首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Absorption changes during the O2 reaction of reduced bovine cytochrome c oxidase were investigated by the rapid-reaction technique of flow-flash spectrophotometry in the Soret, visible and near-i.r. spectral regions. New features in the time courses of absorption change were observed relative to the earlier findings reported by Greenwood & Gibson [(1967) J. Biol. Chem. 242, 1782-1787]. These new features arise in the Soret and near-i.r. regions and allow the reaction to be described at all wavelengths as a composite of three exponential processes. There is a rapid O2-sensitive phase detectable in the Soret and visible region. The second phase has a rate that is somewhat less dependent on O2 concentration than is the fastest phase rate and is detectable in all three spectral regions. The rate of the third phase is almost independent of the O2 concentration and is also detectable in all spectral regions. Analysis of the three phases gives their rates and absorption amplitudes. The fast phase reaches a rate of 2.5 X 10(4) s-1 at the highest O2 concentration available at 20 degrees C, whereas the phase of intermediate rate is limited at a value of 7 X 10(3) s-1 and the slow phase rate is limited at 700 s-1. The ratios of the kinetic difference spectra for the fast phase and the slow phase do not correspond to the spectra of the individual haem centres. A branched mechanism is advanced that is able to reconcile the kinetic and static difference spectra. This mechanism suggests that some of the cytochrome a is oxidized along with cytochrome a3 in the initial O2-sensitive phase. In addition, the model requires that CuA is oxidized heterogeneously. This fits with the complex time course of oxidation observed at 830 nm while retaining CuA as virtually the sole contributor to absorbance at this wavelength.  相似文献   

3.
The reaction of fully reduced soluble bovine heart cytochrome oxidase with O2 at 173K was investigated by low-temperature optical and e.p.r. spectroscopy, and the kinetics of the reaction were analysed by non-linear optimization techniques. The only e.p.r. signals seen during the course of the reaction are those attributable to low-spin cytochrome a3+ and CuA2+. Quantitative analysis of e.p.r. signals shows that, at the end point of the reaction at 173K, nearly 100% of CuA is in the cupric state but only about 40% of cytochrome a is in the ferric low-spin state. The optical spectra recorded at this stage of the reaction show incomplete oxidation of haem and the absence of a 655 nm absorption band. The only reaction scheme that accounts for both the e.p.r. and optical data is a four-intermediate mechanism involving a branching pathway. The reaction is initiated when fully reduced cytochrome oxidase reacts with O2 to form intermediate I. This is then converted into either intermediate IIA or intermediate IIB. Of these, intermediate IIB is a stable end product at 173 K, but intermediate IIA is converted into intermediate III, which is the stable state at 173 K in this branch of the mechanism. The kinetic analysis of the e.p.r. data allows the unambiguous assignments of the valence states of cytochrome a and CuA in the intermediates. Intermediate I contains cytochrome a2+ and CuA+, intermediate IIA contains low-spin cytochroma a3+ and CuA+, intermediate IIB contains cytochrome a2+ and CuA2+, and intermediate III contains low-spin cytochrome a3+ and CuA2+. The electronic state of the O2-binding CuBa3 couple during the reoxidation of cytochrome oxidase is discussed in terms of an integrated structure containing CuB, cytochrome a3 and O2.  相似文献   

4.
The reaction of H2O2 with mixed-valence and fully reduced cytochrome c oxidase was investigated by photolysis of fully reduced and mixed-valence carboxy-cytochrome c oxidase in the presence of H2O2 under anaerobic conditions. The results showed that H2O2 reacted rapidly (k = (2.5-3.1) X 10(4) M-1 X s-1) with both enzyme species. With the mixed-valence enzyme, the fully oxidised enzyme was reformed. On the time-scale of our experiments, no spectroscopically detectable intermediate was observed. This demonstrates that mixed-valence cytochrome c oxidase is able to use H2O2 as a two-electron acceptor, suggesting that cytochrome c oxidase may under suitable conditions act as a peroxidase. Upon reaction of H2O2 with the fully reduced enzyme, cytochrome a was oxidised before cytochrome a3. From this observation it was possible to estimate that the rate of electron transfer from cytochrome a to a3 is about 0.5-5 s-1.  相似文献   

5.
Electron transfer during the reaction of fully reduced bovine heart cytochrome oxidase with dioxygen has been studied at 24 degrees C in the near-infrared region following photolysis of the fully reduced CO-bound complex. The transient spectral changes and kinetics were followed on microsecond to millisecond time scales at nine different wavelengths between 597 and 935 nm and were analyzed using singular value decomposition and global exponential fitting. Four apparent lifetimes, 14 micros, 40 micros, 86 micros, and 1.1 ms, were resolved. The near-infrared spectra of the intermediates are extracted on the basis of a previously proposed mechanism [Sucheta et al. (1998) Biochemistry 37, 17905-17914] and compared to model spectra of the postulated intermediates. The data provide a comprehensive picture of the spectral contributions of the different redox centers in their respective oxidation or ligation states in the near-infrared region and strongly support that Cu(A) is partially (2/3), but not fully, oxidized in the 3-electron-reduced ferryl intermediate.  相似文献   

6.
Proton and electron transfer events during the reaction of solubilized fully reduced bovine heart cytochrome c oxidase with molecular oxygen were investigated using the flow-flash technique. Time-resolved spectral changes resulting from ligand binding and electron transfer events were detected simultaneously with pH changes in the bulk. The kinetics and spectral changes in the visible region (450-750 nm) were probed by optical multichannel detection, allowing high spectral resolution on time scales from 50 ns to 50 ms. Experiments were carried out in the presence and absence of pH-sensitive dyes (carboxyfluorescein at pH 6.5, phenol red at pH 7.5, and m-cresol purple at pH 8.5) which permitted separation of spectral changes due to proton transfer from those caused by ligand binding and electron transfer. The transient spectra recorded in the absence of dye were analyzed by singular-value decomposition and multiexponential fitting. Five apparent lifetimes (0.93 microseconds, 10 microseconds, 36 microseconds, 90 microseconds, and 1.3 ms at pH 7.5) could consistently be distinguished and provided a basis for a reaction mechanism consistent with our most recent kinetic model [Sucheta, A., Szundi, I., and Einarsdóttir, O. (1999) Biochemistry 37, 17905-17914]. The dye response indicated that proton uptake occurred concurrently with the two slowest electron transfer steps, in agreement with previous results based on single-wavelength detection [Hallén, S., and Nilsson, T. (1992) Biochemistry 31, 11853-11859]. The stoichiometry of the proton uptake reactions was approximately 1.3 +/- 0.3, 1.4 +/- 0.3, and 1.6 +/- 0.5 protons per enzyme at pH 6.5, 7.5, and 8.5, respectively. The electron transfer between heme a and CuA was limited by proton uptake on a 90 microseconds time scale. We have established the lower limit of the true rate constant for the electron transfer between CuA and heme a to be approximately 2 x 10(5) s-1.  相似文献   

7.
The formation and disappearance of a photosensitive species during the reaction of reduced cytochrome c oxidase (putatively a3II.O2), EC 1.9.3.1, has been followed by (a) mixing a3II.CO with O2 in a stopped flow apparatus; (b) initiating the oxygen-oxidase reaction by removing CO with a laser flash; (c) probing the reaction mixture for photosensitivity with a second laser flash. Photosensitivity appears in the reaction mixture after the first laser flash, reaches a maximum after 50-60 microseconds ([O2] greater than 100 microM), and disappears in a further 50-100 microseconds. The kinetics can be represented by the scheme [formula: see text]. In species B, O2 is associated with the protein, possibly CuB, but not with the heme. Species C is the photosensitive a3II.O2 complex, and in D, a3 iron has been oxidized. The formation of species C is responsible for the rapid phase of absorbance change in the oxidase-oxygen reaction. The rate of reaction with oxygen approaches the limit of 35,000 s-1 at high oxygen. Nitric oxide, however, reacts with FeII oxidase with a rate of 1 x 10(8) M-1 s-1, which is accurately maintained up to an observed rate of 10(5) s-1. In flash photolysis experiments, approximately half of the photodissociated nitric oxidase recombines in a biphasic geminate reaction with rates of 1 x 10(8) s-1 and 1 x 10(7) s-1.  相似文献   

8.
The reaction of cytochrome c oxidase (COX) from Rhodobacter sphaeroides with hydrogen peroxide has been studied at alkaline (pH 8.5) and acidic (pH 6.5) conditions with the aid of a stopped-flow apparatus. Absorption changes in the entire 350-800 nm spectral range were monitored and analyzed by a global fitting procedure. The reaction can be described by the sequential formation of two intermediates analogous to compounds I and II of peroxidases: oxidized COX + H2O2 --> intermediate I --> intermediate II. At pH as high as 8.5, intermediate I appears to be a mixture of at least two species characterized by absorption bands at approximately 607 nm (P607) and approximately 580 nm (F-I580) that rise synchronously. At acidic pH (6.5), intermediate I is represented mainly by a component with an alpha-peak around 575 nm (F-I575) that is probably equivalent to the so-called F* species observed with the bovine COX. The data are consistent with a pH-dependent reaction branching at the step of intermediate I formation. To get further insight into the mechanism of the pH-dependence, the peroxide reaction was studied using two mutants of the R. sphaeroides oxidase, K362M and D132N, that block, respectively, the proton-conducting K- and D-channels. The D132N mutation does not affect significantly the Ox --> intermediate I step of the peroxide reaction. In contrast, K362M replacement exerts a dramatic effect, eliminating the pH-dependence of intermediate I formation. The data obtained allow us to propose that formation of the acidic form of intermediate I (F-I575, F*) requires protonation of some group at/near the binuclear site that follows or is concerted with peroxide binding. The protonation involves specifically the K-channel. Presumably, a proton vacancy can be generated in the site as a consequence of the proton-assisted heterolytic scission of the O-O bond of the bound peroxide. The results are consistent with a proposal [Vygodina, T. V., Pecoraro, C., Mitchell, D., Gennis, R., and Konstantinov, A. A. (1998) Biochemistry 37, 3053-3061] that the K-channel may be involved in the delivery of the first four protons in the catalytic cycle (starting from reduction of the oxidized form) including proton uptake coupled to reduction of the binuclear site and transfer of protons driven by cleavage of the dioxygen O-O bond in the binculear site. Once peroxide intermediate I has been formed, generation of a strong oxene ligand at the heme a3 iron triggers a transition of the enzyme to the "peroxidase conformation" in which the K-channel is closed and the binuclear site becomes protonically disconnected from the bulk aqueous phase.  相似文献   

9.
1. The results of non-linear optimization studies on the mechanism of reaction of fully reduced cytochrome oxidase with O2 at 176K are presented. The analysis is carried out on data obtained by means of dual-wavelength multi-channel spectroscopy at three wavelength pairs (604-630, 608-630 and 830-940 nm) and at three O2 concentrations (60, 200 and 1180 micron). The only model that satisfies the triple requirement of a standard deviation within the standard error of the experimental data, good determination of the optimized parameters and a random distribution of residuals is a three-species sequential mechanism. 2. On the basis of the optimized values of the relative absorption coefficients of the intermediates at each wavelength obtained from the present paper together with data from low-temperature trapping, e.p.r. and magnetic-susceptibility studies, the possible valence states of the metal centres in each of the intermediates are discussed.  相似文献   

10.
Oxidised cytochrome c oxidase is known to react with two molecules of hydrogen peroxide to form consecutively 607 nm 'Peroxy' and 580-nm 'Ferryl' species. These are widely used as model compounds for the equivalent P and F intermediates of the catalytic cycle. However, kinetic analysis of the reaction with H(2)O(2) in the pH range 6.0-9.0 reveals a more complex situation. In particular, as the pH is lowered, a 580-nm compound can be formed by reaction with a single H(2)O(2). This species, termed F(&z.rad;), is spectrally similar, but not identical, to F. The reactions are equivalent to those previously reported for the bo type quinol oxidase from Escherichia coli (T. Brittain, R.H. Little, C. Greenwood, N.J. Watmough, FEBS Lett. 399 (1996) 21-25) where it was proposed that F(&z.rad;) is produced directly from P. However, in the bovine oxidase F(&z.rad;) does not appear in samples of the 607-nm form, P(M), produced by CO/O(2) treatment, even at low pH, although this form is shown to be identical to the H(2)O(2)-derived P state, P(H), on the basis of spectral characteristics and kinetics of reaction with H(2)O(2). Furthermore, lowering the pH of a sample of P(M) or P(H) generated at high pH results in F(&z.rad;) formation only on a minutes time scale. It is concluded that P and F(&z.rad;) are not in a rapid, pH-dependent equilibrium, but instead are formed by distinct pathways and cannot interconvert in a simple manner, and that the crucial difference between them lies in their patterns of protonation.  相似文献   

11.
F MacMillan  A Kannt  J Behr  T Prisner  H Michel 《Biochemistry》1999,38(29):9179-9184
Cytochrome c oxidase (COX) catalyzes the reduction of oxygen to water, a process which is accompanied by the pumping of four protons across the membrane. Elucidation of the structures of intermediates in these processes is crucial for understanding the mechanism of oxygen reduction. In the work presented here, the reaction of H(2)O(2) with the fully oxidized protein at pH 6.0 has been investigated with electron paramagnetic resonance (EPR) spectroscopy. The results reveal an EPR signal with partially resolved hyperfine structure typical of an organic radical. The yield of this radical based on comparison with other paramagnetic centers in COX was approximately 20%. Recent crystallographic data have shown that one of the Cu(B) ligands, His 276 (in the bacterial case), is cross-linked to Tyr 280 and that this cross-linked tyrosine is ideally positioned to participate in dioxygen activation. Here selectively deuterated tyrosine has been incorporated into the protein, and a drastic change in the line shape of the EPR signal observed above has been detected. This would suggest that the observed EPR signal does indeed arise from a tyrosine radical species. It would seem also quite possible that this radical is an intermediate in the mechanism of oxygen reduction.  相似文献   

12.
Yang X  Ma K 《Analytical biochemistry》2005,344(1):130-134
Hydrogen peroxide can be conveniently determined using horseradish peroxidase (HRP) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid). However, interference occurs among assay components in the presence of reduced nicotinamide adenine dinucleotide (NADH) that is also a substrate of NADH oxidase. So, depletion of NADH is required before using the HRP method. Here, we report simple and rapid procedures to accurately determine hydrogen peroxide generated by NADH oxidase. All procedures developed were based on the extreme acid lability of NADH and the stability of hydrogen peroxide, because NADH was decomposed at pH 2.0 or 3.0 for 10 min, while hydrogen peroxide was stable at pH 2.0 or 3.0 for at least 60 min. Acidification and neutralization were carried out by adjusting sample containing NADH up to 30 microM to pH 2.0 for 10 min before neutralizing it back to pH 7.0. Then, hydrogen peroxide in the sample was measured using the HRP method and its determination limit was found to be about 0.3 microM. Alternatively, hydrogen peroxide in samples containing NADH up to 100 microM could be quantitated using a modified HRP method that required an acidification step only, which was found to have a determination limit of about 3 microM hydrogen peroxide in original samples.  相似文献   

13.
The reaction of H2O2 with reduced cytochrome c oxidase was investigated with rapid-scan/stopped-flow techniques. The results show that the oxidation rate of cytochrome a3 was dependent upon the peroxide concentration (k = 2 X 10(4) M-1 X s-1). Cytochrome a and CuA were oxidised with a maximal rate of approx. 20 s-1, indicating that the rate of internal electron transfer was much slower with H2O2 as the electron acceptor than with O2 (k greater than or equal to 700 s-1). Although other explanations are possible, this result strongly suggests that in the catalytic cycle with oxygen as a substrate the internal electron-transfer rate is enhanced by the formation of a peroxo-intermediate at the cytochrome a3-CuB site. It is shown that H2O2 took up two electrons per molecule. The reaction of H2O2 with oxidised cytochrome c oxidase was also studied. It is shown that pulsed oxidase readily reacted with H2O2 (k approximately 700 M-1 X s-1). Peroxide binding is followed by an H2O2-independent conformational change (k = 0.9 s-1). Resting oxidase partially bound H2O2 with a rate similar to that of pulsed oxidase; after H2O2 binding the resting enzyme was converted into the pulsed conformation in a peroxide-independent step (k = 0.2 s-1). Within 5 min, 55% of the resting enzyme reacted in a slower process. We conclude from the results that oxygenated cytochrome c oxidase probably is an enzyme-peroxide complex.  相似文献   

14.
1. The results of non-linear optimization studies on the mechanism of reaction of solid-state fully reduced membrane-bound cytochrome oxidase with CO over the 178--203 K range are presented. The analysis is carried out on data obtained by dual-wavelength multichannel spectroscopy at three wavelength pairs (444--463 nm, 590--630 nm and 608--630 nm), which yield three distinct progress curves. The only model that satisfies the triple requirement of a standard deviation within the standard error of the data, a random distribution of residuals and good determination of the optimized parameters is a two-species sequential mechanism: flash photolysis yields unliganded cytochrome oxidase and free CO, which then recombine to form species Ic; Ic is then converted into species IIc, which is identical with the cytochrome oxidase-CO complex existing before flash photolysis. All the thermodynamic parameters describing this model are calculated. 2. On the basis of the data obtained from this paper, together with data from potentiometric studies, magnetic susceptibility measurements and i.r. spectroscopy, the chemical identity of the species is suggested.  相似文献   

15.
The reaction of cytochrome-c-oxidase with O2 has been reinvestigated at 2 degrees C by a flow laser pulsed method. The experiments indicate that a new spectral intermediate, populated with a rate constant of approximately 5000/s, is observed in a wavelength range in which heme a is the only chromophore (445 and 430 nm). The results are interpreted with reference to previous data obtained in the near infrared region, and it is suggested that breakage of the (enzyme bound) dioxygen bond is associated to a spectral perturbation of the cytochrome a3-CuB binuclear center.  相似文献   

16.
The reaction of fully reduced and mixed-valence cytochrome oxidase with O2 has been followed in flow-flash experiments, starting from the CO complexes, at 428, 445, 605 and 830 nm between pH 5.8b and 9.0 in the temperature range of 2-40 degrees C. With the fully reduced enzyme, four kinetic phase with rate constants at pH 7.4 and 25 degrees C of 9 x 10(4), 2.5 x 10(4), 1.0 x 10(4) and 800 s(-1), respectively, are observed. The rates of the three last phases display a very small temperature dependence, corresponding to activation energies in the range 13-54 kJ x mol(-1). The rates of the third and fourth phases decrease at high pH due to the deprotonation of groups with pKa values of 8.3 and 8.8, respectively, but also the second phase appears to have a small pH dependence. In the reaction of the mixed-valence enzyme, three kinetic phases with rate constants at pH 7.4 and 25 degrees C of 9 x 10(4), 6000 and 150 s(-1), respectively, are observed. The third phase only has a small temperature dependence, corresponding to an activation energy of 20 kJ x mol(-1). No pH dependence could be detected for any phase. Reaction schemes consistent with the experimental observations are presented. The pH dependencies of the rates of the two final phase in the reaction of the fully reduced enzyme are proposed to be related to the involvement of protons in the reduction of a peroxide intermediate. The temperature dependence data suggest that the reorganization energies and driving forces are closely matched in all electron transfer steps with both enzyme forms. It is suggested that the slowest step in the reaction of the mixed-valence enzyme is a conformation change involved in the reaction cycle of cytochrome oxidase as a proton pump.  相似文献   

17.
L C Weng  G M Baker 《Biochemistry》1991,30(23):5727-5733
The hydrogen peroxide binding reaction has been examined with alkaline-purified resting enzyme in order to avoid mixtures of low pH induced fast and slow conformers. At pH 8.8-9.0 (20 degrees C), the reactivity of resting enzyme was similar to the peroxide-free, pulsed conformer that has been characterized by other investigators. The reaction showed single-phase reactivity at 435 and 655 nm and required a minimum 8:1 molar excess of peroxide (over cytochrome a3) for quantitative reaction. At 16:1, the Soret band was stable for 1.0-1.5 h, but above 80:1, the band began showing generalized attenuation within 1-2 min. The peroxide binding reaction was also associated with an increase in absorbance at 606 nm which correlated with the rate of change at 435 and 655 nm. The observed rate constants at each of these wavelengths showed similar linear dependence on peroxide concentration, giving an average bimolecular rate constant of 391 M-1.s-1 and a Kd of 5.1 microM. The rise phase at 606 nm was observed to saturate at an 8:1 molar excess of peroxide but showed a slow, concentration-dependent first-order decay that gave a bimolecular rate constant and Kd of 38 M-1.s-1 and 20 microM, respectively. The decay was not associated with a change in the Soret absorption or charge-transfer regions, suggesting a type of spectral decoupling. An isosbestic point at 588 nm was consistent with the 606- to 580-nm conversion proposed by other investigators, although direct observation of a new band at 580 nm was difficult.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A study is presented on proton transfer associated with the reaction of the fully reduced, purified bovine heart cytochrome c oxidase with molecular oxygen or ferricyanide. The proton consumption associated with aerobic oxidation of the four metal centers changed significantly with pH going from approximately 3.0 H(+)/COX at pH 6.2-6.3 to approximately 1.2 H(+)/COX at pH 8.0-8.5. Rereduction of the metal centers was associated with further proton uptake which increased with pH from approximately 1.0 H(+)/COX at pH 6.2-6.3 to approximately 2.8 H(+)/COX at pH 8.0-8.5. Anaerobic oxidation of the four metal centers by ferricyanide resulted in the net release of 1.3-1.6 H(+)/COX in the pH range 6.2-8.2, which were taken up by the enzyme on rereduction of the metal centers. The proton transfer elicited by ferricyanide represents the net result of deprotonation/protonation reactions linked to anaerobic oxidoreduction of the metal centers. Correction for the ferricyanide-induced pH changes of the proton uptake observed in the oxidation and rereduction phase of the reaction of the reduced oxidase with oxygen gave a measure of the proton consumption in the reduction of O(2) to 2H(2)O. The results show that the expected stoichiometric proton consumption of 4H(+) in the reduction of O(2) to 2H(2)O is differently associated, depending on the actual pH, with the oxidation and reduction phase of COX. Two H(+)/COX are initially taken up in the reduction of O(2) to two OH(-) groups bound to the binuclear Fe a(3)-Cu(B) center. At acidic pHs the third and fourth protons are also taken up in the oxidative phase with formation of 2H(2)O. At alkaline pHs the third and fourth protons are taken up with formation of 2H(2)O only upon rereduction of COX.  相似文献   

19.
The reaction of a reduced cytochrome oxidase system consisting of beef heart cytochrome oxidase, cytochrome c, and ascorbate with molecular oxygen was kinetically and thermodynamically investigated using a stopped-flow, rapid wavelength-scanning technique. Processes for oxidation of ferrocytochrome a, bound ferrocytochrome c, and free ferrocytochrome c have been identified, and their rate constants have been determined. Values of the activation energy for these reactions indicate that the oxidation of bound ferrocytochrome c is a simple chemical electron-transfer process and that oxidations of ferrocytochrome a and free ferrocytochrome c are complex processes involving changes in protein conformation.  相似文献   

20.
The oxygen reaction of Nitrosomonas europaea cytochrome c oxidase containing either 2Cu or 1Cu per two heme a molecules was investigated by the flow-flash technique at 20 degrees C. The reaction profiles of the bacterial enzyme were essentially the same as those of bovine heart cytochrome c oxidase, although the rate of the primary oxygen compound formation was much slower. The 1Cu enzyme exhibited higher rates for both primary oxygen compound formation and intramolecular electron transfer than the 2Cu enzyme. This result clearly indicates that CuA is not essential functionally for the oxidation of ferrous heme a moieties, and suggests its structural importance in maintaining the molecular integrity of N. europaea cytochrome oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号