首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Stratospheric ozone loss in mid-latitudes is expected to increase the ultraviolet-B (UVB) radiation at the earth's surface. Impacts of this expected increase will depend on many factors, including the distribution of light in other wavelengths. Measurements of the photosynthetically active radiation (PAR) and UVB irradiance were made under clear skies at an open field and under the canopy of scattered trees in a suburban area in W. Lafayette, Indiana, USA (latitude 40.5°). Results showed that when there was significant sky view, the UVB penetration into sub-canopy spaces differs greatly from that of PAR. The UVBT canopy (transmittance; irradiance below canopy/irradiance in open) was inversely related to sky view. The UVB irradiance did not vary as greatly between shaded and sunlit areas as did PAR. Analysis of measurements made near a brick wall indicated that the leaf area of a canopy and the brick wall primarily acted to block fractions of the sky radiance and contributed little scattered UVB to the horizontal plant. A model was developed to predict the UVB and PART canopy based on diffuse fraction, sky view, and porosity of the crown(s) through which the beam is penetrating. The model accounted for the UVB and PART canopy to within 0.13 and 0.05 root mean squared error (RMSE), respectively. Analysis of the errors due to model assumptions indicated that care must be taken in describing the sky radiance distribution, the porosity of trees, the penetration of diffuse radiation through porous trees, and the location of sky-obstructing trees and buildings.  相似文献   

2.
Long-term records of solar UV radiation reaching the Earth’s surface are scarce. Radiative transfer calculations and statistical models are two options used to reconstruct decadal changes in solar UV radiation from long-term records of measured atmospheric parameters that contain information on the effect of clouds, atmospheric aerosols and ground albedo on UV radiation. Based on earlier studies, where the long-term variation of daily solar UV irradiation was derived from measured global and diffuse irradiation as well as atmospheric ozone by a non-linear regression method [Feister et al. (2002) Photochem Photobiol 76:281–293], we present another approach for the reconstruction of time series of solar UV radiation. An artificial neural network (ANN) was trained with measurements of solar UV irradiation taken at the Meteorological Observatory in Potsdam, Germany, as well as measured parameters with long-term records such as global and diffuse radiation, sunshine duration, horizontal visibility and column ozone. This study is focussed on the reconstruction of daily broad-band UV-B (280–315 nm), UV-A (315–400 nm) and erythemal UV irradiation (ER). Due to the rapid changes in cloudiness at mid-latitude sites, solar UV irradiance exhibits appreciable short-term variability. One of the main advantages of the statistical method is that it uses doses of highly variable input parameters calculated from individual spot measurements taken at short time intervals, which thus do represent the short-term variability of solar irradiance.  相似文献   

3.
利用LAI-2000植物冠层分析仪和ASD光谱仪,通过固定点拔节期冬小麦叶面积指数(LAI)观测实验和同步光谱辐亮度实验,测量了晴天条件下,固定点冬小麦从中午至傍晚24个不同时刻的LAI值及对应的辐亮度。继之分析了此段时间内测得的定点冬小麦LAI值分别与对应时刻可见光和近红外谱段的天空光辐亮度、总辐亮度和太阳直射辐亮度值之间的相关性。结果表明,无论波长小于490nm的谱段,还是波长大于490 nm的谱段,LAI与天空光辐亮度、总辐亮度和太阳直射辐亮度都呈负相关,相关系数(R2)高达0.8左右;尤其LAI与天空光辐亮度的负相关性最高,这种相关性随着波长的增大而减小。LAI与各谱段天空光辐亮度的相关性特征可为LAI-2000晴天观测的LAI值归一化修正处理提供一种新思路和技术途径,以消除太阳直射光的影响,从而解决LAI-2000只能在晴天观测的局限性,拓展LAI-2000在晴天观测条件下的适用性。  相似文献   

4.
Plants growing in exposed and sheltered habitats have characteristic leaf structure and physiology that are traditionally associated with the total amount of incident sunlight. However, greater sky exposure also increases the susceptibility of leaves to radiation frost. Plants with large horizontal broadleaves are particularly susceptible to both overheating during the day and freezing at night. Moreover, the combined effects of high daytime sun-exposure and nighttime frost susceptibility could be particularly stressful to plant tissues. The purpose of this study was to evaluate the influence of elevation and microsite exposure (i.e. net loss of longwave radiation) on frost susceptibility, as well as the corresponding intraspecific variation in leaf size in the subalpine daisy (Erigeron peregrinus). Measured decreases in upper hemisphere infrared radiation (sky IR) of 0.014 W m-2 m-1 occurred with increasing elevation, beyond decreases predicted due to changes in air temperature and water content, resulting in an average decrease of 0.029 W m-2 m-1. Previous equations of sky IR based on air temperature and humidity were improved by adding this elevational term (r 2 improved from 0.52 to 0.71). In contrast, a mean decrease of 6.5 W m-2 m-1 occurred with increasing sky exposure across a subalpine meadow. Leaf size in Taraxacum officinale decreased linearly with increasing elevation and a corresponding decline in sky IR. No difference in daily solar irradiance was measured across the same elevational gradient. Also, E. peregrinus had smaller leaves at high elevation microsites with greater sky exposure and decreased sky IR, while there was a much weaker association between leaf size and the amount of total daily solar irradiance. Differences in plant leaf structure and physiology traditionally associated with daytime sun-exposure may also be influenced by nighttime sky exposure and the susceptibility to radiation frosts.  相似文献   

5.
利用中国科学院长白山森林生态系统定位站的近地面气象观测数据,分析评价了目前被广泛使用的8个晴天与8个云天大气长波辐射参数化模型的模拟性能.结果表明: 晴天时Satterlund模型最适用,其偏差(BIAS)与均方根误差(RMSE)分别是-23.34和28.55 W·m-2;系数校正后,虽然其参数值变化不大,但其模拟效果有很大提高,BIAS与RMSE分别降低为-6.33和18.08 W·m-2;云天时Jacobs模型最准确,BIAS和RMSE只有0.38和29.29 W·m-2.对模型中大气发射率的敏感性分析表明,大气发射率对水汽压的变化最敏感,对温度的变化不敏感.应用优选模型(晴天和云天)得到的模拟值与观测值的日变化趋势基本一致,但在云量发生突变的节点上模拟效果不太理想.
  相似文献   

6.
T. OLESEN 《Austral ecology》1992,17(4):451-461
Abstract The photosynthetically active radiation (PAR) incident on a horizontal surface at an open mountain site is positively correlated with solar altitude for sunny, blue sky conditions. The proportion of red light in PAR decreases with increasing solar altitude, while that of blue increases. These results are consistent with the wavelength dependency of Rayleigh and Mie scattering. The ratio of near infrared radiation to PAR decreases with increasing solar altitude towards solar noon and with decreasing solar altitude towards sunset. Thus surface reflection seems to be an important part of the light climate. The relative transmission of daylight through a forest canopy to a horizontal surface is not correlated with solar altitude for sunny, blue sky conditions at a mountain site. The amount of diffuse daylight is negatively correlated with per cent canopy interception, and the amount of direct sunlight is negatively correlated with per cent solar track interception. Daylength is negatively correlated with both canopy and solar track interceptions. The proportion of red light in PAR increases with increasing solar altitude, while that of blue decreases. These results are opposite those for the open site and are due to the spatial patterns of canopy obstruction of the sky vault, and of the spectral quality of daylight across the sky. The ratio of near infrared radiation to PAR in shadelight increases with increasing canopy interception due to the selective scattering properties of the canopy. The ratio for shadelight is positively correlated with the ratio for sunflecks.  相似文献   

7.
The development of a unique statistical model for the estimation of the UV index for all sky conditions with solar zenith angles of 60° or less is reported. The model was developed based on available data from an integrated whole-sky automated sky camera and UV spectral irradiance measurement system that was collected every 5 min when the equipment was operational over a period of 1 year. The final model does not include terms directly associated with solar radiation, but rather employs terms, and interactions between these terms, including the parameters of sky cover, solar obstruction, and cloud brightness. The correlation between the estimations of the model and the measured values was 0.81. The developed model was evaluated on a data set spanning 5 months that had not been employed in the development of the model. The correlation for this new data set was 0.50, which increased to 0.65 for the cases when the clouds were considered to be a contributor to UV enhancement above that of a cloud-free day.  相似文献   

8.
Erythemal UV irradiance incident on a horizontal surface is not always the best way of estimating the real dose received by humans or animals. For this purpose knowledge of the irradiance incident on inclined planes is required. This study presents a physically accurate model for the calculation of erythemal UV on inclined planes. The influence of ground reflectivity and topography on erythemal UV on inclined planes is investigated as a function of solar zenith and azimuth angle. It is shown that including directional reflectivity does not substantially change the incident dose on inclined planes, the maximum deviation being 10%. The incident erythemal UV may, however, be much more influenced by the surrounding topography and by the direct/diffuse partitioning of the irradiance (which is a function of altitude). Maximum increases in erythemal UV of +57%, compared with the incident erythemal UV on a horizontal plane, were found when the sensor faced the sun with a mountain slope to the left and right of it and for very high altitudes.  相似文献   

9.
The volume of shade within vegetation canopies is reduced by more than an order of magnitude on cloudy and/or very hazy days compared to clear sunny days because of an increase in the diffuse fraction of the solar radiance. Here we show that vegetation is directly sensitive to changes in the diffuse fraction and we conclude that the productivity and structure of vegetation is strongly influenced by clouds and other atmospheric particles. We also propose that the unexpected decline in atmospheric [CO2] which was observed following the Mt. Pinatubo eruption was in part caused by increased vegetation uptake following an anomalous enhancement of the diffuse fraction by volcanic aerosols that would have reduced the volume of shade within vegetation canopies. These results have important implications for both understanding and modelling the productivity and structure of terrestrial vegetation as well as the global carbon cycle and the climate system.  相似文献   

10.
Engineering analyses combined with experimental observations in horizontal tubular photobioreactors and vertical bubble columns are used to demonstrate the potential of pneumatically mixed vertical devices for large-scale outdoor culture of photosynthetic microorganisms. Whereas the horizontal tubular systems have been extensively investigated, their scalability is limited. Horizontal tubular photobioreactors and vertical bubble column type units differ substantially in many ways, particularly with respect to the surface–to–volume ratio, the amount of gas in dispersion, the gas–liquid mass transfer characteristics, the nature of the fluid movement and the internal irradiance levels. As illustrated for eicosapentaenoic acid production from the microalga Phaeodactylum tricornutum, a realistic commercial process cannot rely on horizontal tubular photobioreactor technology. In bubble columns, presence of gas bubbles generally enhances internal irradiance when the Sun is low on the horizon. Near solar noon, the bubbles diminish the internal column irradiance relative to the ungassed state. The optimal dimensions of vertical column photobioreactors are about 0.2 m diameter and 4 m column height. Parallel east–west oriented rows of such columns located at 36.8°N latitude need an optimal inter-row spacing of about 3.5 m. In vertical columns the biomass productivity varies substantially during the year: the peak productivity during summer may be several times greater than in the winter. This seasonal variation occurs also in horizontal tubular units, but is much less pronounced. Under identical conditions, the volumetric biomass productivity in a bubble column is 60% of that in a 0.06 m diameter horizontal tubular loop, but there is substantial scope for raising this value.  相似文献   

11.
The spectral UV and the cloud cover were measured at intervals of 5 min with an integrated cloud and spectral UV measurement system at a sub-tropical Southern Hemisphere site for a 6-month period and solar zenith angle (SZA) range of 4.7° to approximately 80°. The solar UV spectra were recorded between 280 nm and 400 nm in 0.5 nm increments and weighted with the action spectra for photokeratitis and cataracts in order to investigate the effect of cloud cover on the horizontal plane biologically damaging UV irradiances for cataracts (UVBEcat) and photokeratitis (UVBEpker). Eighty five percent of the recorded spectra produced a measured irradiance to a cloud free irradiance ratio of 0.6 and higher while 76% produced a ratio of 0.8 and higher. Empirical non-linear expressions as a function of SZA have been developed for all sky conditions to allow the evaluation of the biologically damaging UV irradiances for photokeratitis and cataracts from a knowledge of the unweighted UV irradiances.  相似文献   

12.
Many problems in pure and applied ecology require the quantification of above‐ and below‐ground microclimates. Here I describe a data set of hourly microclimates for the Australian continent, simulated from the years 1990 to 2017 across a grid of 1893 locations approx. 60 km apart. The data were generated with the NicheMapR microclimate model, driven by 0.05° gridded daily meteorological forcing data (air temperature, wind speed, humidity, cloud cover, rainfall), 0.025° elevation and 0.008° soil texture data. The above‐ground microclimate variables include horizontal plane solar radiation, solar zenith angle, sky temperature (from which down‐welling longwave radiation can be computed), air temperature, relative humidity and wind speed at 1 and 120 cm height, and snow depth. The below‐ground variables include soil temperature, pore humidity, soil moisture and soil water potential for 0, 2.5, 5, 10, 15, 20, 30, 50, 100 and 200 cm below‐ground. The computations are for four shade levels (0%, 50%, 70% and 90%). The data set can be used for a wide variety of applications, including the computation of heat and water budgets of organisms, the potential for vegetation growth, and the computation of stress and growth indices. The use of daily forcing data also allows assessments of the consequences of extreme events including heat waves. Example applications are provided for computing plant growth potential, grasshopper egg development, lizard body temperature and mammalian energy and water requirements.  相似文献   

13.
以1-2年生北加州黑核桃为试材,建立了具有较高分辨能力的植株群体结构、光分布模型和冠层光合作用模型.将植株冠层按叶面积指数划分为若干层次。上下层之间水平面上太阳辐照度按Monsi&Saeki所提出的指数递减规律分布.冠层内太阳散射光的消光系数由冠层结构决定,而直射光的消光系数则决定于冠层结构与太阳在天空的位置.在同一层次。将叶片的叶倾角划分为6个等级。将叶片的水平位置划分为8个方位.设同一层次中水平面上的太阳辐照度相同。某一方位角和叶倾角的叶面的直接辐射由太阳视运动方程决定.以此为基础,分别计算“光斑区”和“遮荫区”内叶片的光合速率,并通过数值积分计算整个冠层的光合速率及光合日总量.用田间实测资料验证了冠层内太阳辐射分布模型和冠层光合作用模型.敏感性试验分析表明。模型对环境因子和生物学因素有良好的响应.  相似文献   

14.
For three forest canopies (a sparse, boreal needleleaf; a temperate broadleaf; and a dense, tropical, broadleaf stand) light‐use efficiency (LUE) is found to be 6–33% higher when sky radiance is dominated by diffuse rather than direct sunlight. This enhancement is much less than that reported previously for both crops (110%; Choudbury, 2001 ) and moderately dense temperate woodland (50–180%). We use the land‐surface scheme JULES to interpret the observed canopy response. Once sunflecks and leaf orientation are incorporated explicitly into the scheme, our simulations reproduce convincingly the overall level of canopy gross photosynthetic product (GPP), its enhancement with respect to diffuse sunlight and the mean 15% reduction in productivity observed during the afternoon due to stomatal closure. The LUE enhancement under diffuse sunlight can be explained by sharing of the canopy radiation‐load, which is reduced under direct sky radiance. Once sunflecks are accounted for the advantage of implementing more sophisticated calculations of stomatal conductance (e.g. Ball–Berry and SPA submodels) is less obvious even for afternoon assimilation. Empirical relations are developed between observed carbon flux and the environmental variables total downwelling shortwave radiation (SW), canopy temperature (T) and the fraction of diffuse sky radiance (fDIF). These relations allow us to gauge the impact of increased/reduced insolation on GPP and net ecosystem exchange (NEE). Overall the three stands appear to be fairly stable within global trends and typical interannual variability (SW changing by <15%). Greatest sensitivity is exhibited by the boreal site, Zotino, where NEE falls by 9±4% for a 15% reduction in SW.  相似文献   

15.
Mountain pastures dominated by the pasture grass Setaria sphacelata in the Andes of southern Ecuador are heavily infested by southern bracken (Pteridium arachnoideum), a major problem for pasture management. Field observations suggest that bracken might outcompete the grass due to its competitive strength with regard to the absorption of photosynthetically active radiation (PAR). To understand the PAR absorption potential of both species, the aims of the current paper are to (1) parameterize a radiation scheme of a two-big-leaf model by deriving structural (LAI, leaf angle parameter) and optical (leaf albedo, transmittance) plant traits for average individuals from field surveys, (2) to initialize the properly parameterized radiation scheme with realistic global irradiation conditions of the Rio San Francisco Valley in the Andes of southern Ecuador, and (3) to compare the PAR absorption capabilities of both species under typical local weather conditions. Field data show that bracken reveals a slightly higher average leaf area index (LAI) and more horizontally oriented leaves in comparison to Setaria. Spectrometer measurements reveal that bracken and Setaria are characterized by a similar average leaf absorptance. Simulations with the average diurnal course of incoming solar radiation (1998–2005) and the mean leaf–sun geometry reveal that PAR absorption is fairly equal for both species. However, the comparison of typical clear and overcast days show that two parameters, (1) the relation of incoming diffuse and direct irradiance, and (2) the leaf–sun geometry play a major role for PAR absorption in the two-big-leaf approach: Under cloudy sky conditions (mainly diffuse irradiance), PAR absorption is slightly higher for Setaria while under clear sky conditions (mainly direct irradiance), the average bracken individual is characterized by a higher PAR absorption potential. (∼74 MJ m−2 year−1). The latter situation which occurs if the maximum daily irradiance exceeds 615 W m−2 is mainly due to the nearly orthogonal incidence of the direct solar beam onto the horizontally oriented frond area which implies a high amount of direct PAR absorption during the noon maximum of direct irradiance. Such situations of solar irradiance favoring a higher PAR absorptance of bracken occur in ∼36% of the observation period (1998–2005). By considering the annual course of PAR irradiance in the San Francisco Valley, the clear advantage of bracken on clear days (36% of all days) is completely compensated by the slight but more frequent advantage of Setaria under overcast conditions (64% of all days). This means that neither bracken nor Setaria show a distinct advantage in PAR absorption capability under the current climatic conditions of the study area.  相似文献   

16.
This paper demonstrates the application of a design tool called BioTRIZ. Its developers claim that it can be used to access biological strategies for solving engineering problems. Our aim is to design a roof for hot climates that gets free cooling through radiant coupling with the sky. The insulation in a standard roof stops the sun and convection from warming the thermal mass. But it also restricts the mass's longwave view of the cool sky. Different solutions to this conflict are offered by BioTRIZ. The chosen solution is to replace the standard insulation component with an open cell honeycomb. The vertical cells would allow longwave radiation to pass, while arresting convection. The solutions offered by BioTRIZ's technological counterpart include no such changes in structure. It is estimated that the thermal mass in the biomimetic roof would remain on average 4.5℃ cooler than in a standard roof over a year in Riyadh, Saudi Arabia.  相似文献   

17.
To assess the role that vision plays in the ability of the North Atlantic right whale (Eubalaena glacialis) to detect its primary prey species, the calanoid copepod Calanus finmarchicus, we have compared the absorbance spectrum of the E. glacialis rod visual pigment, the transmittance spectra of C. finmarchicus carotenoid pigments, as well as the downwelling irradiance and horizontal radiance spectra collected during springtime at three locations in the western Gulf of Maine. The E. glacialis rod visual pigment absorbs light maximally at 493 nm, while microspectrophotometric measurements of the C. finmarchicus carotenoid pigments reveal transmission spectra with minima matching very well with the E. glacialis rod visual pigment absorbance spectra maximum. Springtime spectral downwelling irradiance and horizontal radiance values from the surface waters of Cape Cod Bay and at all depths in Great South Channel overlap the E. glacialis rod absorbance spectrum, allowing C. finmarchicus to appear as a high‐contrast dark silhouette against a bright background spacelight, thus facilitating visually guided contrast foraging. In contrast, spectral downwelling irradiance and horizontal radiance at depth in Cape Cod Bay, and all depths in Wilkinson Basin, do not overlap the E. glacialis rod absorbance spectrum, providing little if any useful light for contrast vision.  相似文献   

18.
In this study, estimated data of the UV Index on vertical planes are presented for the latitude of Valencia, Spain. For that purpose, the UVER values have been generated on vertical planes by means of four different geometrical models a) isotropic, b) Perez, c) Gueymard, d) Muneer, based on values of the global horizontal UVER and the diffuse horizontal UVER, measured experimentally. The UVER values, obtained by any model, overestimate the experimental values for all orientations, with the exception of the Perez model for the East plane. The results show statistical values of the MAD parameter (Mean Absolute Deviation) between 10% and 25%, the Perez model being the one that obtained a lower MAD for all levels. As for the statistic RMSD parameter (Root Mean Square Deviation), the results show values between 17% and 32%, and again the Perez model provides the best results in all vertical planes. The difference between the estimated UV Index and the experimental UV Index, for vertical and 40° tilted planes, was also calculated. 40° is an angle close to the latitude of Burjassot, Valencia, (39.5°), which, according to various studies, is the optimum angle to capture maximum radiation on tilted planes. We conclude that the models provide a good estimate of the UV Index, as they coincide or differ in one unit compared to the experimental values in 99% of cases, and this is valid for all orientations. Finally, we examined the relation between the UV Index on vertical and 40° tilted planes, both the experimental and estimated by the Perez model, and the experimental UV Index on a horizontal plane at 12 GMT. Based on the results, we can conclude that it is possible to estimate with a good approximation the UV Index on vertical and 40° tilted planes in different directions on the basis of the experimental horizontal UVI value, thus justifying the interest of this study.  相似文献   

19.
Cloud and solar zenith angle (SZA) are two major factors that influence the magnitude of the biologically damaging UV (UVBD) irradiances for humans. However, the effect on the short wavelength cut-off due to SZA and due to clouds has not been investigated for biologically damaging UV for cataracts. This research aims to investigate the influence of cloud and SZA on the short wavelength cut-off of the spectral UVBD for cataracts. The spectral biologically damaging UV for cataracts on a horizontal plane was calculated by weighting the spectral UV measured with a spectroradiometer with the action spectrum for the induction of cataracts in a porcine lens. The UV spectra were obtained on an unshaded plane at a latitude of 29.5 degrees S. The cut-off wavelength (lambdac) was defined as the wavelength at which the biologically damaging spectral irradiance was 0.1% of the maximum biologically damaging irradiance for that scan. For the all sky conditions, the short wavelength cut-off ranged by 12 nm for the SZA range of 5 to 80 degrees and the maximum in the spectral UVBD ranged by 15 nm. Similarly, for the cloud free cases, the short wavelength cut-off ranged by 9 nm for the same SZA range. Although, cloud has a large influence on the magnitude of the biologically damaging UV for cataracts, the influence of cloud on the short wavelength cut-off for the biologically damaging UV for cataracts is less than the influence of the solar zenith angle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号