首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure and water permeability of bilayers composed of the ether-linked lipid, dihexadecylphosphatidylcholine (DHPC), were studied and compared with the ester-linked lipid, dipalmitoylphosphaditdylcholine (DPPC). Wide angle X-ray scattering on oriented bilayers in the fluid phase indicate that the area per lipid A is slightly larger for DHPC than for DPPC. Low angle X-ray scattering yields A = 65.1 Å2 for DHPC at 48 °C. LAXS data provide the bending modulus, KC = 4.2 × 10−13 erg, and the Hamaker parameter H = 7.2 × 10−14 erg for the van der Waals attractive interaction between neighboring bilayers. For the low temperature phases with ordered hydrocarbon chains, we confirm the transition from a tilted Lβ′ gel phase to an untilted, interdigitated LβI phase as the sample hydrates at 20 °C. Our measurement of water permeability, Pf = 0.022 cm/s at 48 °C for fluid phase DHPC is slightly smaller than that of DPPC (Pf = 0.027 cm/s) at 50 °C, consistent with our triple slab theory of permeability.  相似文献   

2.
Wide angle x-ray scattering (WAXS) from oriented lipid multilayers is used to examine liquid-ordered (Lo)/liquid-disordered (Ld) phase coexistence in the system 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-phosphocholine/cholesterol (DOPC/DPPC/Chol), which is a model for the outer leaflet of the animal cell plasma membrane. Using the method of analysis developed in the accompanying work, we find that two orientational distributions are necessary to fit the WAXS data at lower temperatures, whereas only one distribution is needed at temperatures higher than the miscibility transition temperature, Tmix = 25-35°C (for 1:1 DOPC/DPPC with 15%, 20%, 25%, and 30% Chol). We propose that the necessity for two distributions is a criterion for coexistence of Lo domains with a high Sx-ray order parameter and Ld domains with a lower order parameter. This criterion is capable of detecting coexistence of small domains or rafts that the conventional x-ray criterion of two lamellar D spacings may not. Our Tmix values tend to be slightly larger than published NMR results and microscopy results when the fluorescence probe artifact is considered. This is consistent with the sensitivity of WAXS to very short time and length scales, which makes it more capable of detecting small, short-lived domains that are likely close to Tmix.  相似文献   

3.
The interactions between a drug and lipids may be critical for the pharmacological activity. We previously showed that the ability of a fluoroquinolone antibiotic, ciprofloxacin, to induce disorder and modify the orientation of the acyl chains is related to its propensity to be expelled from a monolayer upon compression [1]. Here, we compared the binding of ciprofloxacin on DPPC and DPPG liposomes (or mixtures of phospholipids [DOPC:DPPC], and [DOPC:DPPG]) using quasi-elastic light scattering and steady-state fluorescence anisotropy. We also investigated ciprofloxacin effects on the transition temperature (Tm) of lipids and on the mobility of phosphate head groups using Attenuated Total Reflection Fourier Transform Infrared-Red Spectroscopy (ATR-FTIR) and 31P Nuclear Magnetic Resonance (NMR) respectively. In the presence of ciprofloxacin we observed a dose-dependent increase of the size of the DPPG liposomes whereas no effect was evidenced for DPPC liposomes. The binding constants Kapp were in the order of 105 M− 1 and the affinity appeared dependent on the negative charge of liposomes: DPPG > DOPC:DPPG (1:1; M:M) > DPPC > DOPC:DPPC (1:1; M:M). As compared to the control samples, the chemical shift anisotropy (Δσ) values determined by 31P NMR showed an increase of 5 and 9 ppm for DPPC:CIP (1:1; M:M) and DPPG:CIP (1:1; M:M) respectively. ATR-FTIR experiments showed that ciprofloxacin had no effect on the Tm of DPPC but increased the order of the acyl chains both below and above this temperature. In contrast, with DPPG, ciprofloxacin induced a marked broadening effect on the transition with a decrease of the acyl chain order below its Tm and an increase above this temperature. Altogether with the results from the conformational analysis, these data demonstrated that the interactions of ciprofloxacin with lipids depend markedly on the nature of their phosphate head groups and that ciprofloxacin interacts preferentially with anionic lipid compounds, like phosphatidylglycerol, present at a high content in these membranes.  相似文献   

4.
X-ray diffuse scattering was measured from oriented stacks and unilamellar vesicles of dioleoylphosphatidylcholine lipid bilayers to obtain the temperature dependence of the structure and of the material properties. The area/molecule, A, was 75.5 Å2 at 45°C, 72.4 Å2 at 30°C, and 69.1 Å2 at 15°C, which gives the area expansivity αA = 0.0029/deg at 30°C, and we show that this value is in excellent agreement with the polymer brush theory. The bilayer becomes thinner with increasing temperature; the contractivity of the hydrocarbon portion was αDc = 0.0019/deg; the difference between αA and αDc is consistent with the previously measured volume expansivity αVc = 0.0010/deg. The bending modulus KC decreased as exp(455/T) with increasing T (K). Our area compressibility modulus KA decreased with increasing temperature by 5%, the same as the surface tension of dodecane/water, in agreement again with the polymer brush theory. Regarding interactions between bilayers, the compression modulus B as a function of interbilayer water spacing DW was found to be nearly independent of temperature. The repulsive fluctuation pressure calculated from B and KC increased with temperature, and the Hamaker parameter for the van der Waals interaction was nearly independent of temperature; this explains why the fully hydrated water spacing, DW, that we obtain from our structural results increases with temperature.  相似文献   

5.
Polarization analysis was used to separate experimentally the coherent and spin-incoherent nuclear static scattering functions, from a representative set of samples of interest for protein studies. This method had so far limited application in the study of amorphous materials, despite the relevance of the information that it provides. It allows, for instance, the experimental determination of the structure factor of materials containing a significant amount of hydrogen atoms, avoiding the contamination of measurements by a non-negligible incoherent background. Knowledge of the relative importance of the coherent and incoherent terms at different Q-values is also a pre-requisite for the interpretation of quasielastic neutron scattering experiments, performed at instruments in which the total dynamic scattering function is measured, such as conventional time-of-flight and backscattering spectrometers. Combining data from different instruments, it was possible to cover a wide Q-range, from the small-angle region (0.006 < Q < 0.04 Å− 1) to the wide-angle region (up to ≈ 2.35 Å− 1). Quantitative information was obtained on the fraction of coherent to spin-incoherent scattering from different protein samples: deuterated and protonated protein powders at different hydration levels and solutions of protonated proteins in D2O at different concentrations. The results obtained are discussed in the context of the validity of the assumptions generally made when interpreting quasielastic neutron scattering experiments performed without polarization analysis.  相似文献   

6.
We study fully hydrated bilayers of two di-monounsaturated phospholipids diC18:1PC (DOPC) and diC22:1PC with varying amounts of alamethicin (Alm). We combine the use of X-ray diffuse scattering and molecular dynamics simulations to determine the orientation of alamethicin in model lipids. Comparison of the experimental and simulated form factors shows that Alm helices are inserted transmembrane at high humidity and high concentrations, in agreement with earlier results. The X-ray scattering data and the MD simulations agree that membrane thickness changes very little up to 1/10 Alm/DOPC. In contrast, the X-ray data indicate that the thicker diC22:1PC membrane thins with added Alm, a total decrease in thickness of 4 Å at 1/10 Alm/diC22:1PC. The different effect of Alm on the thickness changes of the two bilayers is consistent with Alm having a hydrophobic thickness close to the hydrophobic thickness of 27 Å for DOPC; Alm is then mismatched with the 7 Å thicker diC22:1PC bilayer. The X-ray data indicate that Alm decreases the bending modulus (KC) by a factor of ∼ 2 in DOPC and a factor of ∼ 10 in diC22:1PC membranes (P/L ∼ 1/10). The van der Waals and fluctuational interactions between bilayers are also evaluated through determination of the anisotropic B compressibility modulus.  相似文献   

7.
We used wide angle x-ray scattering (WAXS) from stacks of oriented lipid bilayers to measure chain orientational order parameters and lipid areas in model membranes consisting of mixtures of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/cholesterol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/cholesterol in fluid phases. The addition of 40% cholesterol to either DOPC or DPPC changes the WAXS pattern due to an increase in acyl chain orientational order, which is one of the main properties distinguishing the cholesterol-rich liquid-ordered (Lo) phase from the liquid-disordered (Ld) phase. In contrast, powder x-ray data from multilamellar vesicles does not yield information about orientational order, and the scattering from the Lo and Ld phases looks similar. An analytical model to describe the relationship between the chain orientational distribution and WAXS data was used to obtain an average orientational order parameter, Sx-ray. When 40% cholesterol is added to either DOPC or DPPC, Sx-ray more than doubles, consistent with previous NMR order parameter measurements. By combining information about the average chain orientation with the chain-chain correlation spacing, we extended a commonly used method for calculating areas for gel-phase lipids to fluid-phase lipids and obtained agreement to within 5% of literature values.  相似文献   

8.
A galactose-specific seed lectin from Spatholobous parviflorus (SPL) has been purified, crystallized and its X-ray structure solved. It is the first lectin purified and crystallized from the genus Spatholobus (family: Fabaceae). The crystals belong to the space group P1, with a = 60.792 Å, b = 60.998 Å, c = 78.179 Å, α = 78.68°, β = 88.62°, γ = 104.32°. The data were collected at 2.04 Å resolution under cryocondition, on a MAR image-plate detector system, mounted on a rotating anode X-ray generator. The coordinates of Dolichos biflorus lectin (1lu1) were successfully used for the structure solution by molecular replacement method. The primary structure of the SPL was not known earlier and it was unambiguously visible in the electron density. S. parviflorus lectin is a hetero-dimeric-tetramer with two alpha and two beta chains of 251 and 239 residues respectively. SPL has two metal ions, Ca2+ and Mn2+, bound to a loop region of each chain. The SPL monomers are in jelly roll form.  相似文献   

9.
The dependence of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) flip-flop kinetics on the lateral membrane pressure in a phospholipid bilayer was investigated by sum-frequency vibrational spectroscopy. Planar-supported lipid bilayers were prepared on fused silica supports using the Langmuir-Blodgett/Langmuir-Schaeffer technique, which allows precise control over the lateral surface pressure and packing density of the membrane. The lipid bilayer deposition pressure was varied from 28 to 42 mN/m. The kinetics of lipid flip-flop in these membranes was measured by sum-frequency vibrational spectroscopy at 37°C. An order-of-magnitude difference in the rate constant for lipid translocation (10.9 × 10−4 s−1 to 1.03 × 10−4 s−1) was measured for membranes prepared at 28 mN/m and 42 mN/m, respectively. This change in rate results from only a 7.4% change in the packing density of the lipids in the bilayer. From the observed kinetics, the area of activation for native phospholipid flip-flop in a protein-free DPPC planar-supported lipid bilayer was determined to be 73 ± 12 Å2/molecule at 37°C. Significance of the observed activation area and potential future applications of the technique to the study of phospholipid flip-flop are discussed.  相似文献   

10.
Small-angle neutron scattering (SANS) experiments were performed on unilamellar 1,2-dimyristoylphosphatidylcholine (DMPC) vesicles prepared in heavy water by extrusion through polycarbonate filters with 500 Å pores. The data obtained at 30±0.1 °C were evaluated using a five-strip function model of the bilayer coherent neutron scattering length density, three different approximate form factors describing scattering from vesicles, and different methods of evaluation of the experimental data. It is shown that the results obtained from the SANS data in the range of scattering vector values 0.0316 Å–1<q<0.0775 Å–1 are not sensitive to the vesicle form factor, nor to the evaluation method. Using the hollow sphere model of vesicles convoluted with the Gaussian distribution of their sizes, a constrained bilayer polar region thickness of 9 Å and a DMPC headgroup volume of 325.5 Å3, it was possible to obtain from the experimental data the DMPC surface area as 58.9±0.8 Å2, the bilayer thickness as 44.5±0.3 Å and the number of water molecules as 6.8±0.2 per DMPC located in the bilayer polar region.  相似文献   

11.
Diflorasone diacetate, a steroid anti-inflammatory drug (marketed as Diacort® or Florone® by Pfizer) and used in the treatment of skin disorders, can be prepared as anhydrous form, DD1 (as deposited in the US pharmacopoeia), or as a monohydrated phase, DDW. Heating the DDW form above 90 °C, a mixture of DD1 and of a new anhydrous polymorph, DD2 is obtained. Further heating of this mixture, or of pure DD1, up to 230 °C (only a few degrees before melting!), generates an elusive anhydrous DD3 polymorph. Their crystal structures, determined uniquely from laboratory powder diffraction data, show the isomorphous character of the DDW and DD1 forms, while the DD2 and DD3 polymorphs crystallize with markedly different unit cells. Crystals of the DD1, DD2 and DDW forms are orthorhombic, P212121, a = 29.386(1) Å; b = 10.4310(9) Å, c = 8.1422(7) Å, V = 2495.8(3) Å3 for DD1; a = 15.2639(10) Å; b = 11.7506(7) Å, c = 13.8931(11) Å, V = 2491.9(3) Å3 for DD2; a = 30.311(2) Å; b = 10.6150(9) Å, c = 7.9337(7) Å, V = 2552.7(4) Å3 for DDW; while the lattice parameters for the monoclinic P21DD3 species are a = 11.5276(10) Å; b = 13.8135(11) Å, c = 7.8973(7) Å, β = 103.053(6)°, V = 1225.0(2) Å3. These compounds have also been fully characterized by thermo analytical methods, as well by 13C, 19F, and 1H NMR spectroscopy.  相似文献   

12.
The structure of aggregates formed due to DNA interaction with dioleoylphosphatidylcholine (DOPC) vesicles in presence of Ca2+ and Mg2+ cations was investigated using synchrotron small-angle X-ray diffraction. For DOPC/DNA = 1:1 mol/base and in the range of concentration of the cation2+ 0-76.5 mM, the diffractograms show the coexistence of two lamellar phases: Lx phase with repeat distance dLx ∼ 8.26-7.39 nm identified as a phase where the DNA strands are intercalated in water layers between adjacent lipid bilayers, and LDOPC phase with repeat distance dDOPC ∼ 6.45-5.65 nm identified as a phase of partially dehydrated DOPC bilayers without any divalent cations and DNA strands. The coexistence of these phases was investigated as a function of DOPC/DNA molar ratio, length of DNA fragments and temperature. If the amount of lipid increases, the fraction of partially dehydrated LDOPC phase is limited, depends on the portion of DNA in the sample and also on the length of DNA fragments. Thermal behaviour of DOPC + DNA + Ca2+ aggregates was investigated in the range 20-80 °C. The transversal thermal expansivities of both phases were evaluated.  相似文献   

13.
The elastic properties of membrane bilayers are key parameters that control its deformation and can be affected by pharmacological agents. Our previous atomic force microscopy studies revealed that the macrolide antibiotic, azithromycin, leads to erosion of DPPC domains in a fluid DOPC matrix [A. Berquand, M. P. Mingeot-Leclercq, Y. F. Dufrene, Real-time imaging of drug-membrane interactions by atomic force microscopy, Biochim. Biophys. Acta 1664 (2004) 198-205.]. Since this observation could be due to an effect on DOPC cohesion, we investigated the effect of azithromycin on elastic properties of DOPC giant unilamellar vesicles (GUVs). Microcinematographic and morphometric analyses revealed that azithromycin addition enhanced lipid membranes fluctuations, leading to eventual disruption of the largest GUVs. These effects were related to change of elastic moduli of DOPC, quantified by the micropipette aspiration technique. Azithromycin decreased both the bending modulus (kc, from 23.1 ± 3.5 to 10.6 ± 4.5 kBT) and the apparent area compressibility modulus (Kapp, from 176 ± 35 to 113 ± 25 mN/m). These data suggested that insertion of azithromycin into the DOPC bilayer reduced the requirement level of both the energy for thermal fluctuations and the stress to stretch the bilayer. Computer modeling of azithromycin interaction with DOPC bilayer, based on minimal energy, independently predicted that azithromycin (i) inserts at the interface of phospholipid bilayers, (ii) decreases the energy of interaction between DOPC molecules, and (iii) increases the mean surface occupied by each phospholipid molecule. We conclude that azithromycin inserts into the DOPC lipid bilayer, so as to decrease its cohesion and to facilitate the merging of DPPC into the DOPC fluid matrix, as observed by atomic force microscopy. These investigations, based on three complementary approaches, provide the first biophysical evidence for the ability of an amphiphilic antibiotic to alter lipid elastic moduli. This may be an important determinant for drug: lipid interactions and cellular pharmacology.  相似文献   

14.
Ring coupled bimetallic derivatives (μ-η5:5-C5H4C5H4)[Nb(CO)4]2 and [μ-CH25-C5H4)2][M(CO)4]2, where M = Nb and Ta have been prepared. The molecular structures of the latter two compounds have been determined: , triclinic, , a = 8.028(2) Å, b = 11.414(1) Å, c = 12.711(2) Å, α = 75.020(8)°, β = 80.34(2)°, γ = 79.46(2)°, V = 1097.3(4) Å3, Z = 2, R(F) = 2.79%; [μ-CH25-C5H4)2][Ta(CO)4]2, triclinic, , a = 7.815(3) Å, b = 10.275(4) Å, c = 13.135(4) Å, α = 104.25(3)°, β = 100.26(4)°, γ = 96.86(3)°, V = 991.2(6) Å3, Z = 2, R(F) = 3.00%.  相似文献   

15.
The influence of a mammalian sterol cholesterol and a plant sterol β-sitosterol on the structural parameters and hydration of bilayers in unilamellar vesicles made of monounsaturated diacylphosphatidylcholines (diCn:1PC, n = 14-22 is the even number of acyl chain carbons) was studied at 30 °C using small-angle neutron scattering (SANS). Recently published advanced model of lipid bilayer as a three-strip structure was used with a triangular shape of polar head group probability distribution (Ku?erka et al., Models to analyze small-angle neutron scattering from unilamellar lipid vesicles, Physical Review E 69 (2004) Art. No. 051903). It was found that 33 mol% of both sterols increased the thickness of diCn:1PC bilayers with n = 18-22 similarly. β-sitosterol increased the thickness of diC14:1PC and diC16:1PC bilayers a little more than cholesterol. Both sterols increased the surface area per unit cell by cca 12 Å2 and the number of water molecules located in the head group region by cca 4 molecules, irrespective to the acyl chain length of diCn:1PC. The structural difference in the side chain between cholesterol and β-sitosterol plays a negligible role in influencing the structural parameters of bilayers studied.  相似文献   

16.
Two new inorganic-organic hybrid polymers [ClBzQl]2[Cd(SCN)3.5Br0.5]·0.25H2O (1) and [ClBzMePy][Cd(SCN)3] (2) (ClBzQl = 1-(4′-Cl-benzyl)quinolinium cation and ClBzMePy = 1-(4′-Cl-benzyl)-2-methylpyridinium cation) have been synthesized and characterized by IR, UV, elemental analysis and X-ray crystallography. Crystal structure analyses show that two polymers belong to the monoclinic space group P2/n (1) and P21/c (2) with a = 18.548(2) Å, b = 9.526(1) Å, c = 20.689(2) Å, β = 94.008(1)°, V = 3646.6(5) Å3 for 1, and a = 11.195(2) Å, b = 16.415(3) Å, c = 10.751(2) Å, β = 102.930(3)°, V = 1925.7(7) Å3 for 2. The Cd atom exhibits a distorted octahedral coordination geometry for 1 and 2. For 1, a pair of 1,1-μ-SCN anions and a pair of 1,3-μ-SCN anions are alternately bridge adjacent Cd centers to form infinite polymeric chains. For 2, adjacent Cd atoms are linked by three 1,3-μ-SCN anions to form infinite [Cd(SCN)3] polymeric chains. The luminescent properties of the two polymers in the solid state at room temperature were investigated.  相似文献   

17.
Yellow thallium(I)-tetra(2-butanethiolato)-thallium(III) Tl[Tl(SC4H9)4] (1) crystallizes from a solution of thallium(I) carbonate and 2-butanethiol in DMF after heating under reflux in air. In the crystal structure (space group: , a = 8.941(3) Å, b = 11.078(4) Å, c = 13.458(4) Å, α = 70.81(3)°, β = 83.65(3)°, γ = 74.78(3)°, Z = 2) regular, TlS4 tetrahedra are bridged by thallium(I) atoms to an one-dimensional framework. The thallium(I) atoms are in fivefold distorted coordination and are linked to four further TlS4 tetrahedra. The resulting Tl4(S-Bu)8 units consist of two face-sharing Tl3S4 defect cubane entities.TlSC3H7 (2) was obtained from a solution of thallium(I) carbonate and 2-propanethiol in DMF after heating under reflux in air. The crystal structure (space group C2/c, a = 22.501(5) Å, b = 10.360(2) Å, c = 12.760(3) Å, β = 107.92(2)°, Z = 16) contains novel [Tl4(SPr)5] units which are linked via thallium atoms to one-dimensional molecular chains running parallel to [0 0 1].  相似文献   

18.
We studied the periodicity of the multilamellar membrane system of granal chloroplasts in different isolated plant thylakoid membranes, using different suspension media, as well as on different detached leaves and isolated protoplasts—using small-angle neutron scattering. Freshly isolated thylakoid membranes suspended in isotonic or hypertonic media, containing sorbitol supplemented with cations, displayed Bragg peaks typically between 0.019 and 0.023 Å− 1, corresponding to spatially and statistically averaged repeat distance values of about 275–330 Å. Similar data obtained earlier led us in previous work to propose an origin from the periodicity of stroma thylakoid membranes. However, detached leaves, of eleven different species, infiltrated with or soaked in D2O in dim laboratory light or transpired with D2O prior to measurements, exhibited considerably smaller repeat distances, typically between 210 and 230 Å, ruling out a stromal membrane origin. Similar values were obtained on isolated tobacco and spinach protoplasts. When NaCl was used as osmoticum, the Bragg peaks of isolated thylakoid membranes almost coincided with those in the same batch of leaves and the repeat distances were very close to the electron microscopically determined values in the grana. Although neutron scattering and electron microscopy yield somewhat different values, which is not fully understood, we can conclude that small-angle neutron scattering is a suitable technique to study the periodic organization of granal thylakoid membranes in intact leaves under physiological conditions and with a time resolution of minutes or shorter. We also show here, for the first time on leaves, that the periodicity of thylakoid membranes in situ responds dynamically to moderately strong illumination. This article is part of a Special Issue entitled: Photosynthesis research for sustainability: Keys to produce clean energy.  相似文献   

19.
The ribosome inactivating proteins (RIPs) of type 1 are plant toxins that eliminate adenine base selectively from the single stranded loop of rRNA. We report six crystal structures, type 1 RIP from Momordica balsamina (A), three in complexed states with ribose (B), guanine (C) and adenine (D) and two structures of MbRIP-1 when crystallized with adenosine triphosphate (ATP) (E) and 2′-deoxyadenosine triphosphate (2′-dATP) (F). These were determined at 1.67 Å, 1.60 Å, 2.20 Å, 1.70 Å, 2.07 Å and 1.90 Å resolutions respectively. The structures contained, (A) unbound protein molecule, (B) one protein molecule and one ribose sugar, (C) one protein molecule and one guanine base, (D) one protein molecule and one adenine base, (E) one protein molecule and one ATP-product adenine molecule and (F) one protein molecule and one 2′-dATP-product adenine molecule. Three distinct conformations of the side chain of Tyr70 were observed with (i) χ1 = − 66°and χ2 = 165° in structures (A) and (B); (ii) χ1 = − 95° and χ2 = 70° in structures (C), (D) and (E); and (iii) χ1 = − 163° and χ2 = 87° in structure (F). The conformation of Tyr70 in (F) corresponds to the structure of a conformational intermediate. This is the first structure which demonstrates that the slow conversion of DNA substrates by RIPs can be trapped during crystallization.  相似文献   

20.
Despite the well-known functional importance of GroEL-GroES complex formation during the chaperonin cycle, the stoichiometry of the complex has not been clarified. The complex can occur either as an asymmetric 1:1 GroEL-GroES complex or as a symmetric 1:2 GroEL-GroES complex, although it remains uncertain which type is predominant under physiological conditions. To resolve this question, we studied the structure of the GroEL-GroES complex under physiological conditions by small-angle x-ray scattering, which is a powerful technique to directly observe the structure of the protein complex in solution. We evaluated molecular structural parameters, the radius of gyration and the maximum dimension of the complex, from the x-ray scattering patterns under various nucleotide conditions (3 mM ADP, 3 mM ATPγS, and 3 mM ATP in 10 mM MgCl2 and 100 mM KCl) at three different temperatures (10°C, 25°C, and 37°C). We then compared the experimentally observed scattering patterns with those calculated from the known x-ray crystallographic structures of the GroEL-GroES complex. The results clearly demonstrated that the asymmetric complex must be the major species stably present in solution under physiological conditions. On the other hand, in the presence of ATP (3 mM) and beryllium fluoride (10 mM NaF and 300 μM BeCl2), we observed the formation of a stable symmetric complex, suggesting the existence of a transiently formed symmetric complex during the chaperonin cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号