首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pretreatment of mice with rabbit anti-asialo GM1 removes both natural killer (NK) effector cells and NK cells responsive to interleukin 2 (IL-2). Spleen cells from these mice do possess normal lymphokine-activated killer (LAK) activity. Young mice (less than 3 weeks of age) do not have NK activity and do not possess IL-2-inducible NK effector cells. Similarly to anti-asialo GM1-treated mice, LAK cells can be generated from these mice. While these experiments indicate clear distinctions between a certain level of NK and LAK precursors, the distinctions are not as clear when analyzing mice congenitally deficient in NK cells. Beige mice which lack NK effector cells and IL-2-inducible NK cells also lack the ability to generate LAK cells. The relationships and differences between NK- and LAK-cell precursors and effectors are discussed.  相似文献   

2.
Summary We have compared the ability of natural killer (NK) cells from two substrains of C3H mice that differ with respect to their susceptibility to the development of mammary adenocarcinomas to lyse fresh syngeneic mammary tumor cells. Single cell suspensions of mammary tumors from retired breeder females were used as targets in 22-h 51Cr-release cytotoxicity assays with syngeneic NK cells. Tumor cell suspensions were prepared by enzymatic digestion of finely minced tissue followed by centrifugation through a discontinuous Percoll gradient. Effector cells were prepared by passing spleen cells over nylon wool followed by centrifugation through Percoll fraction 7. Syngeneic NK cells had significant levels of lysis against 5/8 tumors studied. NK cells from low risk animals (C3Heb/FeJ) consistently demonstrated greater cytotoxicity against tumor cell preparations than did effectors from the high tumor substrain (C3H/OuJ). Study of cytocentrifuge preparations stained with Wright-Giemsa revealed that the two substrains were identical with respect to the number of azurophilic granules present in the cytoplasm of their NK cells. We have also shown that lymphokine-activated killer (LAK) cells can be generated from splenocytes in C3H mice. While LAK cells from both substrains were capable of lysing fresh syngeneic mammary tumor cells in vitro, LAK cells from the animals at high risk for the formation of mammary adenocarcinomas had greater cytotoxicity against tumor cell suspensions than LAK cells from the low tumor substrain.  相似文献   

3.
Neither lytic NK cells nor IL-2-responsive NK precursors were produced in myeloid (Dexter) long-term bone marrow cultures (LTBMC). However, when myeloid LTBMC were switched to lymphoid (Whitlock-Witte) conditions and reseeded ("recharged") with fresh bone marrow cells (BMC), nonadherent cells with NK lytic activity and NK 1.1+ phenotype were produced within 1-2 weeks without the addition of exogenous IL-2 to the cultures. NK- and T cell-depleted BMC proliferated extensively in switched cultures and in 2 weeks generated cells that lysed the NK target YAC-1 but not the LAK target P815. The presence of NK precursors in the cultures was confirmed by reculturing nonadherent cells harvested from recharged LTBMC in fresh medium containing 50 U rIL-2/ml. High levels of NK lytic activity were generated. Sequential expression of NK 1.1 and IL-2 responsiveness followed by lytic activity was demonstrated by harvesting cells early after recharge, prior to the appearance of lytic cells. Elimination of NK 1.1+ cells depleted the ability to respond to IL-2 in secondary culture. Our studies demonstrate that myeloid-to-lymphoid switched LTBMC support the proliferation and differentiation of NK lineage cells from their NK 1.1-, nonlytic progenitors in the absence of an exogenous source of growth factors.  相似文献   

4.
The lineage of lymphokine-activated killer (LAK) cells is poorly understood. To examine the relationship between LAK and natural killer (NK) cells we utilized two congenitally immunodeficient mice, namely severe combined immunodeficient (scid) and athymic (nude) mice that lack T cells but have normal NK cells. LAK activity was evaluated by the ability to lyze NK-resistant P815 cells. When cultured with human recombinant interleukin 2, splenocytes of scid and nude mice could generate LAK activity at levels comparable to or more than those of normal C.B-17 mice. LAK effector cells in these immunodeficient mice as well as normal mice had the phenotype resembling that of NK cells with asialo-GM1 (aGM1) expression. In vivo treatment with anti-aGM1 antiserum completely abolished the induction of LAK activity from splenocytes of normal mice. In contrast, LAK activity in splenocytes of scid and nude mice was still demonstrable even after this treatment, indicating that most LAK precursors in both mice were cells without aGM1 antigen. The aGM1- progenitors for LAK activity, probably in common with NK progenitors, appeared to be more expanded in scid and nude mice than in normal mice. The use of such congenitally immunodeficient mice should be helpful in studying the differentiation step of LAK as well as NK cells from their precursors.  相似文献   

5.
The in vitro incubation of lymphoid cells in RIL 2 results in the generation of LAK cells that are broadly lytic to autologous, syngeneic, and allogeneic fresh tumor cells, but which do not lyse fresh, normal cells. Strains of mice with congenital immunodeficiencies were tested both for the presence of NK cells and for their capacity to generate LAK cells after in vitro incubation with IL 2. Splenocytes obtained from two immunodeficient mouse strains (NIH-Beige-Nude and NIH-Beige-Nude-XID) failed to generate LAK cells, but displayed significant activity. Splenocytes from another immunodeficient mouse strain (NIH-Beige-XID) generated LAK cells but did not display NK cell activity. This dissociation of activation of LAK cells from NK cells among the immunodeficient strains indicates that the LAK and NK cell lytic systems are distinct.  相似文献   

6.
Lymphokine-activated killer cells (LAK) were originally distinguished from natural killers (NK) and cytotoxic T lymphocytes. Recently, however, IL 2-activated NK cells were suggested as the major source of LAK reactivity in human peripheral blood (PBL). Because certain T cell acute lymphoblastic leukemia (T-ALL) cells are phenotypically similar to LAK precursors, we have asked whether these leukemic cells can be induced toward LAK-cytotoxicity and express NK reactivity before stimulation. Five out of seven T-ALL preparations were induced by IL 2 to kill target cells. The cytotoxicity of the leukemic-LAK cells resembled that of normal LAK effectors as they lysed efficiently the NK-resistant target Daudi, as well as fresh human sarcoma, carcinoma, and renal cancer cells but not normal PBL. The ALL-LAK precursors phenotype was T3-, T4-, T8-, and T11+, similar to most normal LAK precursors. In contrast to normal PBL that generated LAK effectors when their proliferation was inhibited, the irradiated, nonproliferating T-ALL leukemic cells did not respond to IL 2. Therefore, the T-ALL LAK cytotoxicity was attributed to the leukemic cells rather than to residual normal lymphocytes. The IL 2-responding T-ALL cells did not express autonomous NK type cytotoxicity, suggesting that they reflect LAK precursors of non-NK origin. The homogeneous leukemic preparations with inducible LAK cytotoxicity described herein provide a model system for studying normal LAK cells.  相似文献   

7.
NK cells are the primary effectors mediating acute rejection of incompatible bone marrow cell grafts. To reduce rejection, we evaluated the ability of chloroquine (CHQ) to prevent perforin-dependent NK cell activity. Perforin is a key cytotoxic component released from the lytic granules of activated NK cells. Generation of functional perforin requires an acidic protease activity that occurs in the secretory, lytic lysosomes. Our hypothesis was that CHQ, a lysosomotropic reagent, would raise the pH of the acidic compartment in which perforin is processed and thereby block perforin maturation and cytotoxicity. We have measured NK cytotoxicity in vivo by clearance of YAC-1 tumor cells from the lungs and by rejection of incompatible bone marrow transplants and in vitro by cytolysis of YAC-1 and Jurkat cells. The engraftment of bone marrow cells was monitored by recolonization of the spleen with hemopoietic cells from transplants of MHC class I-deficient bone marrow cells into lethally irradiated recipient mice. Transplant rejection was compared in two inbred strains of mice: 129, which apparently use perforin-dependent cytotoxicity, and C57BL/6, in which rejection can be perforin-independent. CHQ treatment reduced NK cell activity in 129 mice in which perforin is important for mediating rejection. CHQ affected the fraction of NK cell cytolysis that was Fas independent. In addition, we found that CHQ prevents perforin processing by LAK cells in vitro. These data indicate that CHQ may impair rejection of incompatible bone marrow transplants and other functions mediated by NK and cytotoxic T cells.  相似文献   

8.
We have examined the effect of the intradermal administration of IL-2 on the generation of natural killer (NK) cell and lymphokine-activated killer (LAK) cell activity. Peripheral blood mononuclear cells (PBMC) obtained from borderline lepromatous (BL) and lepromatous leprosy (LL) patients and normal volunteers prior to and after IL-2 injection were stimulated in vitro with IL-2 and their cytolytic activities compared against 51Cr labeled target K562 cells, Daudi cells, and monocytes. Before IL-2 administration, PBMC obtained from BL/LL patients and normal volunteers possessed similar levels of NK cell activity indicating that the NK cell activity of the BL/LL patients was intact. LAK cell activity was induced with IL-2 in vitro in both BL/LL patients and in normal volunteers. The level of LAK cell activity in BL/LL patients was, however, suboptimal. A single intradermal dose of 25 micrograms IL-2 had no effect on the phenotype of circulating mononuclear cells in either patients or normal volunteers. However, 6-12 days after IL-2 injection and subsequent restimulation of the PBMC with IL-2 in vitro, cytolytic activity of LAK cells obtained from the BL/LL patients was enhanced while cells from normal volunteers expressed the same high levels of activity as observed before IL-2 injection.  相似文献   

9.
Lymphokine-activated killer (LAK) cells generated by cultivation of C57BL/6 mouse spleen cells in the presence of recombinant interleukin-2 were transferred into natural killer (NK) cell-deficient suckling mouse recipients. These mice were then challenged with either murine cytomegalovirus (MCMV) or lymphocytic choriomeningitis (LCMV) and sacrificed 3 days later. No interleukin 2 infusions were given. Mice receiving as few as 5 x 10(5) LAK cells had several 100-fold decreases in spleen MCMV titers as compared with untreated mice. This treatment had no effect on spleen LCMV titers. The LAK cell cultures contained 10 to 17% NK 1.1+, 50 to 55% Lyt-2+, and 33 to 50% immunoglobulin D+ cells. Double fluorescence labeling and in vitro cytotoxicity assays with fluorescence-activated cell sorting revealed at least two mutually exclusive killer cell populations. NK 1.1+ LAK cells resembled freshly isolated activated NK cells with regard to target cell range (YAC-1 cell killing greater than L-929, P815, and EL-4 cell killing), large granular lymphocyte (LGL) morphology, and decreased ability to lyse interferon (IFN)-treated target cells. Lyt-2+ LAK cells lysed the targets mentioned above but at lower levels and without the differences in susceptibility mentioned above. These Lyt-2+ LAK cells also had a decreased ability to lyse IFN-treated targets, in contrast to classic cytotoxic T lymphocytes, which lyse IFN-treated targets far more efficiently than untreated targets. Purified populations of LAK cells obtained by fluorescence-activated cell sorting were used in the antiviral protection model. The results showed that protection against MCMV could be mediated by NK 1.1+, NK 1.1-, Lyt-2+, Lyt-2-, and IgD- populations but not by IgD+ cells. The five protective populations all had in common the LGL phenotype and cytotoxic activity in vitro. The IgD+ population did not contain LGLs, lyse target cells in vitro, or mediate an antiviral effect in vivo. These results suggest that LAK cells may be therapeutically useful against certain virus infections (MCMV) but not others (LCMV) and that despite their heterogeneity in antigenic phenotype and cytotoxic activity, their pattern of antiviral activity in vivo resembles that of NK cells, which protect against MCMV but not LCMV.  相似文献   

10.
We investigated the manner in which rIL-2 induced effectors in vitro (LAK cells), which, like NK cells, lyse targets nonspecifically and discriminate nonself, and how H-2 as the self-marker affects the LAK cell killing mechanism. NK cells showed an appreciably higher killing activity to B16 melanoma H-2- cells than to H-2+ cells. In contrast, LAK cells lysed more efficiently to H-2+ cells. The in vivo experiments showed that the NK cells prevented pulmonary metastasis of B16 H-2- cells in the normal syngeneic host, whereas the transferred LAK cells had a preferential inhibitory effect on the pulmonary metastasis of B16 H-2+ cells in the immunodeficient syngeneic hosts. Taken together, these results show that the H-2-encoded or H-2-associated molecules contribute to the triggering signal in the lysis by LAK cells, whereas the NK cells recognize the reduced self H-2 expression on the targets, thereby contributing to a trigger of the lysis.  相似文献   

11.
Infection of susceptible mice (SJL) with Theiler's murine encephalitis virus (TMEV) causes a biphasic disease characterized by gray matter inflammation followed by late chronic demyelination. The role of NK cells was studied in this model by using susceptible (SJL) or resistant (C57BL/10) mice. CNS TMEV titer were higher in SJL compared with C57BL/10 mice, correlating with a 50% lower NK cell activity in the SJL than in the C57BL/10 mice. When resistant (C57BL/10) mice were depleted of NK cells using either mAb NK1.1 or polyclonal anti-asialo-GM1, TMEV induced the development of diffuse encephalitis and meningitis early in the postinfection period (days 6 to 11). However, the second phase of TMEV-induced CNS disease (demyelination) was observed only in resistant C57BL/10 mice treated with anti-asialo-GM1. Experiments with beige/beige mice of C57BL/10 background showed a mild degree of gray matter inflammation but no demyelination. In conclusion, NK cells are critical effectors in protecting against TMEV-induced gray matter disease, whereas a different population of either NK1.1- NK cells, or other activated lymphocytes may be critical in resistance/susceptibility to demyelination.  相似文献   

12.
MHC class I molecules protect normal and transformed cells from lysis by natural killer (NK) cells through recognition of receptors expressed on leucocytes. Defects in NK cell activity and lymphokine activated killer (LAK) cell generation have been previously demonstrated in patients with renal cell carcinoma (RCC). However, to date, the importance of NK receptor/MHC class I interactions for immune evasion by RCC cells has not been described. In this study, human RCC cell lines (HTB46, HTB47, ACHN, CRL 1933 and HTB44) were found to be susceptible to lysis by both NK cells and interleukin-15 (IL-15)-derived LAK cells from normal donors in vitro. However, when NK cells were co-cultured with RCC cells their expression of the CD94 NK receptor molecule was significantly increased and their cytolytic activity against RCC targets was reduced. The cytolytic activity of NK cells was restored by the addition of IL-15, which further augmented the expression of CD94 on CD56+ NK cells. Disruption of NK receptor-MHC class I interactions by the addition of blocking antibodies to CD94 had no effect on the lysis of K562 or HTB47 targets by NK cells. However, the sensitivity of HTB46 cells to NK-mediated lysis was increased by blocking the CD94 receptor molecule, but only when the NK cells had not been previously co-cultured with RCC cells. This was independent of the presence of IL-15. These results show that RCC cells can inhibit NK activity via CD94 and suggest that disruption of interactions between receptor and ligand on RCC cells in vivo may augment the immune response against tumours by innate effector cells.  相似文献   

13.
A 4-h in vivo cytotoxicity assay was used to study the fate of implanted IL-2-generated, lymphokine-activated killer (LAK) cells in mice undergoing an activated NK cell response. 125Iododeoxyuridine-labeled LAK cells were rejected from selected organs of C57BL/6 mice infected with lymphocytic choriomeningitis virus or treated with IL-2 or the IFN inducer poly I:C. This rejection was abrogated by the selective depletion of NK cells with antibodies to asialo-GM1 and NK1.1 Ag. Similar results were noted when LAK cells were generated from the spleens of B and T cell-deficient severe combined immunodeficiency mice and when LAK cells were implanted into severe combined immunodeficiency mice. These data indicate that NK cells activated by virus infections or by IL-2 infusions directly or indirectly eliminate implanted LAK cells. Because LAK cells are used in the treatment of certain human cancers, the strategy of accompanying this therapy with IL-2 infusions should be reassessed in light of these results.  相似文献   

14.
Normal murine splenocytes cultured with IL2 for 6, but not 3, days contained an NK1.1+, CD3+ lytically active subset. These lymphocytes were not derived from NK1.1+ precursors since NK1.1+ cells, purified by flow cytometry, failed to express CD3, as determined by the 145-2C11 mAb, on their surface even after culture with IL2 for 6 days. Instead, the precursors of the NK1.1+, CD3+ effectors were contained in a B cell-depleted CD4-, CD8-, NK1.1- splenic subset. Freshly obtained CD4-, CD8-, NK1.1- splenocytes were mostly CD3+, CD5+, B220-, had no spontaneous lytic activity against YAC-1, and were unable to mediate anti-CD3 directed lysis against FcR-bearing target cells. Culture of the CD4-, CD8-, NK1.1- splenocytes with IL2, for 6 days, resulted in the development of NK1.1+, CD3+, B220+ effectors 40% of which were CD5dim and 20-25% of which expressed TCR-V beta 8 as determined by the F23.1 mAb. The acquisition of NK1.1, B220, and lytic activity by this triple-negative subset was readily inhibited by cyclosporine A (CSA). On the other hand, CSA had no effect on the acquisition of B220 or lytic activity by NK1.1+ precursors obtained by flow cytometry sorting. Moreover, all of the NK1.1+ cells generated by IL2 culture of splenocytes obtained from mice depleted of NK1.1+ lymphocytes (by in vivo injection of anti-NK1.1 mAb) coexpressed CD3 on their surface and were thus distinct from classical NK cells. These findings demonstrate that splenic NK cells do not express or acquire CD3; that the NK1.1+, CD3+ LAK effectors are derived from an NK1.1- precursor; and that CSA is exquisitely selective in its inhibitory effect on LAK generation.  相似文献   

15.
Following previous work showing that electrothermocoagulation of the median region of the hypothalamus (MH) caused a marked and permanent decrease in the cytotoxicity of natural killer (NK) cells and in the number of large granular lymphocytes, a study was made of the effect of such lesions on the generation of NK cells in the bone marrow (BM) and spleen of C57BL/6 mice. Fresh spleen and BM cells from MH-lesioned and sham-operated mice were cultured with 40 U of recombinant interleukin-2 (rIL-2). NK activity was significantly higher in BM of lesioned mice, whereas spleen NK activity was greater in the sham-operated controls. NK cells matured by culture with rIL-2 were characterized by assay with fluorescent monoclonal antibodies and found to display the typical NK phenotype. These results show that the number of NK precursors is greater in BM of MH-lesioned mice and that their migration into other organs is probably partially impeded. It can also be concluded that intactness of both BM and the hypothalamus is essential for the physiological generation of NK cells.  相似文献   

16.
The innate immune response against replication-defective adenoviruses (Ad) is poorly defined. We and others have previously observed striking differences in the rate at which the Ad vector itself or the virus encoding a variety of transgenes is eliminated in different mouse strains. Here, we report that Ad infection of BALB/ mice is associated with sixfold-higher levels of serum alanine aminotransferase and that Ad transgenes induce two- to threefold-higher levels of intrahepatic NK cells and NK activity compared to C57BL/6 mice. The increase in NK activation in BALB/c mice was associated with approximately 4-fold higher level of mRNA expression of a newly described NKG2 receptor activator, H-60, as well as increased expression of interleukin-12 and gamma interferon mRNAs in BALB/c mice compared to C57BL/6 mice. NK depletion in BALB/c mice or defective NK function in C3H beige mice extended transgene expression compared to their appropriate controls, and attenuation of NK together with CD8 T-cell function had a synergistic effect. These findings indicate that there are intrinsic differences in the innate immune responses of different mouse strains to Ad and Ad transgenes and that NK cells, in cooperation with CD8 T cells, play a pivotal role in the early extinction of transgene expression in BALB/c mice.  相似文献   

17.
Ly49D is a natural killer (NK) cell activation receptor that is responsible for differential mouse inbred strain-determined lysis of Chinese hamster ovary (CHO) cells. Whereas C57BL/6 NK cells kill CHO, BALB/c-derived NK cells cannot kill because they lack expression of Ly49D. Furthermore, the expression of Ly49D, as detected by monoclonal antibody 4E4, correlates well with CHO lysis by NK cells from different inbred strains. However, one discordant mouse strain was identified; C57L NK cells express the mAb 4E4 epitope but fail to lyse CHO cells. Herein we describe a Ly49 molecule isolated from C57L mice that is recognized by mAb 4E4 (anti-Ly49D). Interestingly, this molecule shares extensive similarity to Ly49D(B6) in its extracellular domain, but its cytoplasmic and transmembrane domains are identical to the inhibitory receptor Ly49A(B6), including a cytoplasmic ITIM. This molecule bears substantial overall homology to the previously cloned Ly49O molecule from 129 mice the serologic reactivity and function of which were undefined. Cytotoxicity experiments revealed that 4E4(+) LAK cells from C57L mice failed to lyse CHO cells and inhibited NK cell function in redirected inhibition assays. MHC class I tetramer staining revealed that the Ly49O(C57L)-bound H-2D(d) and lysis by 4E4(+) C57L LAK cells is inhibited by target H-2D(d). The structural basis for ligand binding was also examined in the context of the recent crystallization of a Ly49A-H-2D(d) complex. Therefore, this apparently "chimeric" Ly49 molecule serologically resembles an NK cell activation receptor but functions as an inhibitory receptor.  相似文献   

18.
Lipopolysaccharide (LPS) from Salmonella typhosa was injected into C57B1/6 mice and the effect on bone marrow (BM) natural suppressor (NS) cell activity was examined. It was shown that injection of LPS, as low as 0.01 microgram/g body weight, could enhance BM NS activity. The enhanced activity was apparent 24 hr postinjection, and returned to normal by Day 5. It was necessary to show that the enhanced suppression displayed characteristics of NS cells. The suppressor cell is Thy negative and can be found in low density Percoll fractions. Suppression was dependent upon interferon-gamma and could be augmented by lymphokines that were contained in the supernatant of TH2 helper cell. The data suggest that BM NS activity may be influenced in vivo during gram-negative sepsis.  相似文献   

19.
本实验将IL-2/LAK应用于荷瘤鼠,对荷瘤机体的细胞免疫功能(鼠脾NK细胞活性、鼠脾IL-2产生能力及腹腔巨噬细胞吞噬功能)进行动态观察。结果证实:IL-2/LAK能在一定程度上改善荷瘤机体的细胞免疫功能,并能够有一定程度的阻抑荷瘤机体的细胞免疫功能降低。同时探讨了IL-2/LAK在肿瘤治疗中,提高细胞功能的机理。  相似文献   

20.
Multiple intraperitoneal injections of inactivated Candida albicans cells resulted in the generation of cytotoxic peritoneal cells with phenotypical and functional properties similar to in vitro-generated lymphokine-activated killer (LAK) cells. Using an in vitro [3H]glucose uptake assay, C. albicans-induced LAK-like (CA-LAK) cells exhibited high levels of anti-hyphal activity, the effects being effector to target cell (E:T) ratio- and time-dependent. Maximal levels of anti-C. albicans activity (approximately 60%) were observed after 4 h and at E:T greater than or equal to 300:1. Similar patterns of anti-C. albicans activity were exerted by in vivo-activated natural killer (NK) cells, in vitro interleukin-2- (IL-2) generated LAK cells and polymorphonuclear cells. The anti-hyphal activity of CA-LAK cells was enriched by separation on a Percoll gradient, F2 and F3 fractions retaining most of the activity. Experiments using immunodepressed animals demonstrated that the in vivo lethality of the C. albicans hyphal form is significantly affected by in vitro pre-exposure to CA-LAK cells. While control mice receiving C. albicans alone had a median survival time of 2 d, mice receiving C. albicans pre-exposed to CA-LAK cells (E:T = 300:1) had a median survival time of 15 d. Overall, the susceptibility of the C. albicans hyphal form to CA-LAK cells suggests that C. albicans-induced effectors might play a significant role as a second-line defence mechanism against the C. albicans hyphal form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号