首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Stable mutants resistant to a number of cytotoxic drugs, (i) adenosine analog toyocamycin (Toyr); (ii) microtubule inhibitor podophyllotoxin (PodR); and (iii) nucleoside analog 5,6-dichloro-1-β- -ribofuranosyl benzimidazole (DrbR), have been isolated in the mouse teratocarcinoma cell line OC15S1. Biochemical studies reveal that the genetic lesion in Toyr mutants causes a nearly total deficiency of the enzyme adenosine kinase, which phosphorylate adenosine and its analogs and plays an important role in purine nucleotides metabolism. The lesions in PodR and DrbR classes of mutants have not yet been fully characterized. The availability of these new genetic markers in mouse teratocarcinoma cells should make it possible to examine the role of the affected functions in vivo in an intact organism.  相似文献   

2.
Identifying biological roles for mammalian glycans and the pathways by which they are synthesized has been greatly facilitated by investigations of glycosylation mutants of cultured cell lines and model organisms. Chinese hamster ovary (CHO) glycosylation mutants isolated on the basis of their lectin resistance have been particularly useful for glycosylation engineering of recombinant glycoproteins. To further enhance the application of these mutants, and to obtain insights into the effects of altering one specific glycosyltransferase or glycosylation activity on the overall expression of cellular glycans, an analysis of the N-glycans and major O-glycans of a panel of CHO mutants was performed using glycomic analyses anchored by matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry. We report here the complement of the major N-glycans and O-glycans present in nine distinct CHO glycosylation mutants. Parent CHO cells grown in monolayer versus suspension culture had similar profiles of N- and O-GalNAc glycans, although the profiles of glycosylation mutants Lec1, Lec2, Lec3.2.8.1, Lec4, LEC10, LEC11, LEC12, Lec13, and LEC30 were consistent with available genetic and biochemical data. However, the complexity of the range of N-glycans observed was unexpected. Several of the complex N-glycan profiles contained structures of m/z ∼13,000 representing complex N-glycans with a total of 26 N-acetyllactosamine (Galβ1–4GlcNAc)n units. Importantly, the LEC11, LEC12, and LEC30 CHO mutants exhibited unique complements of fucosylated complex N-glycans terminating in Lewisx and sialyl-Lewisx determinants. This analysis reveals the larger-than-expected complexity of N-glycans in CHO cell mutants that may be used in a broad variety of functional glycomics studies and for making recombinant glycoproteins.  相似文献   

3.
As a first step in the development of a multiple-marker, mammalian cell mutagenesis assay system, we have isolated a Chinese hamster ovary (CHO) cell line that is heterozygous for both the adenine phosphoribosyltransferase (aprt) and thymidine kinase (tk) loci. Presumptive aprt+/? heterozygotes with intermediate levels of APRT activity were selected from unmutagenized CHO cell populations on the basis of resistance to low concentrations of the adenine analog, 8-azaadenine. A functional aprt+/? heterozygote with ~50% wild-type APRT activity was subsequently used to derive sublines that were also heterozygous for the tk locus. Biochemical and genetic characterization of one such subline, CHO-AT3-2, indicated that it was indeed heterozygous at both the aprt and tk loci. CHO-AT3-2 cells permitted single-step selection of mutants resistant to 8-azaadenine or 5-fluorodeoxyuridine, allowing quantitation and direct comparison of mutation induction at the autosomal aprt or tk loci, as well as in the gene involved in ouabain resistance or at the X-linked, hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus. Significant dose-dependent increases in mutation frequency were observed for all 4 genetic markers after treatment of CHO-AT3-2 cells with ethyl methanesulfonate.  相似文献   

4.
Mutants resistant to diphtheria toxin (Dipr) have been selected from a variety of human fibroblast cell strains derived from both normal subjects and individuals with known genetic predisposition to cancer such as xeroderma pigmentosum, Fanconi anemia and Bloom's syndrome. Treatment with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) led to a marked increase in the frequency of Dipr mutants in various cell strains. The increase in the frequency of Dipr mutants occurred in a linear dose-dependent manner in response to MNNG and ethyl methanesulfonate, in one of the cell strains examined. The rate of muation to diphtheria toxin as determined by fluctuation analysis was very similar in various cell strains (1–3 × 10?7 mutations/cell/generation), except for the strain GM1492 (8.8 × 10?7 mutations/cell/generation) which is derived from a Bloom syndrome patient.  相似文献   

5.
The hypothesis of functional hemizygosity has been examined for the α-amanitin resistant (AmaR, a codominant marker) locus in a series of Chinese hamster cell lines. AmaR mutants were obtained from different cell lines, e.g., CHO, CHW, M3-1 and CHO-Kl, at similar frequencies. After fractionation of different RNA polymerase activities in the extracts by chromatographic procedures, the sensitivity of the mutant RNA polymerase II towards α-amanitin was determined. While all of the RNA polymerase II activity in mutant CHO and CHO-Kl lines became resistant to α-amanitin inhibition, only about 50% of the activity is highly resistant in AmaR mutants of CHW and M3-1 cell lines. The remaining activity in the latter cell lines shows α-amanitin sensitivity similar to that seen with the wild-type enzyme. This behaviour is similar to that observed with a 1:1 mixture of resistant and sensitive enzymes from CHO cells. These results, therefore, strongly indicate that while only one functional copy of the gene affected by α-amanitin is present in CHO and CHO-Kl cells, two copies of this gene are functional in the CHW and M3-1 cell lines.  相似文献   

6.
Alcohol dehydrogenase (alcohol: NAD oxidoreductase, E.C. 1.1.1.1.) mutants of Chinese hamster somatic cells were isolated as resistant to allyl alcohol (ALLR). The ALLR phenotypes of the mutant clones were reproducible with high fidelity and stable over long intervals of growth in the absence of the selecting drug. Several mutants, Adh-1, Adh-2, Adh-9 and Adh-13, resistant to allyl alcohol were characterized. They have between 15 and 40% of the alcohol dehydrogenase activity of the wild-type cell lines. Cell-cell hybridization experiments using Adh-1 and wild-type Chinese hamster cells indicate that resistance to allyl alcohol is recessive to the wild-type allele. This phenotype is therefore a useful marker to analyze gene segregation of somatic cell mutations and to study the expression of the genes involved in the metabolism of ethanol in mammalian cells.  相似文献   

7.
With the aime of developing a sensitive mutagen screening system, teh responses of 15 different chemical mutagens at 5 independent genetic loci in Chinese hamster ovary (CHO) cells have been determined. The genetic markers which have been employed include resistance to thioguanine (Thgr), ouabain (OuaR), the protein syntheis inhibitor emetime (Emtr, the plyamine synthesis inhibitor methylglyoxal bisguanylhydrazone (Mbgr) and the nucleoside analog 5,6-dichlororibofuranosyl benzimidazole (DrbR). The optimal selection conditions for all of these genetic markers in CHO cells have been described. The chemicals whose response was investigated in these studies include direct-acting alkylating agents (ethyl methanesulfonate, methyl methanesulfonate, β-propiolactone, ethyleneimine,N-nitrosomethylurea and 4-nitroquinolineN-oxide), DNA intercalating and cross-linking agents (ICR-170, acridine orange, ethidium bormide, mitomycin C and actinomycine D), polycyclic hydrocarbons (benzo[a]pyrene (B(a)P) and 7,12-dimethylbenz[a]anthracene (DMBA)) and aromatic amines (benzidine and β-naphthylamine). Simultaneous examination of the response of the set of genetic markers to these chemicals revealed that although all of these chemicals caused a dose-dependent increase in the frequency of mutations at many of the above genetic loci, the magnitude of the mutagenic response at different genetic loci varied greatly depending upon the chemical. Of the genetic loci examined, no one single locus showed higher response to all of the above chemicals, instead, depending upon the chemical, specific loci were found to be more responsive than other. The polycyclic hydrocarbons and aromatic amines were weakly mutagenic in this system at several genetic loci even without any exogenous microsomal activation, although in the presence of a rat liver S9 fraction similar toxic and mutagenic effects of B(a)P and DMBA were observed at 5–20-fold lower concentrations. These results indicate that CHO cells may possess significant capacity for the metabolic activation of many procarnicogens, and also underscore the merits of measuring the mutagenic response at multiple genetic loci in mutagen screening studies.  相似文献   

8.
A quantitative mutation marker for cultured mammalian cells is presented which uses a selective medium containing folinic acid, aminopterin and thymidine (the 'FAT' medium) to select for mutants deficient in thymidylate synthetase (TS) activity. Optimization of FAT medium was carried out using Chinese hamster V79 cell lines having 3 levels of TS activity. By manipulating the concentration of folinic acid in FAT medium, TS-deficient mutants can be readily selected. TS mutation is inducible in a dose-dependent manner by either ethyl methanesulfonate or ultraviolet light irradiation. Expression time for TS mutation was also determined using two concentrations of ethyl methanesulfonate and found to be very short, being 1 or 2 days. This newly characterized TS mutation marker should be useful in the study of both spontaneous and induced mutagenesis.  相似文献   

9.
The ability of posttreatment exposure to non-toxic concentrations of thymidine (TdR) to enhance the lethal effects of a number of alkylating agents, X-rays and UV and the lethal and mutagenic effects of N′-ethyl-N-nitrosourea (ENU) and N-methyl-N-nitrosourea (MNU) has been examined in V79 cell lines. TdR posttreatment enhanced the cytotoxic effects of ethyl methanesulphonate (EMS), MNU and ENU but not of UV or X-rays and increased both the spontaneous and MNU- and ENU-induced frequencies of azaguanine resistant (AZR) mutants. No significant effect of TdR on the spontaneous frequency of thioguanine resistant (TGR) mutants was demonstrated but the frequency of MNU-induced mutants to TGR was enhanced. The effects on expression of both potentially lethal and premutagenic damage were reversed by addition of an equimolar concentration of deoxycytidine (dCdR). The enhancement in spontaneous and induced mutant frequency (IMF) at the HGPRT locus appears to be due to an alteration in the selective efficiency of purine analogous due to alteration in growth kinetics of cells exposed to TdR or treated with alkylated agents or posttreated with thymidine after alkylation damage and not to an alteration in the miscoding potential of alkylated bases.  相似文献   

10.
Mammalian voltage-dependent potassium (Kv) channels regulate the excitability of nerve and muscle cells. Kv12.2 features the longest S5-P loop among all known mammalian Kv channels with the most N-linked glycosylation sites (three sites). Despite its unique structural features, Kv12.2 is not well characterized. Because glycosylation plays important roles in the folding, trafficking, and function of various Kv channels, we focused on the N-glycosylation of Kv12.2. We show that Kv12.2 is N-glycosylated in Chinese hamster ovary (CHO) cells and in cultured neurons as well as in the mouse brain. As an effect of N-glycosylation on the function of Kv12.2, we demonstrate that removal of sugar chains causes a depolarizing shift in the steady-state activation without a significant reduction in current amplitude. Unlike the previously reported shift for Shaker-type Kv channels, this shift does not appear to be due to negatively charged sialic acid residues in the sugar chains. We next examined the trafficking in CHO cells to address whether the unglycosylated Kv12.2 channels are utilized in vivo. Although double mutants, retaining only one glycosylation site, are trafficked to the surface of CHO cells irrespective of the position of the glycosylated site, unglycosylated channels are not trafficked to the cell surface. Furthermore, we could not detect unglycosylated channels in the mouse brain. Our data suggest that only glycosylated Kv12.2 channels show proper voltage dependence and are utilized in vivo.  相似文献   

11.
The effects of the microtubule inhibitor taxol on the growth and viability of Chinese hamster ovary (CHO) cells have been examined. Stable mutants which are between seven to 11-fold more resistant to taxol have been selected in a single step from ethyl methanesulfonate-mutagenized CHO cells. The two taxol-resistant mutants (TaxR-1 and TaxR-2) which have been studied in detail exhibit novel and strikingly different cross-resistance/collateral sensitivity patterns to various microtubule inhibitors. For example, the TaxR-1 mutant exhibits increased resistance to vinblastine, but in comparison to the parental cells, it shows enhanced sensitivity toward colchicine, colcemid, stegnacine, and griseofulvin. However, the sensitivity of this mutant toward other unrelated compounds, e.g., puromycin, daunomycin, etc., remained largely unaltered. The specific pattern of cross-resistance/collateral-sensitivity of this mutant toward various microtubule inhibitors suggests that the genetic lesion in this mutant may be affecting a microtubule-related component. The TaxR-2 mutant, in contrast, is highly resistant to various microtubule inhibitors including colchicine, colcemid, stegnacine, maytan-sine, vinblastine, and podophyllotoxin. This mutant also exhibits greatly increased cross-resistance to daunomycin, puromycin, ethidium bromide, and VM-26 (compounds which do not inhibit microtubule assembly), and shows reduced cellular uptake of 3H-daunomycin indicating that the genetic lesion in this mutant nonspecifically affects the membrane permeability of various drugs. The cell hybrids formed between TaxR-1 (or TaxR-2 mutant(s)) and a taxol-sensitive cell line exhibit intermediate levels of resistance to the drug, indicating that the TaxR phenotypes of both these mutants behave codominantly under these conditions.  相似文献   

12.
Using a genetic approach, Chinese hamster ovary (CHO) cells sensitive (aphS) and resistant (aphR) to aphidicolin were grown in the presence or absence of various DNA polymerase inhibitors, and the newly synthesized DNA isolated from [32P]dNMP-labelled, detergent-permeabilized cells, was characterized after fractionation by gel electrophoresis. The particular aph Rmutant CHO cell line used was one selected for resistance to aphidicolin and found to possess an altered DNA polymerase of the a-family. The synthesis of a 24 kb replication intermediate was inhibited in wild-type CHO cells grown in the presence of aphidicolin, whereas the synthesis of this replication intermediate was not inhibited by this drug in the mutant CHO cells or in the aphidicolin-resistant somatic cell hybrid progeny constructed by fusion of wild-type and mutant cell lines. Arabinofuranosylcytosine (ara-C), like aphidicolin, inhibited the synthesis of this 24 kb DNA replication intermediate in the wild-type CHO cells but not in the aphR mutant cells. However, carbonyldiphosphonate (COMDP) inhibited the synthesis of the 24 kb replication intermediate in both wild-type and mutant cells. N2-(p-n-Butylphenyl)-2 deoxyguanisine-5-triphosphate (BuPdGTP) was found to inhibit the formation of Okazaki fragments equally well in the wild-type and mutant cell lines and thus led to inhibition of synthesis of DNA intermediates in both cases. It appears that aphidicolin and ara-C both affect a common target on the DNA polymerase, which is different from that affected by COMDP in vivo. These data also show that aphidicolin, ara-C and COMDP affect the elongation activity of DNA polymerase but not the initiation activity of the enzyme during DNA replication. This is the first report of such differentiation of the DNA polymerase activities during nuclear DNA replication in mammalian cells. The method of analysis described here for replication intermediates can be used to examine the inhibitory activities of other chemicals on DNA synthesis.  相似文献   

13.
L5178Y mouse lymphoblastic leukemia cells are auxotrophic for l-asparagine (ASN) and have been widely used as a model system for studies on l-asparagine independence, were treated with known chemical mutagens to investigate the molecular basis of this mutation. Mutagens which primarily induce base pair substitutions—ethyl methanesullfonate (EMS) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG)—as well as those which induce frame-shift mutations (the acridine half-mustards ICR-372 and ICR-191) each increased the frequency of ASN+ cells in treated cultures to at least ten times the usual background frequency of 1 to 2 ASN+ cells per 106 cells. The effectiveness of both classes of mutagens indicates that the change to asparagine prototrophy might occur by a mechanism other than, or in addition to, reversion of a specific base pair, point mutation. The mutability of this easily assayed nutritional genetic marker in a cell line that can be grown either in vitro or in vivo may provide a useful system for assay of other agents of unknown mutagenic potential.  相似文献   

14.
To determine the relationships between the induction of specific biological responses and exposure to DNA-damaging agents, human teratocarcinoma-derived cells were exposed to either ethyl methanesulfonate or to methyl methanesulfonate, and sister chromatid exchange, cellular proliferation and relative cloning ability measured. SCE increased while cellular proliferation and relative cloning ability each decreased in a concentration-dependent manner. Methyl methanesulfonate was consistently more efficient in inducing biological responses than was ethyl methanesulfonate. When the individual responses were compared, the decrease in cellular proliferation paralleled the reduction in cloning efficiency. A strong correlation was also observed between the reduction in relative cloning ability and sister chromatid exchange frequency. Because these relationships are similar to those previously described in other mammalian cell lines, the observations in our study suggest that the P3 cell line is an appropriate choice for modeling effects of toxicant exposure in human cells.Abbreviations AGT average generation time - BUdR 5-bromodeoxyuridine - CHO Chinese hamster ovary - EMS ethyl methanesulfonate - ENU N-ethyl-N-nitrosourea - MMS methyl methanesulfonate - MNU N-methyl-Nnitrosourea - SCE sister chromatid exchange  相似文献   

15.
A pSV2gpt-transformed Chinese hamster ovary (CHO) cell line has been used to study mutation at the molecular level. This cell line, designated AS52, was constructed from a hypoxanthine-guanine phosphoribosyl transferase (HPRT)-deficient CHO cell line, and has been previously shown to contain a single, functional copy of the E. coli xanthine-guanine phosphoribosyl transferase (XPRT) gene (gpt) stably integrated into the Chinese hamster genome. In this study, conditions for its use in the study of mammalian cell mutagenesis have been stringently defined. The spontaneous mutation rate (2 X 10(-6)/cell division) and phenotypic expression time (7 days) of the gpt locus compare favorably with those of the hprt locus in wild-type CHO-K1-BH4 cells. While both cell lines exhibit similar cytotoxic responses to ethyl methanesulfonate (EMSO and ICR 191, significant differences in mutation induction were observed. Ratios of XPRT to HPRT mutants induced per unit dose of EMS and ICR 191 are 0.70 and 1.6, respectively. Southern blot hybridization analyses revealed that most XPRT mutant cell lines which arose following treatment with EMS (20/22) or ICR 191 (20/24) exhibited no alterations of the gpt locus detectable by this technique. Similar observations were made for the hprt locus in EMS-(21/21) and ICR 191-induced (22/22) HPRT mutants. In contrast, most spontaneous gpt mutants (14/23) contained deletions, while most spontaneous hprt mutants (18/23) exhibited no detectable alterations. Results of this study indicate that the AS52 cell line promises to be useful for future study of mutation in mammalian cells at the DNA sequence level.  相似文献   

16.
Since NO3 availability in the rooting medium seriously limits symbiotic N2 fixation by soybean (Glycine max [L.] Merr.), studies were initiated to select nodulation mutants which were more tolerant to NO3 and were adapted to the Midwest area of the United States. Three independent mutants were selected in the M2 generation from ethyl methanesulfonate or N-nitroso-N-methylurea mutagenized Williams seed. All three mutants (designated NOD1-3, NOD2-4, and NOD3-7) were more extensively nodulated (427 to 770 nodules plant−1) than the Williams parent (187 nodules plant−1) under zero-N growth conditions. This provided evidence that the mutational event(s) affected autoregulatory control of nodulation. Moreover, all three mutants were partially tolerant to NO3; each retained greater acetylene reduction activity when grown hydroponically with 15 millimolar NO3 than did Williams at 1.5 millimolar NO3. The NO3 tolerance did not appear to be related to an altered ability to take up or metabolize NO3, based on solution NO3 depletion and on in vivo nitrate reductase assays. Enhanced nodulation appeared to be controlled by the host plant, being consistent across four Bradyrhizobium japonicum strains tested. In general, the mutant lines produced less dry weight than the control, with root dry weights being more affected than shoot dry weights. The nodulation trait has been stable through the M5 generation in all three mutants.  相似文献   

17.
The system previously described for inducing single gene mutations in Chinese hamster cells has been extended to produce additional auxotrophic mutants. An improved method for quantitating the efficiency of single gene mutation to specific auxotrophies has been developed. Mutagenesis in the forward direction has been measured after treatment of these cells with ethyl methanesulfonate, N-methyl-N1-nitro-N-nitrosoguanidine, hydroxylamine, an acridine mustard (ICR-191), caffeine and ultraviolet- and X-irradiation. For each agent, the single cell survival curve and the efficiency of chromatid breakage and rearrangement were measured. Similar measurements were also carried out with a water-soluble carcinogen N-nitrosomethylurea, which was shown to be effective in producing auxotrophic, somatic mutations. These results offer promise of illuminating the relationships between cell killing, chromosomal aberration, single gene mutations and carcinogenesis produced by various agents. The methods described can be used in routine testing of drugs, food additives, and environmental pollutants for mutagenic action in mammalian cells in vitro.  相似文献   

18.
19.
Weber G  Lark KG 《Genetics》1980,96(1):213-222
Using a newly developed plating system, we have measured cell survival and the frequencies of variation in an inherited trait after treatment of soybean cell suspensions with different mutagens: ethyl methanesulfonate (EMS), methyl methanesulfonate (MMS), N-Methyl-N'-nitro-N-nitroso-guanidine (MNNG), hycanthone (1-{[2-(diethylamino) ethyl] amino}-4-(hydroxymethyl)-9H-thioxanthen-9-one and ultraviolet light (UV).—The heritable variation selected for displays a phenotype of rapid growth on maltose as carbon source. The marker is stable in the absence of maltose, and prolonged growth of variant cells on sucrose has not shown reversions to slow growth. Doubling time in suspension cultures is decreased from 100 hr to ca. 30 hr by the mutation. Both wild-type and variant cells grow on sucrose with a 24-hr doubling time. Thus, lethality after mutagen treatment can be estimated rapidly by growth on sucrose, whereas variants are scored on maltose medium. The spontaneous frequency of variants was 1.2 x 10-7; induced frequencies ranged from a low of 3.6 x 10-5 for EMS to a high of 10-3 for hycanthone. The high frequency of variants induced by hycanthone, a frame-shift mutagen, and the observation that UV induces variants in haploid cells with much higher frequency than in diploid cells suggests a recessive mutation.  相似文献   

20.
《Cytokine》2014,65(1):79-87
Viral chemokine modulating proteins provide new and extensive sources for therapeutics. Purified M-T7, a poxvirus-derived secreted immunomodulatory protein, reduces mononuclear cell invasion and atheroma in rodent models of angioplasty injury as well as aortic and renal transplant, improving renal allograft survival. M-T7 is a rabbit species-specific interferon gamma receptor (IFNγR) homolog, but also inhibits chemokine/glycosaminoglycan (GAG) interactions for C, CC and CXC chemokines, with cross-species specific inhibitory activity. M-T7 anti-atheroma activity is blunted in GAG deficient mouse aortic transplants, but not in CC chemokine receptor deficient transplants, supporting M-T7 interference in chemokine/GAG interactions as the basis of the atheroma-inhibitory activity. We have assessed point mutants of M-T7 both in vivo in a mouse angioplasty model and in vitro in tissue culture and binding assays, in order to better define the primary mechanism of anti-atheroma activity. Of these M-T7 mutants, the R171E and E209I M-T7 mutants lost inhibitory activity for plaque growth in hyperlipidemic ApoE−/− mice after angioplasty injury and R171E, moreover, greatly exacerbated plaque growth and inflammation. F137D retained some inhibitory activity for plaque growth. In contrast, for cell migration assays, M-T7-His6X, F137D, R171E, and E209I all inhibited CC chemokine (RANTES) mediated cell migration. For the ligand binding assays, R171E and E209I had significantly reduced binding to RANTES and IFNγ, whereas F137D retained wild-type binding activity. Heparin treatment further reduced RANTES binding of all three M-T7 mutants. In summary, point mutations of M-T7, R171E and E209I, exhibited reduced anti-inflammatory properties in vivo after mouse angioplasty with a loss of in vitro binding to RANTES and IFNγ, indicating these point mutations partially disrupt M-T7 ligand-binding activities. Unexpectedly, the M-T7 mutants all retained inhibitory activity for human monocyte THP-1 cell migration ex vivo, suggesting additional inhibitory properties against human monocyte THP-1 cells that are independent of chemokine inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号