首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a simple system which can be used to study directly directly the sequence change and the cellular repair functions involved in frame-shift mutagenesis by a covalently reactive mutagen. Positive (+S) and negative (?S) alterations in the number of base pairs of the Tc gene of pBR322 were generated and particular clones with ApRTcS phenotypes were selected for mutagenesis experiments. Exposure of these frame-shifted plasmid DNAs to a potent carcinogen, N-acetoxy-N-2-acetylaminofluorene (AAAF), in vitro, caused covalent alterations to DNA sequence and resulted in a number of revertants (ApRTcR) not observed in the untreated controls. The dose curve indicated an exponential response suggesting single-hit kinetics. Differential inactivation of the Ap gene was observed among various E. coli strains. The wild-type AB1157 and AB2463 (yrecA) showed a similar dose curve while AB1886 (uvrA) showed a marked decrease in ApR clones at the same dose. Both addition (+S) and deletion (?S) plasmids exhibited similar dose curves on inactivation of Ap gene. The reversion frequency, however, of ?S plasmid was a factor of 10 times higher than +S plasmid. The reversion frequency also increase markedly with uvrA host but not with recA host. 2 types of deletion revertants of the +S plasmid were found. 1 revertant has a single GC base-pair deletion in GC-rich region which is likely to be a target for AAAF reaction. The other showed a deletion of 4 base pairs (TCGA) at the tandem repeating sequence TCGATCGA which may represent a hot spot for frame-shift mutation.  相似文献   

2.
R S Day  rd 《Journal of virology》1977,21(3):1249-1251
A partial release of K-specific restriction of phage lambda grown in Escherichia coli C was observed when E. coli K strains AB1157 (having wild-type repair of UV-produced DNA damage) and AB1886 (uvrA) were irradiated with UV light before infection. The effect occurred in AB1886 at lower UV fluences than it did in AB1157. Little or no release of restriction was observed when AB2463 (recA) or AB2494 (lex-1) was used. Such release of restriction appears to be another of the UV-induced phenomena associated with "SOS" repair.  相似文献   

3.
Photoreactivation (PR) after 365-nm inactivation was measured in four strains of Escherichia coli differing in repair capability. Photoreactivation was observed in the recA strains K12 and AB2480 and K12 AB2463 indicating a significant role of pyrimide dimers in the lethal action of 365-nm radiation in these strains. Significant PR was not observed in the uvrA strain, K12 AB1886, or in the repair proficient strain, K12 AB1157, after 265-nm inactivation. Biological evidence indicated that stationary phase cells had not lost the capacity for photo-enzymatic repair after fluences of 365-nm radiation of 2 × 106 J/m−2 or less. It is proposed that pyrimidine dimers, although induced, are not significant 365-nm lethal lesions in uvrA and wild-type strains because of their efficient dark repair.  相似文献   

4.
The induction of umuC gene expression, cell lethality, induction of W-reactivation of UV-irradiated λ-phage and the induction of mutagenesis caused by bleomycin (Blm) were studied in Escherichia coli K-12 strains with special references to the effects of SOS repair deficiencies. (1) The umuC gene is inducible by Blm and the induction is regulated by the lexA and recA genes. (2) The lexA and recA mutants are slightly more sensitive to Blm-killing than wild-type strain. (3) The plating efficiency of UV-irradiated λ-phage increased by Blm treatment of the host cell. This increase was not observed in the umuC mutant. The plating efficiency of UV-irradiated λ-phage was drastically reduced in the lexA and recA strains treated with Blm. (4) No significant increase of the reversion of nonsense mutation (his-4 to His+) in AB1157 by the treatment of Blm was observed. Possible implications of these results are discussed.  相似文献   

5.
E. coli WP2 and its repair-deficient derivatives were treated with the pyrrolizidine alkaloids, heliotrine and monocrotaline in the presence of a liver microsomal fraction. The doubly repair-deficient strains WP100 uvrA recA and CM611 uvrA exrA showed considerable killing. The singly repair-deficient strains WP2 uvrA, CM561 exrA and CM571 recA showed slight killing. In strains WP2 and WP2 uvrA induced reversion to Trp+ was not detected with either monocrotaline or mitomycin C. These results are entirely consistent with liver activation converting pyrrolizidine alkaloids into bifunctional alkylating agents.  相似文献   

6.
Various E. coli mutants, deficient in DNA repair, differed in their response to increasing concentrations of N-nitroso-N-methylurea (NMU).Loss of viability due to exposure to NMU was greatest in those strains with a reduced capacity for repair of single-strand breaks. Viability of wild-type and uvrA? strains was not affected by NMU concentrations up to 3.0 mM. Some loss of viability occurred, at the higher NMU concentrations, in both strains carrying exrA? while strains carrying uvrA?polA? or recA? were the most sensitive. The results support the hypothesis that the lethal effect of NMU on repair-deficient E. coli was due to its ability to induce single-strand breaks.Induction of mutations by NMU was observed in all the strains used and the results suggested that NMU damage per se was the major mutational event. The dose response curve for induction of revertants by NMU was, however, influenced by the repair system(s) present. The number of revertants scored at the higher NMU concentrations was greater in those strains lacking the recA and polA dependent repair functions than in the wild-type strain. However, at NMU concentrations below 2.0 mM the numbers of revertants induced in exrA? carrying strains, prossessing accurate rec-dependent repair, were lower than the comparable wild-type values. The evidence suggests that the uvrA gene product also acts on some, possibly non-mutagenic, types of NMU damage and that error-prone repair of these lesions increases the number of potential revertants.  相似文献   

7.
《Mutation Research Letters》1983,119(2):135-144
46 chemicals of various classes and structures, including 30 known animal carcinogens, were evaluated for genotoxic effects using the Escherichia coli rec assay with strains WP2 (wild-type) and WP100 (uvrA−1recA) in qualitative and quantitative spot tests and in quantitative suspension tests. The rec assay detected 17 of 30 known carcinogens as genotoxic agents, including mitomycin C and diethylnitrosamine, both negative in the Salmonella/Ames test as utilized in these studies. The rec assay in conjunction with the Salmonella/Ames test 30 known carcinogens as genotoxic agents. Azo/aminoazo carcinogens showed little genotoxicity, and the aromatic amine 2-acetylaminofluorene was non-genotoxic in the rec assay. The rec assay was more effective than pol tests with E. coli strains W3110/p3478 and strains WP2/WP67. Effectiveness of the rec assay was related to the DNA repair-defective nature of the uvrA recA genotype of strain WP100.  相似文献   

8.
THERE are at least two mechanisms for genetic recombination of phage S13–primary and secondary. They are distinguished by the amount of phage recombination observed in recombination-deficient (recA) bacterial hosts. An S13 cross performed in either of the recA hosts, Escherichia coli JC15531 or AB24632, yields a recombination frequency that is greatly reduced from that found in a rec+ host3, 4; this suggests that the recA gene is required for the primary mechanism of S13 recombination. But even in a recA host the phage undergoes a small residual amount of recombination3 which has been attributed to a minor, secondary mechanism. Apparently the secondary mechanism functions in a recA cell and is only revealed when the primary mechanism is eliminated.  相似文献   

9.
10.
11.
Summary When UV-irradiated X174 was grown in pre-irradiated host cells of various strains, ultraviolet reactivation (UVR) was observed only in recombination proficient strains such as E. coli C (uvrA + recA +) and HF4704 (uvrA - recA +), but not in the recombination deficient strain HF4712 (uvrA + recA -). By increasing the multiplicity of infection, no rise in the amount of such reactivation was observed. From the study of the neutral and alkaline sucrose gradient sedimentation patterns of DNA samples extracted from unirradiated cells infected with unirradiated phage, it appears that after the conversion of the viral single stranded (SS) DNA to the double stranded form (DS), nicks or scissions were produced on it within all three strains, which were ultimately sealed up in the recA + but persisted within the recA - host cells. When UV-irradiated phage infected unirradiated host cells, such nicking of the DS DNA appeared to be much more extensive in uvrA + recA +, but slightly reduced in uvrA + recA - and severely suppressed in uvrA - recA + strains. When the host cells were also UV-irradiated, the conversion of the infecting viral SS DNA to DS DNA as well as its subsequent nicking were reduced in all the three strains to a much greater extent. Although nicking of the DS DNA molecule is an essential step even in the normal intracellular replication of X DNA, the production and the sealing up of such nicks appear not to have any positive correlation with UVR of these phages. A drastic reduction in nicking due te pre-irradiation of the host cells might, however, mean slowing down of the replication of the damaged parental RF molecules which would facilitate their repair perhaps through recombination with the homologous parts of the host genome.  相似文献   

12.
Summary We have previously reported some effects of DNA repair on the transition frequencies produced by an O6-methyl-guanine (MeG) or an O6-n-butyl-guanine (BuG) paired with C at the first position of the third codon in gene G of bacteriophage X174 form I'DNA (Chambers et al. 1985). We now report experiments in which the transition is produced from T:MeG or T:BuG, instead of C:MeG or C:BuG, located at this site. The site-modified DNAs were transfected into cells with normal DNA repair as well as into cells with repair defects (uvrA, uvrB, uvrC, recA, uvrArecA). The lysates were screened for phage carrying the expected transition using a characteristic change in phenotype. The data demonstrate that the transition frequency from T:BuG is low (0.3% of total phage progeny) in cells with normal repair (Escherichia coli AB1157) and increases 7-fold in uvrA cells (E. coli AB1886). A similar increase is seen in uvrB and uvrC cells (AB1885, AB1884). These data, like our previous data, indicate BuG is repaired primarily by excision. In contranst to this, the transition frequency from T:MeG is high (5±2%) in cells with normal repair. After induction of alkyl transfer repair in E. coli AB1157, the transition frequency goes up 5-fold. Compared with cells with normal repair, the transition frequency goes up 2-fold in uvrA, uvrB and uvrC cells; it goes up 1.5-fold in recA cells (E. coli AB2463). The data reinforce our earlier conclusion that MeG is repaired primarily by alkyl transfer, but the ABC excinuclease as well as RecA protein inhibit this repair process. Using the BuG data reported here and in our previous paper, we calculate that BuG pairs with a thymine residue 0.5%–0.62% of the time during replication in vivo, and that BuG markedly inhibits replication of the strand that contains it. Because of the complication introduced by alkyl transfer repair, similar calculations for MeG cannot be made from the current data.Abbreviations MeG and BuG O6-methyl-or O6-n-butyl-guanine moiety in X DNA (in each case, the plus strand nucleotide is specified first) - form I'DNA relaxed, covalently closed, circular, double-stranded DNA - Wt wild-type phenotype - Am amber phenotype - pfu plaque forming units - MNNG N-methyl-N'-nitro-N-nitrosoguanidine X mutants are named by designating the gene, the type of mutation (e.g. ms=missense), the codon number, the mutant codon and the new amino acid (where pertinent) in that order (e.g. XGam3) carries an amber in the third codon of gene G, and should not be confused with the classical am3 mutant used in the older literature to designate what is now known to be XEam7  相似文献   

13.
《Mutation Research Letters》1993,301(2):125-134
The cytotoxic and mutagenic effects of 4-hydroxyaminobiphenyl (N-OH-ABP) were studied using Escherichia coli strains with different repair capacities. N-OH-ABP was equally cytotoxic for uvrA and recA mutants as well as in wild-type cells while polA mutants strains proved particularly sensitive to its toxicity. In contrast, the mutation frequency in the uvrA strains tested was elevated to 30–400-fold the wild-type values. We suggest that aminobiphenyl-DNA adducts responsible for mutation are repaired by UVR endonuclease but different pathways exist for removal of DNA lesions responsible for bacterial killing. From the 32P-postlabelling analysis, it was concluded that ABP-DNA adducts can be relatively rapidly repaired in wild-type strains, while persisting in the uvrA strains.  相似文献   

14.
One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48 % of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA- strain were G:C → T:A transversions, occurring within the sequence which in recA+ strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C → A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations.  相似文献   

15.
We have isolated an Escherichia coli tester strain for the use in mechanistic and metabolic studies of genotoxins. We started with one of the more used and better characterized E. coli K-12 laboratory strains, AB1157. We isolated a lipopolysaccharide defective mutant of strain AB1886 which is an excision repair deficient derivative of AB1157 and introduced a newly constructed plasmid pKR11, encoding mucAB, resulting in strain MR2101/pKR11. A genotoxicity assay was designed, monitoring the reversion to arginine prototrophy and a preliminary validation was carried out against Ames tester strain TA100 with a set of diagnostic compounds. The results seem to indicate that strain MR2101/pKR11 is an adequate tester strain which can be a useful tool in mechanistic studies. Moreover, this strain can serve as mother strain to isolate improved and more especialized tester strains.  相似文献   

16.
Genetic recombination in Escherichia coli depends on the recA+ gene and can be increased in frequency by certain treatments that damage DNA. In previous studies (Ross &; Howard-Flanders, 1977a,b), E. coli (λ) cells were infected with undamaged λ phages and then with λ phages that were either undamaged, or had interstrand crosslinks produced in their DNA by treatment with psoralen and light. When the superinfecting DNA contained psoralen crosslinks, the intact DNA was cut. This cutting, referred to as cutting in trans, occurred only in DNA genetically homologous to the damaged DNA, required recA+ and behaved as expected of a step in damage-induced genetic recombination.In the present studies, we investigated the effect on cutting in trans of lig-7, a thermosensitive allele of the structural gene for E. coli polynucleotide ligase and also of uvrA, which controls the excision of damaged bases from DNA. The ligase deficiency caused gaps due to the action of the uvrA+ endonuclease on damaged DNA to remain open for at least 25 minutes. For low levels of damage, cutting in trans was also enhanced in the lig-7 cells at non-permissive temperatures but was not increased in wild-type cells. The enhanced cutting in trans depended upon genetic homology, as expected if it reflected elevated levels of damage-induced genetic recombination. Presumably, the unrepaired gaps in the damaged DNA made it a good substrate for the enzymes that promote cutting in trans of its homologs.  相似文献   

17.
Populations of a recA derivative of Escherichia coli AB1157 containing the plasmid F Trim were grown in carbon-limited continuous culture at dilution rates of 0.1 h-1 to 0.4 h1. The plasmid was lost after a lag, except in fermenter-experienced populations when it wwas retained. These results can be explained in terms of non-specific competition.  相似文献   

18.
Cloning of a recA-like gene of Proteus mirabilis   总被引:1,自引:0,他引:1  
A gene of Proteus mirabilis that can substitute for functions of the recA gene of Escherichia coli has been cloned into the plasmid pBR322, using shotgun experiments. The recA-like gene (recAP.m.) has been localized by restriction mapping within a 1.5-Md PstI fragment that is a part of two cloned HindIII fragments of the chromosome of P. mirabilis.The restriction map of the recAP.m. gene differs from that of the recA gene of E. coli. Functionally, the recombinant plasmids containing the recAP.m. gene restore a nearly wild-type level of UV-resistance to several point and deletion mutants in the recA gene of E. coli.  相似文献   

19.
It is shown that partial phenotypic suppression of two ochre mutations (argE3 andlacZU118) and an amber mutation (inargE) by sublethal concentrations of streptomycin in anrpsL + (streptomycin-sensitive) derivative of theEscherichia coli strain AB1157 greatly enhances their adaptive mutability under selection. Streptomycin also increases adaptive mutability brought about by theppm mutation described earlier. Inactivation ofrecA affects neither phenotypic suppression by streptomycin nor replication-associated mutagenesis but abolishes adaptive mutagenesis. These results indicate a causal relationship between allele leakiness and adaptive mutability.  相似文献   

20.
Depression of recA by an operator mutation (recAo281) produces effects opposite to those obtained from its derepression following DNA damage. Inducible reactivation of Λvir and S13 phages is decreased and inducible UV mutahenesis of a φX174 amber mutant is lessened in a recAo281 strain compared to a recAo+ strain. The decreases could not be accounted for by increases in constitutive levels of these processes. Consistent with these results the UV resistance of a recAo281 strain is less than that of a recAo+ strain. This may indicate that too much recA protein immediately after irradiation interferes with derepression of the lexA regulon or functioning of its products. Effects of increasing the recAo+ and recA+ copy number on a ColE1 plasmid are compared with the effects of recAo281.recAo281 partially suppresses UV sensitivity due to lexA102 and lexA3 in E. coli K-12. This increase in resistance is not correlated with an increase in constitutive or inducible reactivation of UV-irradiated Λvir or S13. This is consistent with the previous suggestion that the UV resistance stems from a decrease in DNA degradation allowing an increase in DNA repair. lexA3 blocks UV mutagenesis of φX174 as measured by reversion of amber mutations and this was not suppressed by recAo281.recF143 blocks UV mutagenesis of φX174. recAo281 suppresses neither this effect nor the decrease in bacterial UV resistance caused by recF143.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号