首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Higher eukaryotes have developed a mechanism of sequence-specific RNA degradation which is known as RNA silencing. In plants and some animals, similar to the nematode Caenorhabditis elegans, RNA silencing is a non-cell-autonomous event. Hence, silencing initiation in one or a few cells leads progressively to the sequence-specific suppression of homologous sequences in neighbouring cells in an RNA-mediated fashion. Spreading of silencing in plants occurs through plasmodesmata and results from a cell-to-cell movement of a short-range silencing signal, most probably 21-nt siRNAs (short interfering RNAs) that are produced by one of the plant Dicer enzymes. In addition, silencing spreads systemically through the phloem system of the plants, which also translocates metabolites from source to sink tissues. Unlike the short-range silencing signal, there is little known about the mediators of systemic silencing. Recent studies have revealed various and sometimes surprising genetic elements of the short-range silencing spread pathway, elucidating several aspects of the processes involved. In this review we attempt to clarify commonalities and differences between the individual silencing pathways of RNA silencing spread in plants.  相似文献   

2.
转录后基因沉默--植物抵御外来病毒入侵的一种机制   总被引:8,自引:1,他引:8  
冯德江  刘翔  朱祯 《遗传学报》2003,30(6):589-596
基因沉默是近几年来在转基因植物中发现的一种后生遗传现象。基因沉默大体可以分为两类:位置效应引起的基因沉默和同源依赖的基因沉默。其中,同源依赖的基因沉默又可以分为转录水平的基因沉默和转录后水平的基因沉默。基因沉默的发现使得人们对植物和病毒的相互关系有了一个新的认识。基因沉默研究中所发现的转录后基因沉默现象是植物抵御病毒入侵、保持自身基因组完整性的一种防御机制,是植物与病毒共进化的结果。对于沉默产生的机理,尤其是转录后基因沉默,已经提出不少模型,但是都未能较全面地解释基因沉默中出现的各种实验现象。该文现就实验所取得的相关结果、转录后基因沉默机制和植物对病毒防御机制的相互关系,以及其研究进展进行综述。  相似文献   

3.
4.
Higher eukaryotes have developed a mechanism of sequence-specific RNA degradation which is known as RNA silencing. In plants and some animals, similar to the nematode Caenorhabditis elegans, RNA silencing is a non-cell-autonomous event. Hence, silencing initiation in one or a few cells leads progressively to the sequence-specific suppression of homologous sequences in neighbouring cells in an RNA-mediated fashion. Spreading of silencing in plants occurs through plasmodesmata and results from a cell-to-cell movement of a short-range silencing signal, most probably 21-nt siRNAs (short interfering RNAs) that are produced by one of the plant Dicer enzymes. In addition, silencing spreads systemically through the phloem system of the plants, which also translocates metabolites from source to sink tissues. Unlike the short-range silencing signal, there is little known about the mediators of systemic silencing. Recent studies have revealed various and sometimes surprising genetic elements of the short-range silencing spread pathway, elucidating several aspects of the processes involved. In this review we attempt to clarify commonalities and differences between the individual silencing pathways of RNA silencing spread in plants.  相似文献   

5.
6.
RNA沉默是一种由21.26nt RNA分子介导的真核生物体内普遍存在的以序列特定性行为抑制基因表达的保守途径。RNA沉默最显著的特征在于它是一种非细胞自发的过程,即在植物和小杆线虫(Caenorhabditis elegans)中RNA沉默均能被局部诱导,随后将沉默状态传导至整个生物体。RNA沉默的系统传导特性表明,RNA沉默途径中存在着可移动的信号分子。就RNA沉默信号传导的特征和可能的信号分子等做一综述。  相似文献   

7.
The large number of candidate genes identified by modern high-throughput technologies require efficient methods for generating knockout phenotypes or gene silencing in order to study gene function. RNA interference (RNAi) is an efficient method that can be used for this purpose. Effective gene silencing by RNAi depends on a number of important parameters, including the dynamics of gene expression and the RNA dose. Using mouse hepatoma cells, we detail some of the principal characteristics of RNAi as a tool for gene silencing, such as the RNA dose level, RNA complex exposure time, and the time of transfection relative to gene induction, in the context of silencing a green fluorescent protein reporter gene. Our experiments demonstrate that different levels of silencing can be attained by modulating the dose level of RNA and the time of transfection and illustrate the importance of a dynamic analysis in designing robust silencing protocols. By quantifying the kinetics of RNAi-based gene silencing, we present a model that may be used to help determine key parameters in more complex silencing experiments and explore alternative gene silencing protocols.  相似文献   

8.
RNA沉默与植物病毒   总被引:11,自引:0,他引:11  
植物中RNA沉默(RNAsilencing)亦称为转录后基因沉默(PTGS)或共抑制,是植物抵抗外来核酸(转座子、转基因或病毒)入侵,并保护自身基因组完整性的一种防御机制。RNA沉默是近十年来发现的植物界中普遍存在的现象,已成为植物分子生物学领域的一个新的研究方向。对RNA沉默特点和机制的研究表明,植物病毒与(转基因)植物内发生的RNA沉默有着密切的联系,作者从病毒对RNA沉默的诱导、抑制、防御等方面,简述了RNA沉默与病毒的关系。并对病毒载体所诱导的RNA沉默在植物发育和基因组功能分析等方面的应用价值进行了讨论。  相似文献   

9.
10.
随着转基因技术在植物中的广泛应用,转基因沉默受到越来越多的重视。转基因沉默可发生在转录和转录后两种水平,其基本特征就是依赖于同源的重复序列。转基因的重复拷贝间,转基因与同源的内源基因间及RNA病毒与同源转基因间都会发生基因沉默。可能有不同的机制导致转基因沉默,本文综述了转基因沉默的机理研究及转基因沉默在植物抗病基因工程和植物功能基因组学方面的应用 。  相似文献   

11.
In plants, RNA silencing (RNA interference) is an efficient antiviral system, and therefore successful virus infection requires suppression of silencing. Although many viral silencing suppressors have been identified, the molecular basis of silencing suppression is poorly understood. It is proposed that various suppressors inhibit RNA silencing by targeting different steps. However, as double-stranded RNAs (dsRNAs) play key roles in silencing, it was speculated that dsRNA binding might be a general silencing suppression strategy. Indeed, it was shown that the related aureusvirus P14 and tombusvirus P19 suppressors are dsRNA-binding proteins. Interestingly, P14 is a size-independent dsRNA-binding protein, while P19 binds only 21-nucleotide ds-sRNAs (small dsRNAs having 2-nucleotide 3' overhangs), the specificity determinant of the silencing system. Much evidence supports the idea that P19 inhibits silencing by sequestering silencing-generated viral ds-sRNAs. In this study we wanted to test the hypothesis that dsRNA binding is a general silencing suppression strategy. Here we show that many plant viral silencing suppressors bind dsRNAs. Beet yellows virus Peanut P21, clump virus P15, Barley stripe mosaic virus gammaB, and Tobacco etch virus HC-Pro, like P19, bind ds-sRNAs size-selectively, while Turnip crinkle virus CP is a size-independent dsRNA-binding protein, which binds long dsRNAs as well as ds-sRNAs. We propose that size-selective ds-sRNA-binding suppressors inhibit silencing by sequestering viral ds-sRNAs, whereas size-independent dsRNA-binding suppressors inactivate silencing by sequestering long dsRNA precursors of viral sRNAs and/or by binding ds-sRNAs. The findings that many unrelated silencing suppressors bind dsRNA suggest that dsRNA binding is a general silencing suppression strategy which has evolved independently many times.  相似文献   

12.
13.
Gene silencing is a conserved mechanism in eukaryotes that dynamically regulates gene expression. In plants, gene silencing is critical for development and for maintenance of genome integrity. Additionally, it is a critical component of antiviral defence in plants, nematodes, insects, and fungi. To overcome gene silencing, viruses encode effectors that suppress gene silencing. A growing body of evidence shows that gene silencing and suppression of silencing are also used by plants during their interaction with nonviral pathogens such as fungi, oomycetes, and bacteria. Plant–pathogen interactions involve trans-kingdom movement of small RNAs into the pathogens to alter the function of genes required for their development and virulence. In turn, plant-associated pathogenic and nonpathogenic microbes also produce small RNAs that move trans-kingdom into host plants to disrupt pathogen defence through silencing of plant genes. The mechanisms by which these small RNAs move from the microbe to the plant remain poorly understood. In this review, we examine the roles of trans-kingdom small RNAs and silencing suppressors produced by nonviral microbes in inducing and suppressing gene silencing in plants. The emerging model is that gene silencing and suppression of silencing play critical roles in the interactions between plants and their associated nonviral microbes.  相似文献   

14.
Plant viruses act as triggers and targets of RNA silencing and have evolved proteins to suppress this plant defense response during infection. Although Tobacco mosaic tobamovirus (TMV) triggers the production of virus-specific small interfering RNAs (siRNAs), this does not lead to efficient silencing of TMV nor is a TMV-green fluorescent protein (GFP) hybrid able to induce silencing of a GFP-transgene in Nicotiana benthamiana, indicating that a TMV silencing suppressor is active and acts downstream of siRNA production. On the other hand, TMV-GFP is unable to spread into cells in which GFP silencing is established, suggesting that the viral silencing suppressor cannot revert silencing that is already established. Although previous evidence indicates that the tobamovirus silencing suppressing activity resides in the viral 126-kDa small replicase subunit, the mechanism of silencing suppression by this virus family is not known. Here, we connect the silencing suppressing activity of this protein with our previous finding that Oilseed rape mosaic tobamovirus infection leads to interference with HEN1-mediated methylation of siRNA and micro-RNA (miRNA). We demonstrate that TMV infection similarly leads to interference with HEN1-mediated methylation of small RNAs and that this interference and the formation of virus-induced disease symptoms are linked to the silencing suppressor activity of the 126-kDa protein. Moreover, we show that also Turnip crinkle virus interferes with the methylation of siRNA but, in contrast to tobamoviruses, not with the methylation of miRNA.  相似文献   

15.
16.
Eukaryotic cells restrain the activity of foreign genetic elements, including viruses, through RNA silencing. Although viruses encode suppressors of silencing to support their propagation, viruses may also exploit silencing to regulate host gene expression or to control the level of their accumulation and thus to reduce damage to the host. RNA silencing in plants propagates from cell to cell and systemically via a sequence-specific signal. Since the signal spreads between cells through plasmodesmata like the viruses themselves, virus-encoded plasmodesmata-manipulating movement proteins (MP) may have a central role in compatible virus:host interactions by suppressing or enhancing the spread of the signal. Here, we have addressed the propagation of GFP silencing in the presence and absence of MP and MP mutants. We show that the protein enhances the spread of silencing. Small RNA analysis indicates that MP does not enhance the silencing pathway but rather enhances the transport of the signal through plasmodesmata. The ability to enhance the spread of silencing is maintained by certain MP mutants that can move between cells but which have defects in subcellular localization and do not support the spread of viral RNA. Using MP expressing and non-expressing virus mutants with a disabled silencing suppressing function, we provide evidence indicating that viral MP contributes to anti-viral silencing during infection. Our results suggest a role of MP in controlling virus propagation in the infected host by supporting the spread of silencing signal. This activity of MP involves only a subset of its properties implicated in the spread of viral RNA.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号