首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial DNA (mtDNA) encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS), would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mtDNA replication but suppresses MMS-induced mutagenesis. These results suggest a novel mechanism wherein mutations that lead to hypermutation by DNA base-damaging agents and associate with mitochondrial disease may contribute to previously unexplained phenomena, such as the wide variation of age of disease onset and acquired mitochondrial toxicities.  相似文献   

2.
3.
A polA1 mutation in the DNA polymerase I gene of E. coli results in a drastic reduction of the frequency of mutagenesis induced by 5-bromo-2'-deoxyuridine (BUdR). Comparisons of the effect of a polA1 mutation on mutagenesis induced by methyl methane sulfonate (MMS), ultraviolet irradiation (UV) and 2-aminopurine (2-AP) demonstrated that a similar effect of a polA1 mutation is observed with MMS. This effect is much less marked with UV-and-2-AP-induced mutagenesis. It follows that DNA polymerase I plays a key role in the process of mutagenesis induced by BU and MMS. Bearing in mind that mutagenesis provoked by UV, MMS and BU involves participation of the accompanying induced error-prone system, the sources of the differences in requirement for DNA polymerase I are critically examined.  相似文献   

4.
We have examined survival and mutagenesis of bacteriophage T7 after exposure to the alkylating agents methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS). It was found that although both alkylating agents caused increased reversion of specific T7 mutations, EMS caused a higher frequency of reversion than did MMS. Exposure of the host cells to ultraviolet light so as to induce the SOS system resulted in increased survival (Weigle reactivation) of T7 phage damaged with either EMS or MMS. However, after SOS induction of the host we did not detect an accompanying increase in mutation frequency measured as either reversion of specific T7 mutants or by generation of mutations in the T7 gene that codes for phage ligase. Neither mutation frequency nor survival of alkylated phage was affected by the umuD,C mutation in the Escherichia coli host nor by the presence of plasmid pKM101. This may mean that the mode of Weigle reactivation that is detected in T7 is not mutagenic in nature.  相似文献   

5.
To maintain genomic integrity cells have to respond properly to a variety of exogenous and endogenous factors that produce genome injuries and interfere with DNA replication. DNA integrity checkpoints coordinate this response by slowing cell cycle progression to provide time for the cell to repair the damage, stabilizing replication forks and stimulating DNA repair to restore the original DNA sequence and structure. In addition, there are also mechanisms of damage tolerance, such as translesion synthesis (TLS), which are important for survival after DNA damage. TLS allows replication to continue without removing the damage, but results in a higher frequency of mutagenesis. Here, we investigate the functional contribution of the Dot1 histone methyltransferase and the Rad53 checkpoint kinase to TLS regulation in Saccharomyces cerevisiae. We demonstrate that the Dot1-dependent status of H3K79 methylation modulates the resistance to the alkylating agent MMS, which depends on PCNA ubiquitylation at lysine 164. Strikingkly, either the absence of DOT1, which prevents full activation of Rad53, or the expression of an HA-tagged version of RAD53, which produces low amounts of the kinase, confer increased MMS resistance. However, the dot1Δ rad53-HA double mutant is hypersensitive to MMS and shows barely detectable amounts of activated kinase. Furthermore, moderate overexpression of RAD53 partially suppresses the MMS resistance of dot1Δ. In addition, we show that MMS-treated dot1Δ and rad53-HA cells display increased number of chromosome-associated Rev1 foci. We propose that threshold levels of Rad53 activity exquisitely modulate the tolerance to alkylating damage at least by controlling the abundance of the key TLS factor Rev1 bound to chromatin.  相似文献   

6.
Sodium selenite (Na2Se03) was tested for its sister-chromatid exchange (SCE)-inducing ability in human whole blood cultures and for the effect of its co-exposure with methyl methanesulfonate (MMS) or N-hydroxy-2-acetyl aminofluorene (N-OH-AAF) on SCE frequency. Long exposure times (77 h and 96 h) to 3.95 × 10-6 M Na2SeO3 resulted in cell death as measured by mitotic indices, but mitotic figures were present after exposure to higher concentrations for a shorter time (19 h). High Na2SeO3 concentrations (7.90 × 10?6 and 1.19 × 10?5 M) resulted in a three-fold increase in the SCE frequency above background level (6–7 SCEs/cell). Exposure of lymphocytes to 1 × 10?4 M MMS for the last 19 h of culture yielded an average SCE frequency of 30.17 ± 0.75 while a similar exposure to 2.7 × 10?5 M N-OH-AAF resulted in 13.61 ± 0.43 SCEs/cell. Simultaneous addition of the high Na2Se03 concentrations and MMS or N-OH-AAF to the cultures resulted in SCE frequencies that were 25–30% and 11–17%, respectively, below the sum of the SCE frequencies produced by the individual compounds.  相似文献   

7.
Random mutagenesis is a useful tool to genetically modify organisms for various purposes, such as adaptation to cultivation conditions, the induction of tolerances, or increased yield of valuable substances. This is especially attractive for systems where it is not obvious which genes require modifications. Random mutagenesis has been extensively used to modify crop plants, but even with the renewed interest in microalgae and cyanobacteria for biofuel applications, there is relatively limited current research available on the application of random mutagenesis for these organisms, especially for cyanobacteria. In the presented work we characterized the lethality and rate of non-lethal point mutations for ultraviolet radiation and methyl methanesulphonate on the model cyanobacteria Synechocystis sp. PCC6803. Based on these results an optimal dosage of 10–50 J/m2 for UV and either 0.1 or 1 v% for MMS was determined. A Synechocystis wildtype culture was then mutagenized and selected for increased temperature tolerance in vivo. During the second round of mutagenesis the viability of the culture was monitored on a cell by cell level from the treatment of the cells up to the growth at an increased temperature. After four distinct rounds of treatment (two with each mutagen) the temperature tolerance of the strain was effectively raised by about 2°C. Coupled with an appropriate in vivo screening, the described methods should be applicable to induce a variety of desirable characteristics in various strains. Coupling random mutagenesis with high-throughput screening methods would additionally allow to select for important characteristics for biofuel production, which do not yield a higher fitness and can not be selected for in vivo, such as fatty acid concentration. In a combined approach with full genome sequencing random mutagenesis could be used to determine suitable target-genes for more focused methods.  相似文献   

8.
The DNA damaging properties of dichlorvos (2,2 dichlorovinyl dimethyl phosphate), methyl methanesulphonate (MMS) and iodoacetamide (IAA) have been studied, using alkaline sucrose sedimentation. In a strain of E. coli deficient in DNA polymerase I (polA) both dichlorvos and MMS caused random strand breakage, MMS being about twice as efficient as dichlorvos on a molar basis. In pol+ bacteria, DNA strand breaks or alkali labile bonds were detected following treatment with roughly five-fold higher concentrations of MMS but at similar high concentrations of dichlorvos there was an all or none breakdown of DNA molecules to fragments of very low molecular weight which correlated well with lethality.DNA synthesized after treatment of pol+ and polA bacteria with MMS was of low molecular weight, indicating the presence of discontinuities. With dichlorvos, the effect was much smaller.Apparent all-or-none DNA breakdown was also found when the polA strain of E. coli was treated with low concentrations of iodoacetamide, an agent that does not detectably alkylate DNA. At higher concentrations the breakdown was suppressed and random strand breakage occurred instea. These effects did not occurr with pol+ bacteria and correlated well with the greater sensitivity to iodoacetamide of the polA strain in survival experiments. We suggest that the major DNA damage resulting from treatment with iodoacetamide and dichlorvos arises indirectly through alkylation of other cellular constituents and consequent uncontrolled nuclease attack on the DNA. Discontinuities in newly synthesized DNA and mutagenesis following dichlorvos treatment, however, presumably result from direct alkylation of DNA.Strand breakage caused by dichlorvos and MMS in Chinese hamster cells tended to correlate with the extent to which these agents alkylate DNA, but survivval tended to correlate with the alkylation of protein.  相似文献   

9.
DNA damage checkpoints are involved in postreplication repair   总被引:2,自引:0,他引:2  
Barbour L  Ball LG  Zhang K  Xiao W 《Genetics》2006,174(4):1789-1800
Saccharomyces cerevisiae MMS2 encodes a ubiquitin-conjugating enzyme variant, belongs to the error-free branch of the RAD6 postreplication repair (PRR) pathway, and is parallel to the REV3-mediated mutagenesis branch. A mutation in genes of either the MMS2 or the REV3 branch does not result in extreme sensitivity to DNA-damaging agents; however, deletion of both subpathways of PRR results in a synergistic phenotype. Nevertheless, the double mutant is not as sensitive to DNA-damaging agents as a rad6 or rad18 mutant defective in the entire PRR pathway, suggesting the presence of an additional subpathway within PRR. A synthetic lethal screen was employed in the presence of a sublethal dose of a DNA-damaging agent to identify novel genes involved in PRR, which resulted in the isolation of RAD9 as a candidate PRR gene. Epistatic analysis showed that rad9 is synergistic to both mms2 and rev3 with respect to killing by methyl methanesulfonate (MMS), and the triple mutant is nearly as sensitive as the rad18 single mutant. In addition, rad9 rad18 is no more sensitive to MMS than the rad18 single mutant, suggesting that rad9 plays a role within the PRR pathway. Moreover, deletion of RAD9 reduces damage-induced mutagenesis and the mms2 spontaneous and induced mutagenesis is partially dependent on the RAD9 gene. We further demonstrated that the observed synergistic interactions apply to any two members between different branches of PRR and G1/S and G2/M checkpoint genes. These results suggest that a damage checkpoint is essential for tolerance mediated by both the error-free and error-prone branches of PRR.  相似文献   

10.
When Syrian hamster embryo cells were pretreated with a weak chemical carcinogen, methyl methanesulfonate (MMS) or ethyl methanesulfonate (EMS), or with a physical agent such as X-irradiation prior to being exposed to a potent cancer-producing chemical, transformation (crisscrossing of cells not seen in control) occurred up to nine times more often than when the cells were not pretreated. The degree of enhancement appears independent of carcinogen dose. The transformation frequency associated with the carcinogens benzo(a)pyrene (BP), dimethylbenz(a)anthracene (DMBA), 3-methylcholanthrene (MCA), N-acetoxy-2-acetylaminofluorene (AcAAF), and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) was increased. There are similarities in the enhancement produced by pretreatment of hamster cells with X-irradiation and with alkylating agents: with both, maximum enhancement occurred approx. 48 h after treatment and lethality attributable to the pretreatment was 10–20% relative to control. However, enhancement produced by X-irradiation pretreatment was slightly greater than that obtained with MMS. The exact cause of the enhancement in transformation resulting from the interaction of these agents is not yet known, but the enhancement associated with MMS pretreatment cannot be related to partial cell synchronization or disruption in the cell cycle. Hamster cells pretreated with 250 μM of MMS demonstrated no alteration in normal cel DNA synthesis through 48-h post-treatment. Analysis of unscheduled DNA synthesis by autoradiography or by alkaline sucrose gradients indicated that the damaged DNA was rapidly repaired after treatment. Therefore, repair of DNA damage as it is now understood is probably not involved.  相似文献   

11.
Seeds of Capsicum annuum L. var. G4 were subjected to different concentrations of methyl methane sulphonate (MMS) and diethyl sulphate (DES). The effects of different mutagenic treatments on meiosis, chiasma frequency, and pollen fertility have been studied in M1 generation. Various types of meiotic aberrations such as univalent, multivalent, stickiness, bridge, laggards, cytomixis etc. were observed in all the treatments. However, the MMS treatments proved to be more effective in inducing meiotic aberrations as compared to DES. Moreover, the frequency of meiotic aberrations was at its maximum at metaphase followed by anaphase and telophase stages. As the concentrations increase, reduction in chiasma frequency and pollen fertility was observed in all the treatments and, MMS again was found to be more effective than DES treatments.  相似文献   

12.
The mutagenic and lethal action of methyl methanesulphonate (MMS) and dichlorvos (DDVP) has been studied on Escherichia coli WP2 and some derivatives deficient in DNA repair genes. The exrA+ and recA+ alleles were necessary for significant mutagenesis by either compound, and the uvrA gene affected neither the lethal nor mutagenic responses. Increased sensitivity to both compounds was shown by the exrA and uvrAexrA strains and in a more pronounced way by the uvrApolA, recA, and uvrAexrApolA strains.Bacteria deficient at the polA locus were 2 and 3 times more mutable by DDVP and MMS respectively, consistent with the hypothesis that the absence of the polA system for the repair of single-strand gaps results in a greater proportion of the total repair being channelled through the error-prone exrA+/recA+-dependent system. Single-strand breaks were detectable by alkaline sucrose gradient centrifugation after both MMS and DDVP treatment of polA bacteria. Thus in all the tests carried out, both compounds showed similar patterns of activity, and the results are consistent with their known ability to alkylate DNA. The chief differences were quantitative; sensitivity increases were far more pronounced with MMS which was also a far more potent mutagen than DDVP.  相似文献   

13.
The Isolation of Mms- and Histidine-Sensitive Mutants in NEUROSPORA CRASSA   总被引:3,自引:2,他引:1  
A simple method of replica plating has been used to isolate mutants of Neurospora crassa that have increased sensitivity to methyl methanesulfonate (MMS) and/or to histidine. Twelve mutants with increased sensitivity to MMS and one mutant with increased sensitivity to histidine showed Mendelian segregation of the mutant phenotypes. Three mutants were mapped to loci not previously associated with MMS sensitivity. Two others were allelic to the UV- and MMS-sensitive mutant, mei-3. Survival curves indicate that conidia (mutant or wild-type) survive on much higher concentrations of MMS at 25° than at 37°. In contrast, mycelial growth is more resistant to MMS at 37°. The possibility of qualitatively different repair processes at these two temperatures is discussed.  相似文献   

14.
The mutagenicity of methyl methanesulfonate (MMS) was studied in a genetically marked two-component heterokaryon of Neurospora crassa. Types of genetic alterations detectable in this system are (I) point mutations in the ad-3A and ad-3B loci; (2) multilocus (chromosome) deletions in the ad-3 region, and (3) recessive lethal mutations in the whole genome. Study of the inactivation kinetics of the heterokaryotic and homokaryotic conidial fractions has made it possible to distinguish between nuclear and cytoplasmic inactivation.Forward mutations in the ad-3 region induced by MMS in the heterokaryotic fraction of conidia were obtained by a direct method with the following results: (I) The overall ad-3 forward mutation frequency increases in proportion to the 1.91 power of the concentration of MMS. (2) The forward mutation frequency of point mutations at the ad-3A and ad-3B loci increases in proportion to the 1.68 power of the concentration. (3) The forward mutation frequency of chromosome deletions in the ad-3 region increases more than exponentially with increasing concentrations of MMS. (4) After treatment for 300 min with 20 mM MMS, 15.5% of the ad-3 mutations are multilocus deletions. Tests for genotype and allelic complementation of the point mutations showed that (I) the ratio between ad-3B and ad-3A mutants was 1.75, (2) 52.1% of the ad-3B mutants showed allelic complementation, with 39.2% non-polarized and 12.9% polarized complementation patterns and 47.9% noncomplementing mutants, and (3) both the ratio between point mutations in the ad-3A and ad-3B loci and the spectrum of complementation patterns among the ad-3B mutants were independent of MMS concentration.  相似文献   

15.
Sodium selenite (Na2SeO3) was tested for its sister-chromatid exchange (SCE)-inducing ability in human whole blood cultures and for the effect of its co-exposure with methyl methanesulfonate (MMS) or N-hydroxy-2-acetylaminofluorene (N-OH-AAF) on SCE frequency. Long exposure times (77 h and 96 h) to 3.95 X 10(-6) M Na2SeO3 resulted in cell death as measured by mitotic indices, but mitotic figures were present after exposure to higher concentrations for a shorter time (19 h). High Na2SeO3 concentrations (7.90 X 10(-6) and 1.19 X 10(-5) M) resulted in a three-fold increase in the SCE frequency above background level (6--7 SCEs/cell). Exposure of lymphocytes to 1 X 10(-4) M MMS for the last 19 h of culture yielded an average SCE frequency of 30.17 +/- 0.75 while a similar exposure to 2.7 X 10(-5) M N-OH-AAF resulted in 13.61 +/- 0.43 SCEs/cell. Simultaneous addition of the high Na2SeO3 concentrations and MMS or N-OH-AAF to the cultures resulted in SCE frequencies that were 25--30% and 11--17%, respectively, below the sum of the SCE frequencies produced by the individual compounds.  相似文献   

16.
Summary This paper describes studies to determine the role of the umuC gene product in the process of alkylation induced mutagenesis. An active umuC gene is necessary for most MMS induced mutagenesis but it is not essential for EMS nor for MNNG induced mutagenesis in either normal or adapted cultures. In this respect the umuC mutation differs from lexA mutations which have a striking effect on MNNG induced mutagenesis (Schendel, et al., 1978). These findings have prompted a re-evaluation of these previously published data and the advancement of an hypothesis which explains the lexA effect without evoking a role for error-prone repair in the process of alkylation induced mutagenesis.It was also observed that exposure to MNNG is capable of generating a small amount of W-reactivation and W-mutagenesis capacity in a umuC strain which is totally blocked for UV induced reactivation. In light of this result a possible function for the umuC gene product is discussed.  相似文献   

17.
The cell-cycle specific mutation cdc40-1, which has been previously shown to be sensitive to MMS at the restrictive temperature, was further characterized as a DNA-repair-deficient mutation. cdc40-1 mutants shown only slight sensitivity to UV irradiation. Double mutant studies shown that rad6-l is epistatic to cdc40-1 with respect to sensitivity to UV irradiation and MMS. rad50-1 is epistatic to cdc40-1 with respect to MMS sensitivity in G1 stationary cells, but not in logarithmic cultures. An additive effect is seen between cdc40-1 and rad50-1 with respect to UV irradiation. cdc40-1 mutants are defective in UV-induced mutagenesis at the restrictive temperature. UV-induced levels of recombination are normal at both temperatures, while MMS-induced recombination is enhanced at the restrictive temperature.  相似文献   

18.
Post-translational modifications of Proliferating Cell Nuclear Antigen (PCNA) play a key role in regulating the bypass of DNA lesions during DNA replication. PCNA can be monoubiquitylated at lysine 164 by the RAD6-RAD18 ubiquitin ligase complex. Through this modification, PCNA can interact with low fidelity Y family DNA polymerases to promote translesion synthesis. Monoubiquitylated PCNA can be polyubiquitylated on lysine 63 of ubiquitin by a further ubiquitin-conjugating complex. This modification promotes a template switching bypass process in yeast, while its role in higher eukaryotes is less clear.We investigated the function of PCNA ubiquitylation using a PCNAK164R mutant DT40 chicken B lymphoblastoma cell line, which is hypersensitive to DNA damaging agents such as methyl methanesulfonate (MMS), cisplatin or ultraviolet radiation (UV) due to the loss of PCNA modifications. In the PCNAK164R mutant we also detected cell cycle arrest following UV treatment, a reduced rate of damage bypass through translesion DNA synthesis on synthetic UV photoproducts, and an increased rate of genomic mutagenesis following MMS treatment. PCNA-ubiquitin fusion proteins have been reported to mimic endogenous PCNA ubiquitylation. We found that the stable expression of a PCNAK164R-ubiquitin fusion protein fully or partially rescued the observed defects of the PCNAK164R mutant. The expression of a PCNAK164R-ubiquitinK63R fusion protein, on which the formation of lysine 63-linked polyubiquitin chains is not possible, similarly rescued the cell cycle arrest, DNA damage sensitivity, reduction of translesion synthesis and increase of MMS-induced genomic mutagenesis. Template switching bypass was not affected by the genetic elimination of PCNA polyubiquitylation, but it was reduced in the absence of the recombination proteins BRCA1 or XRCC3. Our study found no requirement for PCNA polyubiquitylation to protect cells from replication-stalling DNA damage.  相似文献   

19.
Rooting and the Metabolism of Nicotine in Tobacco Callus Cultures   总被引:2,自引:0,他引:2  
The usefulness of exogenous nicotine as a factor in the induction of morphogenesis in a tobacco tissue culture medium has been demonstrated. Nicotiana rustica callus cell cultures were grown on a modified Murashige and Skoog medium with 2 mg/l indoleacetic acid (IAA) and 0.2 mg/l kinetin (MMS). Root morphogenesis was induced in roller tube callus cell cultures and solid callus cell cultures grown on MMS without kinetin supplemented with 10–100 mg/l nicotine. Optimal nicotine concentration for root induction was 50 mg/l. Other tests using varying combinations of IAA, kinetin and nicotine produced no obvious morphogenesis, although some changes in the amount of callus growth and endogenous protein concentration did correlate with nicotine concentration relative to the presence of IAA and/or kinetin. In liquid MMS medium, 14C-nicotine was primarily incorporated into the protein fraction of cultured cells while primarily incorporated into the cell wall and/or cell membrane fraction of cells cultured on MMS without kinetin in the medium. In MMS without IAA and MMS without both IAA and kinetin, there was incorporation, but to a lesser extent in both the protein and the cell wall and/or cell membrane fractions.  相似文献   

20.
Wild-type Friend mouse erythroleukaemia cells (clone 707) were compared with adenine phosphoribosyltransferase (APRT)-deficient mutant subclones (707DAP8 and 707DAP10) for sensitivity to cell killing and mutagenesis by ethyl methanesulphonate (EMS) and methyl methanesulphonate (MMS). Cells were exposed to 0-300 micrograms/ml EMS and to 0-20 micrograms/ml MMS for a period of 16 h. A slight difference was found between wild-type cells and the two APRT-deficient subclones in terms of sensitivity to cell killing by both mutagens. The APRT-deficient subclones were, however, significantly more sensitive than wild-type cells to mutagenesis to 5-bromo-2-deoxyuridine resistance and 6-thioguanine resistance by EMS and MMS. The APRT-deficient subclones were found to have significantly decreased levels of dATP and dTTP nucleotides and decreased levels of all four ribonucleoside triphosphates (ATP, GTP, CTP and UTP) relative to wild-type cells. Wild-type Friend cells were found to have insignificant levels O6-methylguanine-DNA methyl transferase and it is suggested that the increased mutagen sensitivity of APRT-deficient cells may be due to imbalance of deoxyribonucleoside triphosphate pools during DNA excision-repair processes, or more probably due to deficiency of ATP for ATP-dependent DNA excision-repair enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号