首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an effort to characterize sites of recombination between SV40 and monkey DNA, we have determined the primary sequence of a large portion of the SV40 variant, designated 1103. This virus contains DNA sequences derived both from the wild type SV40 genome and from the permissive monkey cell in which the virus was propagated. Further, the monkey sequences included in the defective genome are homologous to both highly repeated monkey DNA (alpha component) and sequences that are infrequently repeated in the monkey genome. The regions of the 1103 genome where DNA sequences were determined include 1) the segments of the variant that surround joints connecting SV40 and monkey sequences, 2) the segment that contains the joint between monkey sequences of high and low reiteration frequency, and 3) the DNA segment of the variant that is homologous to monkey alpha component DNA. Comparison of the data obtained from the sequences analysis of the SV40 variants 1103 and CVP8/1/P2 (EcoRI res) (described in Wakamiya, T., McCutchan, T., Rosenberg, M., and Singer, M. (1979) J. Biol. Chem 254, 3584-3591) reveals certain similarities between the two that may be involved in eukaryotic recombination and defective variant formation.  相似文献   

2.
3.
The structure of a newly and independently isolated defective variant of simian virus 40 that contains covalently linked monkey and SV40 DNA sequences is described. This variant, termed 290, has a structure essentially identical with a previously isolated and characterized variant named CVP8/1/P2 (Eco RI res). The structural similarities include the monkey (host) DNA segment that is combined with viral DNA sequences, the particular viral DNA segment that is present, and the arrangement of these within the defective genome. The monkey DNA segment contains sequences derived from both low and high reiteration frequency monkey DNA. The viral sequences include the origin of replication. The separate isolation of essentially identical variants suggests a high level of specificity in the events leading to the formation and amplification of this type of defective genome.  相似文献   

4.
The complete nucleotide sequence has been determined for three newly cloned evolutionary variants from two different independently generated evolutionary series (1100 and 2100 series) of simian virus 40 (SV40). These naturally arising variants, designated ev-1110, ev-2102, and ev-2114, were isolated after five high multiplicity serial passages. The structure of the variants consists of a monomeric unit tandemly repeated four times (ev-2102 and ev-2114) or six times (ev-1110) in the variant genome; the variants have four or six copies, respectively, of the viral origin signal for DNA replication. The DNA content in the three variants is vastly different in that the genome of variant ev-2114 contains only rearranged viral sequences, while variant ev-2102 contains a substitution with monkey DNA sequences consisting of a nearly complete dimeric unit of Alu family sequences as well as less repetitive sequences and variant ev-1110 contains monkey DNA sequences derived solely from repetitive alpha-component DNA. Recombination events, cellular sequences, and structural features of these and other naturally arising SV40 variants are compared.  相似文献   

5.
M Rosenberg  S Segal  E L Kuff  M F Singer 《Cell》1977,11(4):845-857
DNA fragments containing monkey DNA sequences have been isolated from defective SV40 genomes that carry host sequences in place of portions of the SV40 genome. The fragments were isolated by restriction endonuclease cleavage and contain segments homologous to sequences in both the highly repetitive and unique (or less repetitive) classes of monkey DNA. The complete nucleotide sequence of one such fragment [151 base pairs (bp)] predominantly homologous to the highly reiterated class of monkey DNA was determined using both RNA and DNA sequencing methods. The nucleotide sequence of this homogeneous DNA segment does not contain discernible multiple internal repeating units but only a few short oligonucleotide repeats. The reiteration frequency of the sequence in the monkey genome is >106. Digestion of total monkey DNA (from uninfected cells) with endonuclease R Hind III produces relatively large amounts of discrete DNA fragments that contain extensive regions homologous to the fragment isolated from the defective SV40 DNA.A second fragment, also containing monkey sequences, was isolated from the same defective substituted SV40 genome. The nucleotide sequence of the 33 bp of this second fragment that are contiguous to the 151 bp fragment has also been determined.The sequences in both fragments are also present in other, independently derived, defective substituted SV40 genomes.  相似文献   

6.
Defective genomes generated during serial propagation of herpes simplex virus type 1 (Justin) consist of tandem reiterations of sequences that are colinear with a portion of the S component of the standard viral genome. We determined the structure of the novel US-a junction, at which the US sequences of one repeat unit join the a sequences of the adjacent repeat unit. Comparison of the nucleotide sequence at this junction with the nucleotide sequence of the corresponding US region of the standard virus genome indicated that the defective genome repeat unit arose by a single recombinational event between an L-S junction a sequence and the US region. The recombinational process might have been mediated by limited sequence homology. The sequences retained within the US-a junction further define the signal for cleavage and packaging of viral DNA.  相似文献   

7.
J R Smiley  J Duncan    M Howes 《Journal of virology》1990,64(10):5036-5050
We investigated the sequence requirements for the site-specific DNA cleavages and recombinational genome isomerization events driven by the terminal repeat or a sequence of herpes simplex virus type 1 KOS DNA by inserting a series of mutated a sequences into the thymidine kinase locus in the intact viral genome. Our results indicate that sequences located at both extremities of the a sequence contribute to these events. Deletions entering from the Ub side of the a sequence progressively reduced the frequency of DNA rearrangements, and further deletion of the internal DR2 repeat array had an additional inhibitory effect. This deletion series allowed us to map the pac1 site-specific DNA cleavage signal specifying the S-terminal cleavage to a sequence that is conserved among herpesvirus genomes. Constructs lacking this signal were unable to directly specify the S-terminal cleavage event but retained a reduced ability to give rise to S termini following recombination with intact a sequences. Deletions entering from the Uc side demonstrated that the copy of direct repeat 1 located adjacent to the Uc region plays an important role in the DNA rearrangements induced by the a sequence: mutants lacking this sequence displayed a reduced frequency of novel terminal and recombinational inversion fragments, and further deletions of the Uc region had a relatively minor additional effect. By using a construct in which site-specific cleavage was directed to heterologous DNA sequences, we found that the recombination events leading to genome segment inversion did not occur at the sites of DNA cleavage used by the cleavage-packaging machinery. This observation, coupled with the finding that completely nonoverlapping portions of the a sequence retained detectable recombinational activity, suggests that inter-a recombination does not occur by cleavage-ligation at a single specific site in herpes simplex virus type 1 strain KOS. The mutational sensitivity of the extremities of the a sequence leads us to hypothesize that the site-specific DNA breaks induced by the cleavage-packaging system stimulate the initiation of recombination.  相似文献   

8.
Origin of two different classes of defective HSV-1 Angelotti DNA.   总被引:17,自引:1,他引:16       下载免费PDF全文
During serial passages of Herpes simplex virus (HSV) at high multiplicity of infection, virions containing defective viral DNA accumulate in the progeny. The defective DNA molecules are made up by repeats of restricted portions of the standard viral genome. Two different classes of defective DNA derived from HSV-1 Angelotti (ANG) in independent series of high MOI-passages were studied. The nucleotide sequences contained in the defective DNA were localized on the parental viral genome. One of the two classes contained sequences from non-contiguous sites mapping in unique and in redundant regions of the parental DNA, whereas the second class apparently originates from the S-terminal redundant region of the parental DNA. The localization of defective DNA sequences was complicated by the fact that there exists sequence homology between the S-terminal redundancy and various unique DNA sequences in the L-segment of the HSV-1 ANG genome.  相似文献   

9.
10.
DNA-DNA reassociation kinetics of herpes simplex virus type 1 Angelotti DNA and a class of defective viral DNA revealed that the viral standard genome has a total sequence complexity of about 93 X 10(6) daltons and that a portion of 11 X 10(6) daltons occurs twice on the viral genome. These results agree with structural features of herpes simplex virus type 1 DNA derived from electron microscopic studies and restriction enzyme analyses by several investigators. The defective viral DNA (molecular weight, about 97 X 10(6)) displays a sequence complexity of about 11 X 10(6) daltons, suggesting that the molecule is built up by repetitions of standard DNA sequences comprising about 15,000 base pairs. A 2 X 10(6)-dalton portion of these sequences maps in the redundant region and a 9 X 10(6)-dalton portion maps in the unique part of the standard herpes simplex virus type 1 Angelotti DNA, as could be shown by reassociation of viral standard DNA in the presence of defective DNA and vice versa. No cellular DNA sequences could be detected in defective DNA. A 12% molar fraction of the defective DNA consists of highly repetitive sequences of about 350 to 500 base pairs in length.  相似文献   

11.
The nucleotide sequence of the long terminal repeat (LTR) of three murine retroviral DNAs has been determined. The data indicate that the U5 region (sequences originating from the 5' end of the genome) of various LTRs is more conserved than the U3 region (sequences from the 3' end of the genome). The location and sequence of the control elements such as the 5' cap, "TATA-like" sequences, "CCAAT-box," and presumptive polyadenylic acid addition signal AATAAA in the various LTRs are nearly identical. Some murine retroviral DNAs contain a duplication of sequences within the LTR ranging in size from 58 to 100 base pairs. A variant of molecularly cloned Moloney murine sarcoma virus DNA in which one of the two LTRs integrated into the viral DNA was also analyzed. A 4-base-pair duplication was generated at the site of integration of LTR in the viral DNA. The host-viral junction of two molecularly cloned AKR-murine leukemia virus DNAs (clones 623 and 614) was determined. In the case of AKR-623 DNA, a 3- or 4-base-pair direct repeat of cellular sequences flanking the viral DNA was observed. However, AKR-614 DNA contained a 5-base-pair repeat of cellular sequences. The nucleotide sequence of the preintegration site of AKR-623 DNA revealed that the cellular sequences duplicated during integration are present only once. Finally, a striking homology between the sequences flanking the preintegration site and viral LTRs was observed.  相似文献   

12.
It has been shown earlier that the reiterated regions TRS and IRS bracketing the Us segment of herpes simplex virus type 1 Angelotti DNA are heterogeneous in size by stepwise insertion of one to six copies of a 550-base-pair nucleotide sequence. Considerably higher amplification of this sequence was observed in defective viral DNA: up to 14 copies were detected to be inserted in the repeat units of a major class of defective herpes simplex virus type 1 Angelotti DNA, dDNA1, which originated from noncontiguous sites located in UL and the inverted repeats of the S component of the parental genome. Physical maps were established for the cleavage sites of KpnI, PstI, XhoI, and BamHI restriction endonucleases on the repeats of dDNA1. The map position of the insertion sequence was determined. It was demonstrated that the amplified inserts were not distributed at random among or within the repeats. A given total population of dDNA1 molecules consisted of different homopolymers, each of which contained a constant number of inserts in all of its repeats. Assuming that a rolling-circle mechanism is involved in the generation of full-length defective herpes simplex virus type 1 Angelotti DNA from single repeat units, these data suggest that the 550-base-pair sequence is amplified in the repeats before the replication process.  相似文献   

13.
14.
L P Deiss  J Chou    N Frenkel 《Journal of virology》1986,59(3):605-618
Newly replicated herpes simplex virus (HSV) DNA consists of head-to-tail concatemers which are cleaved to generate unit-length genomes bounded by the terminally reiterated a sequence. Constructed defective HSV vectors (amplicons) containing a viral DNA replication origin and the a sequence are similarly replicated into large concatemers which are cleaved at a sequences punctuating the junctions between adjacent repeat units, concurrent with the packaging of viral DNA into nucleocapsids. In the present study we tested the ability of seed amplicons containing specific deletions in the a sequence to become cleaved and packaged and hence be propagated in virus stocks. These studies revealed that two separate signals, located within the Ub and Uc elements of the a sequence, were essential for amplicon propagation. No derivative defective genomes were recovered from seed constructs which lacked the Uc signal. In contrast, propagation of seed constructs lacking the Ub signal resulted in the selection of defective genomes with novel junctions, containing specific insertions of a sequences derived from the helper virus DNA. Comparison of published sequences of concatemeric junctions of several herpesviruses supported a uniform mechanism for the cleavage-packaging process, involving the measurement from two highly conserved blocks of sequences (pac-1 and pac-2) which were homologous to the required Uc and Ub sequences. These results form the basis for general models for the mechanism of cleavage-packaging of herpesvirus DNA.  相似文献   

15.
Herpes simplex virus-infected cells contain large concatemeric DNA molecules arising from replication of the viral genome. The large concatemers are cleaved to generate unit-length molecules terminating at both ends with the a sequence. We have used constructed defective virus vectors (amplicons) derived from herpes simplex virus to study the mechanism of cleavage of viral DNA concatemers and the packaging of viral DNA into nucleocapsids. These studies revealed that (i) a 248-base-pair a sequence contained the signal(s) required for cleavage-packaging, (ii) the cleavage of viral DNA concatemers was coupled to packaging, (iii) the a sequence contained the information required for its own amplification, and (iv) cleavage-packaging occurred by a novel process involving the amplification of the a sequence.  相似文献   

16.
B S Rao  H Manor    R G Martin 《Nucleic acids research》1988,16(16):8077-8094
A 200 bp sequence including a stretch of 54 base pairs of alternating guanosine and adenosine nucleotide residues [(dG-dA)27.(dT-dC)27] was cloned in the simian virus 40 (SV40) genome between the KpnI and HpaII sites. This sequence was discovered earlier as part of a region limiting the amplification of sequences adjacent to an integrated polyoma virus in a transformed rat cell line. The newly constructed DNA was transfected into African Green monkey kidney CV1 cells and the variant virus was isolated by plaque-purification. The insertion was stably maintained and the variant virus grew more slowly than the wild type, had lower titers and gave smaller plaques. In mixed infection experiments, the variant was found to be stable, though the wild type replicated more rapidly. Pulse labeling experiments indicated that the unusual inserted sequence acts as a pause site for fork progression during DNA replication, as evidenced by the rate of incorporation of radioactively labeled nucleotides into various regions of the SV40 genome. Statistical fit of the experimental curves with theoretically generated curves suggested the pause of fork progression to be about one minute.  相似文献   

17.
18.
19.
Adenovirus type 2 (Ad2) grows 1,000 times less well in monkey cells than in human cells. This defect can be overcome, not only upon co-infection of cells with simian virus 40 (SV40), but also when the relevant part of the SV40 genome is integrated into the adenovirus genome to form an adenovirus-SV40 hybrid virus. We have used the nondefective Ad2-SV40 hybrid virus Ad2+ND1, which contains an insertion of 17% of the SV40 genome, to isolate host-range mutants which are defective in growth on monkey cells although they grow normally on human cells. Like Ad2, these mutants are defective in the synthesis of late proteins in monkey cells. A 30,000-molecular-weight protein (30K), unique to Ad2+ND1-infected cells, can be synthesized in vitro, using Ad2+ND1 mRNA that contains SV40 sequences. 30K is not seen in cells infected with those host-range mutants that are most defective in growth on monkey cells, and translation in vitro of SV40-specific mRNA from these cells produces new unique polypeptides, instead of 30K. Genetic and biochemical analyses indicate that these mutants carry point mutations rather than deletions.  相似文献   

20.
When simian virus 40 (SV40) is serially passaged at high multiplicity, a heterogeneous collection of naturally arising variants is generated. Those which are the most abundant presumably have a selective replicative advantage over other defective and wild-type helper SV40s. Two such naturally arising host-substituted variants of SV40 have been characterized in terms of complete nucleotide sequence determination. Evolutionary variant ev-1101 (previously isolated by Lee et al., Virology 66:53-69, 1975) is from undiluted serial passage 13, whereas ev-2101 is newly isolated from undiluted serial passage 6 of an independently-derived evolutionary series. Both variants contain a five-times tandemly repeated segment of DNA consisting of viral Hin C and Hin A sequences that have recombined with a segment of host DNA that is not highly reiterated in the monkey genome. The monkey segment differs in the two variants as does the size of the viral segment retained. In two additional host-substituted variants, ev-1102 (previously isolated from serial passage 20 by Brockman et al., Virology 54:384-397, 1973) and ev-1108 (newly isolated from serial passage 40), the SV40 sequences derived from the replication origin are present as inverted repetitions. The inverted repeat regions of these two variants have been analyzed at the nucleotide sequence level and are compared with SV40 variant ev-1104 from passage 45 (previously characterized by Gutai and Nathans, J. Mol. Biol. 126:259-274, 1978). The viral segment containing the regulatory signals for replication and viral gene expression is considerably shortened in later serial passages as demonstrated by these five variants. It is of interest that the variants presumably arose due to their enhanced replication efficiency, yet are missing some of the sequence elements implicated in the regulation of replication. Furthermore, a comparison of the structure of the replication origin regions indicates that additional changes occur in the SV40 regulatory region with continued undiluted serial passage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号