首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of pimozide and/or TRH was investigated on plasma prolactin, thyrotropin, T4 and T3 and udder distension in 38 ewes during drying off by feed restriction. The effect of daily injections of 2 mg pimozide (s.c.), combined or not with TRH stimulation (200 μg, i.v.) on three different days of the drying off period was examined. Blood samples were taken twice daily in each group for 9 days, while blood sampling on the days of TRH injection was also performed at 0, 15, 30 min, and 1, 2 and 4 h post-injection. Plasma was assayed for PRL, TSH, T4 and T3 levels. Udder distension and mastitis incidence were recorded at the end of the drying off period. TRH and pimozide both resulted in elevated plasma PRL levels and acted in a synergetic way. Udder distension and the incidence of mastitis was only influenced by pimozide. The TSH as well as the T3 response to TRH was increased in ewes under a continuous influence of pimozide and T3 peaks following TRH injection occurred earlier than T4 peaks. The higher effect of pimozide upon TRH stimulated PRL and TSH release at day 8 compared to days 0 and 3 indicates a progressive involvement of dopamine on the inhibition of PRL and the sensitivity of the thyrotrophs to TRH during drying off.  相似文献   

2.
The possible interactions of PGF2 alpha on the hypothalamus-pituitary-thyroid axis are the object of this study.Firstly a significant direct effect of PGF2 alpha infusion (mg2, 5/270 min) on TSH,PRL,LH,FSH and GH pituitary secretion was excluded.Thereafter the possible PGF2 alpha on PRL and TSH pituitary response to TRH was considered: in only two cases PGF2 alpha was able to increase the TSH response.Finally the Authors studied T3 response to endogenous TSH rise induced by TRH: if they consider the mean peak responses of T3 the increase is significant only when PGF2 alpha infusion is performed.  相似文献   

3.
The basal and TRH (Thyrotropin-Releasing Hormone) stimulated TSH (Thyrotropin) and PRL (Prolactin) responses (incremental area; IA) to 200 micrograms TRH was studied in 13 pre- and 13 postmenopausal women of 60 years of age. Both groups consisted of healthy women, none had goiter and all were negative for thyroid autoantibodies. The serum levels of TSH, T3, T4 and SHBG (sex hormone-binding globuline) were in the normal range and did not differ significantly between the groups. There were no differences in basal TSH (1.3 +/- 0.5 vs 1.4 +/- 0.5 mIU/l) or PRL (6.4 +/- 2.7 vs 6.6 +/- 2.5 micrograms/l) or for PRL IA (498 +/- 126 vs 584 +/- 165) between pre- and postmenopausal women. However, for TSH IA there was a slight decrease (15%), but not significant, in the postmenopausal group compared to the premenopausal group (1630 +/- 598 vs 2067 +/- 893). In conclusion, a weak but not significant decrease in the TSH response to TRH in postmenopausal women may be explained by the lower endogenous estradiol level.  相似文献   

4.
While exploring the interaction between thyrotropin releasing hormone (TRH) and normal rat anterior pituitary cells in monolayer culture we observed that cells dissociated with the use of trypsin did not respond to TRH with an increase in either TSH or prolactin (PRL) release. The dissociated cells were cultured for 3 days, then washed to remove serum proteins and exposed to 10?6M TRH for 3 hours. TSH and PRL secretion from stimulated and unstimulated cultures was determined by radio-immunoassay and normalized using cell protein. When such trypsin-dissociated cells were exposed to 0.5 mM dibutyryl cyclic AMP the release of both TSH and PRL doubled indicating that the intracellular secretory machinery was functional and that the block to TRH was proximal to the formation of cyclic AMP and presumably at the level of a TRH surface receptor. Previous studies have shown that such trypsin-dissociated cells respond to LHRH and a crude hypothalamic extract with a dose dependent increase in LH, FSH and ACTH release. This rules out a non-specific effect of trypsin. When pituitary cells were dissociated with a non-trypsin technique, the unstimulated release of both TSH and PRL was comparable to that found with the trypsin-dissociated cultures. However, these cultures did respond to TRH with an increase in TSH release although again no effect was seen with PRL. The susceptibility of the cells to trypsin suggests the possibility that a protein moiety may be closely associated with the function of the receptor.  相似文献   

5.
Summary An effect of the hormone, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] on hormone secretion by normal rat pituitary cells was investigated in vitro. Based on previous findings using GH4C1 cells, dispersed anterior pituitary cell cultures were prepared and maintained in serum-free conditions for up to 6 d. Under these circumstances, there was no effect of 1,25(OH)2D3 to alter medium or cell-associated levels of thyrotropin (TSH), prolactin (PRL), or growth hormone (GH). Cultures maintained under these conditions had lower medium and cell-associated hormone levels and lesser responses to agonists than cultures maintained in serum-supplemented medium. In the presence of 10% charcoal-treated fetal bovine serum, treatment with 10−8 M 1,25(OH)2D3 for 24 h selectively increased TRH (10−10 to 10−7 M)-induced TSH secretion (P<0.001), with maximal enhancement observed at 10−9 M TSH-releasing hormone (TRH). Enhancement of TSH secretion by 1,25(OH)2D3 was detected after 15 min exposure to TRH. There was no effect on agonist-induced PRL or GH secretion or on cell-associated hormone levels. The effect was evident after 24 h treatment with 1,25(OH)2D3, and decreased thereafter. Several other steroid hormones had no effect on 10−9 M TRH-induced TSH secretion. These data contrast with the effect of 1,25(OH)2D3 in GH cells. They suggest that 1,25(OH)2D3 may act selectively in the normal pituitary to modulate TSH secretion.  相似文献   

6.
The effect of exogenous dehydroepiandrosterone-sulfate (DHAS) on luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin (PRL) and thyroid-stimulating hormone (TSH) pituitary secretion was studied in 8 normal women during the early follicular phase. The plasma levels of these hormones were evaluated after gonadotropin-releasing hormone (GnRH)/thyrotropin-releasing hormone (TRH) stimulation performed after placebo or after 30 mg DHAS i.v. administration. The half-life of DHAS was also calculated on two subjects; two main components of decay were detected with half-times of 0.73-1.08 and 23.1-28.8 h. The results show an adequate response of all hormones to GnRH or TRH tests which was not significantly modified, in the case of LH, FSH and PRL, when performed in the presence of high levels of DHAS. However, the TSH response to TRH was significantly less suppressed (p less than 0.05) (39%) after DHAS administration than during repeated TRH stimulation without DHAS (51%). The data support the hypothesis that DHAS does not affect LH, FSH and PRL secretion, while TSH seemed to be partially influenced.  相似文献   

7.
A series of experiments were conducted in ewes and wether (castrate male) lambs to evaluate the influence of prostaglandins on secretion of anabolic hormones and to determine if repeated injections of prostaglandin (PG) F2α would chronically influence the secretion of these hormones and perhaps growth rate as well.A single intravenous injection of PGA1 and PGB1 (100 μg/kg) exerted no significant (P > .10) influence on plasma concentrations of prolactin (PRL), growth hormone (GH) or thyrotropin (TSH) in ewes. PGA1, but not PGB1, stimulated an increase in the plasma concentration of insulin. Infusion of PGF2α for 5.5 hr into ewes resulted in increased (P < .05) plasma concentrations of both GH and PRL while TSH and insulin were not significantly influenced. Prostaglandin F2α, when injected subcutaneously into wether lambs (10 mg twice weekly) stimulated (P < .05) plasma GH concentrations after the first injection, but not after 3 weeks of treatment. Changes in plasma PRL or TSH were not observed consistently in the lambs treated chronically with PGF2α or TRH.Prostaglandin F2α, in the present studies, and PGE1 in previously reported studies (1–3), has been demonstrated to be stimulatory to the secretion of PRL and GH. In contrast, PGA1 and PGB1, which lack an 11-hydroxyl group, failed to influence the secretion of either PRL or GH. It would, therefore, appear that the 11-hydroxyl group is a structural requirement for prostaglandins to influence the secretion of these two hormones in sheep.Treatment with thyrotropin releasing hormone (TRH), alone or in combination with PGF2α, significantly (P < .05) increased growth rate (average daily gains) while PGF2α did not, despite the fact that both compounds exerted similar effects on plasma GH.  相似文献   

8.
In cultured rat pituitary tumour cells (GH3 cells) the absence of extracellular Ca++ or addition of NaEGTA reduced spontaneous prolactin (PRL) release and abolished the stimulatory effect of thyroliberin (TRH). Readdition of CaCl2, but not of equimolar concentrations of MgCl2 increased spontaneous hormone release, and restored the effect of TRH. The calcium ionophore, A-23187, induced PRL release during normal calcium conditions, but not when an excess NaEGTA was present. TRH increased cyclic AMP accumulation in the presence and the absence of extracellular calcium. The effect of TRH on PRL release and cyclic AMP formation occured concomitantly with an increased efflux of 45Ca2+. Intracellular electrophysiological recordings from the same single cells before and after TRH activation showed increased frequency and duration of the Ca2+ dependent action potentials. We conclude that TRH elevates the Ca2+ influx which depends on the depolarizing action current, and this effect is probably linked to formation of cyclic AMP and PRL release.  相似文献   

9.
A study was carried out in 10 patients with multiple pituitary hormone deficiencies to determine the response of thyroid-stimulating hormone (TSH) and prolactin (PRL) to thyrotropin-releasing hormone (TRH) and their suppressibility by treatment with triiodothyronine (T3) given at a dose of 60 microgram/day for 1 week. In 3 patients the basal tsh values were normal and in 7 patients, 2 of whom had not received regular thyroid replacement therapy, they were elevated. The response of TSH to TRH was normal in 6 patients and exaggerated in 4 (of these, 1 patient had not received previous substitution therapy and 2 had received only irregular treatment). The basal and stimulated levels of TSH were markedly suppressed by the treatment with T3. The basal PRL levels were normal in 7 and slightly elevated in 3 patients. The response of PRL to TRH stimulation was exaggerated in 2, normal in 6 and absent in 2 patients. The basal PRL levels were not suppressible by T3 treatment but in 4 patients this treatment reduced the PRL response to TRH stimulation. From these findings the following conclusions are drawn: (1) T3 suppresses TSH at the pituitary level, and (2) the hyperreactivity of TSH to TRH and the low set point of suppressibility are probably due to a lack of TRH in the type of patients studied.  相似文献   

10.
Cyclo(His-Pro), or histidyl-proline diketopiperazine, is an endogenous cyclic dipeptide that is ubiquitously distributed in tissues and body fluids of both man and animals. This cyclic dipeptide is not only structurally related to thyrotropin-releasing hormone (TRH, pGlu-His-ProNH2), but it can also arise from TRH by the action of the enzyme pyroglutamate amino-peptidase (pGlu-peptidase). The data on the distribution of TRH, cyclo(His-Pro), and pGlu-peptidase under normal and abnormal conditions are summarized and potential relationships analyzed. We conclude that all of the cyclo(His-Pro) cannot be derived from TRH. Two additional sources of cyclo(His-Pro) are suggested. It is proposed that 29,247 molecular weight TRH prohormone, prepro TRH, which contains 5 copies of TRH sequence, can be processed to yield cyclo(His-Pro). Thus, both TRH and cyclo(His-Pro) share a common precursor, prepro[TRH/Cyclo(His-Pro)].  相似文献   

11.
To clarify the effects of cyclosporine A (CsA) on the secretion of serum thyrotropin (TSH), prolactin (PRL), luteinizing hormone (LH) and follicular stimulating hormone (FSH), we performed TRH and LH-RH testing in 4 patients with the nephrotic syndrome before and after the administration of CsA, 6 mg/kg/day for 4 to 12 weeks. Prior to CsA all patients responded normally to TRH with respect to TSH and PRL secretion. Two patients showed normal response of LH and FSH to LH-RH stimulation while the response in 2 other patients, who were both menopausal, was exaggerated. By the third or fourth week of CsA administration the basal and peak TSH and PRL values declined significantly in all patients in response to TRH stimulation while those of LH and FSH showed only a modest decrease in response to LH-RH stimulation. Two to 4 weeks after the cessation of CsA the response of TSH, PRL and FSH returned to the pretreatment level. These observations suggest that: 1) CsA exerts an inhibitory effect on the secretion of at least TSH and PRL in humans, and 2) the effect of CsA on the pituitary may be partially reversible after the cessation of the therapy.  相似文献   

12.
We have assessed the gonadotropin, TSH and PRL responses to the non aromatizable androgens, mesterolone and fluoxymestrone, in 27 patients with primary testicular failure. All patients were given a bolus of LHRH (100 micrograms) and TRH (200 micrograms) at zero time. Nine subjects received a further bolus of TRH at 30 mins. The latter were then given mesterolone 150 mg daily for 6 weeks. The remaining subjects received fluoxymesterone 5 mg daily for 4 weeks and 10 mg daily for 2 weeks. On the last day of the androgen administration, the subjects were re-challenged with LHRH and TRH according to the identical protocol. When compared to controls, the patients had normal circulating levels of testosterone, estradiol, PRL and thyroid hormones. However, basal LH, FSH and TSH levels, as well as gonadotropin responses to LHRH and TSH and PRL responses to TRH, were increased. Mesterolone administration produced no changes in steroids, thyroid hormones, gonadotropins nor PRL. There was, however, a reduction in the integrated and incremental TSH secretion after TRH. Fluoxymesterone administration was accompanied by a reduction in thyroid binding globulin (with associated decreases in T3 and increases in T3 resin uptake). The free T4 index was unaltered, which implies that thyroid function was unchanged. In addition, during fluoxymesterone administration, there was a reduction in testosterone, gonadotropins and LH response to LHRH. Basal TSH did not vary, but there was a reduction in the peak and integrated TSH response to TRH. PRL levels were unaltered during fluoxymesterone treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Previous in vitro studies have demonstrated zinc (Zn++) inhibition of basal and of potassium (K+) or thyrotropin-releasing hormone (TRH)-stimulated prolactin (PRL) secretion, in a selective, reversible, and dose-dependent manner. Thus, Zn++ may regulate physiologically pituitary PRL secretion. Furthermore, studies with patients with uremia, cirrhosis or prolactinoma, have shown the coexistence of hypozincemia and hyperprolactinemia and zinc supplementation did not correct hyperprolactinemia in these patients. In normal individuals Zn++ administration produced controversial results on PRL secretion. Here, we investigated whether zinc administration affects TRH-stimulated PRL in healthy men. We found that Zn++ administration does not change the TRH-stimulated PRL. Therefore, in normal conditions, Zn++ does not inhibit TRH-stimulated prolactinemia. In addition, we found that acute increases of blood PRL and TRH do not alter blood Zn++ levels.  相似文献   

14.
To investigate the hypothesis of an altered hypothalamic dopaminergic activity in primary hypothyroidism, eight patients with hypothyroidism and seven normal subjects, all female, were studied. All of them were submitted to two tests: TRH stimulation and after the administration of dopamine receptor-blocking drug, Domperidone. The hypothyroid patients with basal TSH values less than or equal to 60 mU/L (4 cases--group 1) had lower PRL levels than the remaining 4 subjects with TSH greater than 60 mU/L (group 2) (p less than 0.001), despite all patients presenting the PRL levels within the normal range. A significant increase occurred for both TSH and PRL after the administration of TRH and Domperidone in normal as well as in the hypothyroid subjects, except for TSH in group 1 after the administration of Domperidone. The area under the curve for PRL response to THR was not different between the normal subjects and both hypothyroid groups, while that under the curve for TSH was greater in the hypothyroidism as a whole than in the normal subjects (p = 0.006) and between the hypothyroid groups, being greater in group 2 than in 1 (p less than 0.009). In relation to Domperidone, the area under the curve for TSH was significantly higher in group 2 when compared to the normal controls (p less than 0.001), while for PRL it was not different between hypothyroid groups in relation to normal controls and when groups I and II were compared. These results suggest that the hypothalamic dopamine activity is not altered in primary hypothyroidism and favor the small relevance of dopamine on the control of TSH secretion.  相似文献   

15.
Different attempts were made to identify the variables that may be involved in the clinical course of cerebrovascular ischemia. In the case of stroke with mild severity (SMS), the clinical significance of neuroendocrine changes as well as of post-stroke depression (PSD) remains unknown. We therefore evaluated the presence of neuroendocrine changes in the acute and post-acute phase of SMS, and their potential role during convalescence. Serum cortisol, T4, T3, FT4, FT3, TSH and PRL levels were measured in 17 euthyroid patients with stroke on admission (day 1), following morning (day 2), 7 days and 3 months later. TSH and PRL secretion after TRH test were measured. Stroke severity on admission was determined by Scandinavian Stroke Scale (SSS). Montgomery-Asberg Depression Rating Scale (Madrs) was used for assessment of post-stroke depression. On admission, TSH and T3, were within normal limits and were greater compared to values on day 2. Lower basal TSH and decreased TSH response to TRH on day 2, were associated with stroke of greater severity. Delta-PRL after TRH on day 2 was higher in patients who develop PSD. Changes in serum thyroid hormones in SMS, reflects those of non-thyroidal illness. A mild stimulation of hypothalamic-pituitary-adrenal axis was detected. We provide evidence that PRL response to TRH, in the acute phase of stroke may be used as an index for early detection of PSD.  相似文献   

16.
The aim of this study was to evaluate plasma thyrotropin (TSH), prolactin (PRL) and growth hormone (GH) responses to the TSH-releasing hormone (TRH) test and to a combined arginine-TRH test (ATT-TRH) in 10 normal subjects and in 15 acromegalic patients. In controls, TSH responsiveness to TRH was enhanced by ATT (p less than 0.001). When considering the 15 acromegalic patients as a whole, no significant difference in TSH responses was detected during the two tests. However, patients without suppression of plasma GH levels after oral glucose load showed an increased TSH responsiveness to the ATT-TRH test if compared to TRH alone (p less than 0.025), while patients with partial suppression of plasma GH levels after glucose ingestion showed a decreased TSH responsiveness to ATT-TRH (p less than 0.05). No difference was recorded in PRL and GH responses, evaluated as area under the curve, during TRH or ATT-TRH tests in controls and in acromegalics. In conclusion, (1) normal subjects have an enhanced TSH response to the ATT-TRH test and (2) acromegalic patients without suppression of GH levels after oral glucose load show a TSH responsiveness to the ATT-TRH test similar to that of controls, while acromegalics with partial GH suppression after oral glucose load have a decreased TSH responsiveness to the ATT-TRH test. These data suggest that acromegaly is a heterogeneous disease as far as the somatostatinergic tone is concerned.  相似文献   

17.
Summary The hybrid GH cell strain, 928-9b, isolated from PRL+ (prolactin [PRL] producing) GH4Cl and PRL (PRL non-producing) FIBGH12CI cells, has specific TRH (thyroliberin) receptors, yet does not respond to this peptide hormone. Unlike the parent strain, GH4Cl, TRH does not stimulate synthesis or release of PRL in the hybrid strain. In contrast, treatment of 928-9b cells with another peptide, EGF (epidermal growth factor), stimulates both release and synthesis of PRL. The number of EGF receptors in the hybrid strain (2.5 × 103/cell) and the affinity of these receptors for ligand (2.2 nM) are comparable to that of the parent strain, GH4C1. The EGF dose response curve is also essentially the same for parent and hybrid cells for the enhancement of PRL production. A 3-8-fold enhancement of PRL production is observed and 1/2 maximal enhancement occurs at approximately 5 × 1011 M EGF for both strains. TRH does not have any potentiating effect on EGF-induced stimulation of PRL release or PRL synthesis in the hybrid strain. Although EGF and TRH have similar biological effects in responsive GH cells, binding of one hormone to its receptors does not modulate the binding of the heterologous hormone. These findings demonstrate that more than one effect of TRH is defective in 928-9b cells even though EGF responses are intact. This suggests that 1) TRH-stimulated PRL release and TRH-stimulated PRL production have a common intermediate step, and 2) TRH and EGF have a different mechanism of action in GH cells.  相似文献   

18.
Prolactin (PRL) and thyroid stimulating hormone (TSH) plasma concentrations were measured during the latter part of the dark period in early and mid-late pregnancy in the rat. On Days 4-5 and 7-8 of pregnancy, plasma PRL concentrations surged between 22:00 and 06:00 hr and TSH values increased between 22:00 and 02:00 hr. While the TSH pattern was maintained during the second-half of pregnancy, surges in PRL release ceased and PRL levels remained at less than 10 ng/ml. The effects of thyrotropin releasing hormone (TRH) administration on PRL and TSH secretion were then measured to determine whether the second-half of pregnancy is associated with a decrease in sensitivity to an agent that can stimulate PRL release. Injection (iv) of cannulated pregnant rats with a low dosage (20 ng) of TRH stimulated a twofold increase in plasma TSH during both early (Days 5-9) and later (Days 14-18) pregnancy but did not change plasma PRL levels. Treatment with a high dosage (2 micrograms) of TRH induced a sixfold rise in plasma TSH during both phases of gestation. The higher dose of TRH also stimulated elevations in plasma PRL during early and mid-late pregnancy; however, both the absolute increase in the amount of PRL in plasma and the percentage increase over baseline levels were greater from Days 5-9 than from Days 14-16 of gestation. These data indicate that the neuroendocrine sensitivity to factors that stimulate PRL secretion changes as pregnancy progresses, and suggest that nocturnal secretion of PRL and TSH during pregnancy may be regulated, in part, by a common trophic factor.  相似文献   

19.
An immunoelectron-microscopic and morphometric study was carried out on the anterior pituitary prolactin (PRL) cells of adult male Wistar rats treated with a combination of thyroidectomy and administration of L-thyroxine (T4) and/or synthetic thyrotropin-releasing hormone (TRH) in order to clarify the effects of changes in the hypothalamus-pituitary-thyroid axis on the ultrastructure and function of PRL cells. After thyroidectomy, PRL cells underwent atrophy and hypofunction of their cell organelles, but these changes tended to be restored to their normal level by T4 treatment. On the other hand, the administration of TRH to intact rats produced hypertrophy and hyperfunction in the PRL cells, although this treatment had no effect on the PRL cells of thyroidectomized rats. However, treatment with a combination of T4 and TRH had a strong effect and led to hypertrophy and hyperfunction in the PRL cells of thyroidectomized rats. Serum and pituitary PRL levels were measured by radioimmunoassay (RIA) for a comparison with the morphological results. They correlated well with the morphological changes. These results indicate that TRH stimulates PRL secretion in the presence of thyroid hormone, and that the thyroid hormone plays an important role in the basic maintenance of PRL cell function and its reactivity to TRH.  相似文献   

20.
The object of the present study was to determine the relative importance of Ca++ and cyclic nucleotides as “second messengers” in thyroliberin (TRH)-mediated prolactin (PRL) release in the GH3 and GH4 rat pituitary tumor cell lines. PRL, cyclic adenosine 3': 5'-monophosphate (cAMP), and cyclic guanosine 3': 5'-monophosphate (cGMP) were measured by radioimmunoassay (RIA) following TRH stimulation. TRH increased PRL release and cAMP levels in GH3 and GH4 cells, but cGMP increases were variable. Treatment with 1 mM theophylline increased PRL release and raised cAMP and cGMP. Addition of TRH to theophylline-pretreated cells produced further significant increases in PRL release without any additional increases in cAMP and cGMP. Co++, a Ca++ antagonist, abolished TRH-induced PRL release in a dose-dependent manner. The Co++ inhibition was partially reversed by Ca++ in GH3 or GH4 cells. Furthermore, the Ca++ ionophore A23187 stimulated PRL release. We conclude that Ca++ is the primary “second messenger” for TRH-mediated PRL release from GH3 or GH4 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号