (Dab1) is necessary for the regulation of neuronal positioning in the developing brain by the secreted molecule Reelin. Binding of Reelin to the neuronal apolipoprotein E receptors apoER2 and very low density lipoprotein receptor induces tyrosine phosphorylation of Dab1 and the subsequent activation or relocalization of downstream targets like phosphatidylinositol 3 (PI3)-kinase and Nckbeta. Disruption of Reelin signaling leads to the accumulation of Dab1 protein in the brains of genetically modified mice, suggesting that Reelin limits its own action in responsive neurons by down-regulating the levels of Dab1 expression. Here, we use cultured primary embryonic neurons as a model to demonstrate that Reelin treatment targets Dab1 for proteolytic degradation by the ubiquitin-proteasome pathway. We show that tyrosine phosphorylation of Dab1 but not PI3-kinase activation is required for its proteasomal targeting. Genetic deficiency in the Dab1 kinase Fyn prevents Dab1 degradation. The Reelin-induced Dab1 degradation also depends on apoER2 and very low density lipoprotein receptor in a gene-dose dependent manner. Moreover, pharmacological blockade of the proteasome prevents the formation of a proper cortical plate in an in vitro slice culture assay. Our results demonstrate that signaling through neuronal apoE receptors can activate the ubiquitin-proteasome machinery, which might have implications for the role of Reelin during neurodevelopment and in the regulation of synaptic transmission.  相似文献   

14.
Reelin activates SRC family tyrosine kinases in neurons   总被引:16,自引:0,他引:16  
BACKGROUND: Reelin is a large signaling molecule that regulates the positioning of neurons in the mammalian brain. Transmission of the Reelin signal to migrating embryonic neurons requires binding to the very-low-density lipoprotein receptor (VLDLR) and the apolipoprotein E receptor-2 (apoER2). This induces tyrosine phosphorylation of the adaptor protein Disabled-1 (Dab1), which interacts with a shared sequence motif in the cytoplasmic tails of both receptors. However, the kinases that mediate Dab1 tyrosine phosphorylation and the intracellular pathways that are triggered by this event remain unknown. RESULTS: We show that Reelin activates members of the Src family of non-receptor tyrosine kinases (SFKs) and that this activation is dependent on the Reelin receptors apoER2 and VLDLR and the adaptor protein Dab1. Dab1 is tyrosine phosphorylated by SFKs, and the kinases themselves can be further activated by phosphorylated Dab1. Increased Dab1 protein expression in fyn-deficient mice implies a response to impaired Reelin signaling that is also observed in mice lacking Reelin or its receptors. However, fyn deficiency alone does not compound the neuronal positioning defect of vldlr- or apoer2-deficient mice, and this finding suggests functional compensation by other SFKs. CONCLUSIONS: Our results show that Dab1 is a physiological substrate as well as an activator of SFKs in neurons. Based on genetic evidence gained from multiple strains of mutant mice with defects in Reelin signaling, we conclude that activation of SFKs is a normal part of the cellular Reelin response.  相似文献   

15.
Most of the cerebral cortex derives from the cortical plate which, in all mammals, is radially organized and develops from inside to outside. Several genes involved in the organization and inside-outside development of the embryonic cortical plate in the mouse form the so-called Reelin signaling pathway. Biochemical and genetic arguments show that the extracellular matrix protein Reelin binds to two lipoprotein receptors (VLDLR and ApoER2), which relay the Reelin signal inside target neurons by docking the tyrosine kinase adapter disabled-1 (Dab1). In addition, biochemical evidence suggests that the integrins alpha 3/beta 1 and protocadherins of the CNR family may also modulate the Reelin signal. The mechanisms by which the presence of Reelin stops migration and instructs the radial organization of cortical plate cells remains unknown.  相似文献   

16.
Apolipoprotein E receptor 2 (ApoER2), very low-density lipoprotein receptor (VLDLR), and Dab1 are the main components of the Reelin signalling cascade. Reelin is the sole ligand defined so far in signalling through this pathway. Postnatal migration of neuronal precursors from the subventricular zone (SVZ) to the olfactory bulb (OB), however, depends on ApoER2 and Dab1, but functions independently of Reelin. Here, we show that thrombospondin-1 (THBS-1) is a novel physiological ligand for ApoER2 and VLDLR. THBS-1 is present in the SVZ and along the entire rostral migratory stream (RMS). It binds to ApoER2 and VLDLR and induces phosphorylation of Dab1. In contrast to Reelin, it does not induce Dab1 degradation or Akt phosphorylation, but stabilizes neuronal precursor chains derived from subventricular explants. Lack of THBS-1 results in anatomical abnormalities of the RMS and leads to a reduction of postnatal neuronal precursors entering the OB.  相似文献   

17.
Reelin is an extracellular protein that directs the organization of cortical structures of the brain through the activation of two receptors, the very low-density lipoprotein receptor (VLDLR) and the apolipoprotein E receptor 2 (ApoER2), and the phosphorylation of Disabled-1 (Dab1). Lis1, the product of the Pafah1b1 gene, is a component of the brain platelet-activating factor acetylhydrolase 1b (Pafah1b) complex, and binds to phosphorylated Dab1 in response to Reelin. Here we investigated the involvement of the whole Pafah1b complex in Reelin signaling and cortical layer formation and found that catalytic subunits of the Pafah1b complex, Pafah1b2 and Pafah1b3, specifically bind to the NPxYL sequence of VLDLR, but not to ApoER2. Compound Pafah1b1(+/-);Apoer2(-/-) mutant mice exhibit a reeler-like phenotype in the forebrain consisting of the inversion of cortical layers and hippocampal disorganization, whereas double Pafah1b1(+/-);Vldlr(-/-) mutants do not. These results suggest that a cross-talk between the Pafah1b complex and Reelin occurs downstream of the VLDLR receptor.  相似文献   

18.
Dual functions of Dab1 during brain development   总被引:1,自引:0,他引:1  
Reelin coordinates the movements of neurons during brain development by signaling through the Dab1 adaptor and Src family tyrosine kinases. Experiments with cultured neurons have shown that when Dab1 is phosphorylated on tyrosine, it activates Akt and provides a scaffold for assembling signaling complexes, including the paralogous Crk and CrkL adaptors. The roles of Akt and Dab1 complexes during development have been unclear. We have generated two Dab1 alleles, each lacking two out of the four putative tyrosine phosphorylation sites. Neither allele supports normal brain development, but each allele complements the other. Two tyrosines are required for Reelin to stimulate Dab1 phosphorylation at the other sites, to activate Akt, and to downregulate Dab1 levels. The other two tyrosines are required to stimulate a Crk/CrkL-C3G pathway. The absence of Crk/CrkL binding sites and C3G activation causes an unusual layering phenotype. These results show that Reelin-induced Akt stimulation and Dab1 turnover are not sufficient for normal development and suggest that Dab1 acts both as a kinase switch and as a scaffold for assembling signaling complexes in vivo.  相似文献   

19.
Reelin is an extracellular protein that controls many aspects of pre- and postnatal brain development and function. The molecular mechanisms that mediate postnatal activities of Reelin are not well understood. Here, we first set out to express and purify the full length Reelin protein and a biologically active central fragment. Second, we investigated in detail the signal transduction mechanisms elicited by these purified Reelin proteins in cortical neurons. Unexpectedly, we discovered that the full-length Reelin moiety, but not the central fragment, is capable of activating Erk1/2 signaling, leading to increased p90RSK phosphorylation and the induction of immediate-early gene expression. Remarkably, Erk1/2 activation is not mediated by the canonical signal transduction pathway, involving ApoER2/VLDLR and Dab1, that mediates other functions of Reelin in early brain development. The activation of Erk1/2 signaling likely contributes to the modulation of neuronal maturation and synaptic plasticity by Reelin in the postnatal and adult brain.  相似文献   

20.
Tyrosine phosphorylated Disabled 1 recruits Crk family adapter proteins   总被引:5,自引:0,他引:5  
Disabled 1 (Dab1) functions as a critical adapter protein in the Reelin signaling pathway to direct proper positioning of neurons during brain development. Reelin stimulates phosphorylation of Dab1 on tyrosines 198 and 220, and phosphorylated Dab1 is likely to interact with downstream signaling proteins that contain Src homology 2 (SH2) domains. To search for such proteins, we used a Sepharose-conjugated peptide containing phosphotyrosine 220 (PTyr-220) of Dab1, as an affinity matrix to capture binding proteins from mouse brain extracts. Mass spectrometric analysis of bound proteins revealed that Crk family adapter proteins selectively associated with this phosphorylation site. We further show that Crk-I and Crk-II, but not CrkL, stimulate phosphorylation of Dab1 on tyrosine 220 in a Src-dependent manner. Our results suggest that Crk family adapter proteins may play an important role in the Reelin signaling pathway during brain development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号