首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

Binding affinity for human serum albumin (HSA) is one of the most important factors affecting the distribution and free blood concentration of many ligands. The effect of fatty acids (FAs) on HSA-ligand binding has long been studied. Since the elucidation of the 3-dimensional structure of HSA, molecular simulation approaches have been applied to studies of the structure–function relationship of HSA–FA binding.

Scope of review

We review current insights into the effects of FA binding on HSA, focusing on the biophysical insights obtained using molecular simulation approaches such as docking, molecular dynamics (MD), and binding free energy calculations.

Major conclusions

Possible conformational changes on binding of FA molecules to HSA have been observed through MD simulations. High- and low-affinity FA-binding sites on HSA have been identified based on binding free energy calculations. The relationship between the warfarin binding affinity of HSA and FA molecules has been clarified based on the results of simulations of multi-site FA binding that cannot be experimentally observed.

General significance

Molecular simulation approaches have great potentials to provide detailed biophysical insights into HSA as well as the effects of the binding of FAs or other ligands to HSA. This article is part of a Special Issue entitled Serum Albumin.  相似文献   

2.
3.
Human serum albumin (HSA) is the most abundant protein of blood serum, involved in the transport of metal ions, including Co(II). Using circular dichroism spectroscopic titrations we characterized three distinct Co(II) binding sites in HSA. Applying Cu(II), Ni(II) and Cd(II) ions as competitors we determined that these sites are identical with three binding sites known for other metal ions. We ordered these sites according to their binding affinities as cadmium site B (CdB) > multi-metal binding site (MBS) > N-terminal binding site (NTS). Using isothermal titration calorimetry (ITC) we confirmed the presence of these three binding sites and determined their conditional binding constants at pH 7.4 as 9 ± 5, 1.1 ± 0.5, and 0.9 ± 0.3 × 104 M−1, respectively. The impact of these results on the albumin cobalt binding (ACB) clinical assay for myocardial ischemia is discussed.  相似文献   

4.
Cannabis is the most commonly used illicit drug worldwide. Cannabis users also appear to use other psychoactive drugs more frequently than noncannabis users. Here, Δ9-tetrahydrocannabinol (THC) and diazepam binding to human serum albumin (HSA) and HSA-heme is reported. THC binds to two different binding sites of HSA (K(d1) ≤ 10(-7) M and K(d2) = 10(-3)M) without affecting diazepam binding (K(d) = 1.2 × 10(-5) M). THC binding to the high-affinity site accounts for the low free fraction of the drug in plasma. Moreover, THC increases the affinity of heme for HSA. Accordingly, the affinity of THC for HSA-heme is higher than that for HSA. THC could bind to FA2 and FA7 sites, as substantiated by docking simulations; nevertheless, the observed allosteric effect(s) suggests that the primary binding site of THC is the FA2 cleft that positively modulates heme affinity. Possibly, the HSA conformational transition(s) induced by THC binding could account for drug delivery to the liver through receptor- mediated endocytosis.  相似文献   

5.
Acetohexamide is a drug used to treat type II diabetes and is tightly bound to the protein human serum albumin (HSA) in the circulation. It has been proposed that the binding of some drugs with HSA can be affected by the non-enzymatic glycation of this protein. This study used high-performance affinity chromatography to examine the changes in acetohexamide–HSA binding that take place as the glycation of HSA is increased. It was found in frontal analysis experiments that the binding of acetohexamide to glycated HSA could be described by a two-site model involving both strong and weak affinity interactions. The average association equilibrium constant (Ka) for the high affinity interactions was in the range of 1.2–2.0 × 105 M−1 and increased in moving from normal HSA to HSA with glycation levels that might be found in advanced diabetes. It was found through competition studies that acetohexamide was binding at both Sudlow sites I and II on the glycated HSA. The Ka for acetohexamide at Sudlow site I increased by 40% in going from normal HSA to minimally glycated HSA but then decreased back to near-normal values in going to more highly glycated HSA. At Sudlow site II, the Ka for acetohexamide first decreased by about 40% and then increased in going from normal HSA to minimally glycated HSA and more highly glycated HSA. This information demonstrates the importance of conducting both frontal analysis and site-specific binding studies in examining the effects of glycation on the interactions of a drug with HSA.  相似文献   

6.
Binding affinities of flavonols namely quercetin, myricetin, and kaempferol to human serum albumin (HSA) were determined fluorimetrically and the order was observed to be myricetin > quercetin > kaempferol demonstrating structure–activity relationship. Quercetin-coated silver nanoparticles (AgNPs) show higher binding affinity to HSA compared to free quercetin with binding constants 6.04 × 107 M?1 and 4.2 × 106 M?1, respectively. Using site-specific markers it is concluded that free quercetin and that coated on AgNPs bind at different sites. Significant structural changes in circular dichroism (CD) spectra of HSA were recorded with quercetin-coated AgNPs compared to free quercetin. These results were further substantiated by time-resolved fluorescence spectroscopy where fluorescence life time of the tryptophan residue in HSA–quercetin-coated AgNPs complex decreased to 3.63 ns from 4.22 ns in HSA–quercetin complex. Isothermal calorimetric studies reveal two binding modes for quercetin-coated AgNPs and also higher binding constants compared to free quercetin. These higher binding affinities are attributed to altered properties of quercetin when coated on AgNPs enabling it to reach the binding sites other than site II where free quercetin mainly binds.  相似文献   

7.
Sulfonylurea drugs are often prescribed as a treatment for type II diabetes to help lower blood sugar levels by stimulating insulin secretion. These drugs are believed to primarily bind in blood to human serum albumin (HSA). This study used high-performance affinity chromatography (HPAC) to examine the binding of sulfonylureas to HSA. Frontal analysis with an immobilized HSA column was used to determine the association equilibrium constants (Ka) and number of binding sites on HSA for the sulfonylurea drugs acetohexamide and tolbutamide. The results from frontal analysis indicated HSA had a group of relatively high-affinity binding regions and weaker binding sites for each drug, with average Ka values of 1.3 (±0.2) × 105 and 3.5 (±3.0) × 102 M−1 for acetohexamide and values of 8.7 (±0.6) × 104 and 8.1 (±1.7) × 103 M−1 for tolbutamide. Zonal elution and competition studies with site-specific probes were used to further examine the relatively high-affinity interactions of these drugs by looking directly at the interactions that were occurring at Sudlow sites I and II of HSA (i.e., the major drug-binding sites on this protein). It was found that acetohexamide was able to bind at both Sudlow sites I and II, with Ka values of 1.3 (±0.1) × 105 and 4.3 (±0.3) × 104 M−1, respectively, at 37 °C. Tolbutamide also appeared to interact with both Sudlow sites I and II, with Ka values of 5.5 (±0.2) × 104 and 5.3 (±0.2) × 104 M−1, respectively. The results provide a more quantitative picture of how these drugs bind with HSA and illustrate how HPAC and related tools can be used to examine relatively complex drug–protein interactions.  相似文献   

8.
The physical-chemical properties of humic acid fractions (HA) derived from urban sludge (CUS) and cattle manure (CCM) composts, and agricultural soil (FS) fertilised with sludge for ten years, were initially explored by elemental analysis, UV-Vis, FTIR and fluorescence. These properties were then compared with reference HA of terrestrial (SO) and aquatic (SR). To correlate the chemical properties and the reactivity of these HA, the binding of Cd(II) was investigated by fluorescence quenching techniques (FQ). Indeed, fluorescence spectroscopy has been proven to be a powerful tool in discriminating the origin, chemical features and degree of humification of naturally occurring organic matter. The HA compost exhibited higher N content, smaller molecular size and lower aromaticity than the reference HA. In addition, the CUS sample showed clear evidence of impurities, most likely of microbial origin, which was not evident in the FS sample (i.e. during its further evolution/humification in soil). The quenching effect of Cd(II) is adequately described by a modified Stern-Volmer equation, which is based on two population fluorophores, one not being accessible. The resulting Cd-HA logK (conditional association constants) decreased in the order SO > CUS > FS > CCM > SR, thus reflecting the relative binding affinity. A similar order was found for the corresponding Cd(II) capacity, which is based on total Cd content in Cd-humate precipitates. Lastly, fluorescence analysis of the soluble and insoluble fractions clearly revealed the fluorophores most involved in the binding process. In conclusion, our work provides evidence that compost is a reservoir of “humic-like” material capable of compensating for any organic carbon deficit in soil and lessening the effect of inorganic pollutants.  相似文献   

9.
Human serum albumin (HSA) is the most prevalent protein in the blood plasma which binds an array of exogenous compounds. Drug binding to HSA is an important consideration when developing new therapeutic molecules, and it also aids in understanding the underlying mechanisms that govern their pharmacological effects. This study aims to investigate the molecular binding of coronavirus disease 2019 (COVID-19) therapeutic candidate molecules to HSA and to identify their putative binding sites. Binding energies and interacting residues were used to evaluate the molecular interaction. Four drug candidate molecules (β-D-N4-hydroxycytidine, Chloroquine, Disulfiram, and Carmofur) demonstrate weak binding to HSA, with binding energies ranging from −5 to −6.7 kcal/mol. Ivermectin, Hydroxychloroquine, Remdesivir, Arbidol, and other twenty drug molecules with binding energies ranging from −6.9 to −9.5 kcal/mol demonstrated moderate binding to HSA. The strong HSA binding drug candidates consist of fourteen molecules (Saquinavir, Ritonavir, Dihydroergotamine, Daclatasvir, Paritaprevir etc.) with binding energies ranging from −9.7 to −12.1 kcal/mol. All these molecules bind to different HSA subdomains (IA, IB, IIA, IIB, IIIA, and IIIB) through molecular forces such as hydrogen bonds and hydrophobic interactions. Various pharmacokinetic properties (gastrointestinal absorption, blood-brain barrier permeation, P-glycoprotein substrate, and cytochrome P450 inhibitor) of each molecule were determined using SwissADME program. Further, the stability of the HSA-ligand complexes was analyzed through 100 ns molecular dynamics simulations considering various geometric properties. The binding free energy between free HSA and compounds were calculated using Molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) and molecular mechanics generalized Born surface area (MM/GBSA) approach. The findings of this study might be useful in understanding the mechanism of COVID-19 drug candidates binding to serum albumin protein, as well as their pharmacodynamics and pharmacokinetics.Keyword: Human serum albumin, HAS, Serum protein, COVID-19, Molecular docking, Molecular dynamics simulation, Pharmacokinetics, Pharmacodynamics  相似文献   

10.
STARD5 is a member of the STARD4 sub-family of START domain containing proteins specialized in the non-vesicular transport of lipids and sterols. We recently reported that STARD5 binds primary bile acids. Herein, we report on the biophysical and structural characterization of the binding of secondary and conjugated bile acids by STARD5 at physiological concentrations. We found that the absence of the 7α-OH group and its epimerization increase the affinity of secondary bile acids for STARD5. According to NMR titration and molecular modeling, the affinity depends mainly on the number and positions of the steroid ring hydroxyl groups and to a lesser extent on the presence or type of bile acid side-chain conjugation. Primary and secondary bile acids have different binding modes and display different positioning within the STARD5 binding pocket. The relative STARD5 affinity for the different bile acids studied is: DCA > LCA > CDCA > GDCA > TDCA > CA > UDCA. TCA and GCA do not bind significantly to STARD5. The impact of the ligand chemical structure on the thermodynamics of binding is discussed. The discovery of these new ligands suggests that STARD5 is involved in the cellular response elicited by bile acids and offers many entry points to decipher its physiological role.  相似文献   

11.
Human serum albumin (HSA) is best known for its extraordinary ligand binding capacity. HSA has a high affinity for heme and is responsible for the transport of medium and long chain fatty acids. Here, we report myristate binding to the N and B conformational states of Mn(III)heme-HSA (i.e. at pH 7.0 and 10.0, respectively) as investigated by optical absorbance and NMR spectroscopy. At pH 7.0, Mn(III)heme binds to HSA with lower affinity than Fe(III)heme, and displays a water molecule coordinated to the metal. Myristate binding to a secondary site FAx, allosterically coupled to the heme site, not only increases optical absorbance of Mn(III)heme-bound HSA by a factor of approximately three, but also increases the Mn(III)heme affinity for the fatty acid binding site FA1 by 10-500-fold. Cooperative binding appears to occur at FAx and accessory myristate binding sites. The conformational changes of the Mn(III)heme-HSA tertiary structure allosterically induced by myristate are associated with a noticeable change in both optical absorbance and NMR spectroscopic properties of Mn(III)heme-HSA, allowing the Mn(III)-coordinated water molecule to exchange with the solvent bulk. At pH = 10.0 both myristate affinity for FAx and allosteric modulation of FA1 are reduced, whereas cooperation of accessory sites and FAx is almost unaffected. Moreover, Mn(III)heme binds to HSA with higher affinity than at pH 7.0 even in the absence of myristate, and the metal-coordinated water molecule is displaced. As a whole, these results suggest that FA binding promotes conformational changes reminiscent of N to B state HSA transition, and appear of general significance for a deeper understanding of the allosteric modulation of ligand binding properties of HSA.  相似文献   

12.
Human serum albumin (HSA), the most prominent protein in plasma, is best known for its exceptional ligand (e.g., heme and drugs) binding capacity. Here, the binding of chlorpropamide, digitoxin, furosemide, indomethacin, phenylbutazone, sulfisoxazole, and tolbutamide to HSA and ferric heme-HSA is reported. Moreover, ferric heme binding to HSA in the absence and presence of drugs has been investigated. Values of the association equilibrium constant for drug binding to Sudlow’s site I of ferric heme-HSA (ranging between 1.7 × 103 and 1.6 × 105 M−1) are lower by one order of magnitude than those for drug binding to ferric heme-free HSA (ranging between 1.9 × 104 and 1.8 × 106 M−1). According to linked functions, the value of the association equilibrium constant for heme binding to HSA decreases from 7.8 × 107 M−1, in the absence of drugs to 7.0 × 106 M−1, in the presence of drugs. These findings represent a clear-cut evidence for the allosteric inhibition of drug binding to HSA Sudlow’s site I by the heme. According to linked functions, drugs impair allosterically heme binding to HSA. These results appear to be relevant in the drug therapy and management.  相似文献   

13.
We report a method to enrich cysteinyl adducts of human serum albumin (HSA), representing biomarkers of exposure to systemic electrophiles. Because the major site of HSA adduction is the single free sulfhydryl group at Cys34, we used thiol-affinity resins to remove mercaptalbumin (i.e., unadducted HSA) from the cysteinyl adducts. Electrospray ionization mass spectrometry was used to detect mercaptalbumin and HSA-Cys34 modifications before and after enrichment of HSA. Differences in adduct content were detected across samples of freshly isolated, archived, and commercial HSA. Cysteinylated and glycosylated adducts were present in all samples, with abundances decreasing in the following order: commercial HSA > archived HSA > fresh HSA. After enrichment of HSA, mercaptalbumin was no longer observed in mass spectra. The ratios of HSA adducts post-/preenrichment, quantified via the Bradford assay and gel electrophoresis, were 0.029 mg adducts/mg HSA in fresh HSA and 0.323 mg adducts/mg HSA in archived HSA. The apparent elevation of adduct levels in archived samples could be due to differences in specimen preparation and storage rather than to differences in circulating HSA adducts. We conclude that thiol-affinity resins can efficiently remove mercaptalbumin from HSA samples prior to characterization and quantitation of protein adducts of reactive systemic electrophiles.  相似文献   

14.
Within the framework of a national scientific program named “MORtalités ESTivales de l'huître creuse Crassostrea gigas” (MOREST), a family-based experiment was developed to study the genetic basis of resistance to summer mortality in the Pacific oyster, Crassostrea gigas. As part of the MOREST project, the second generation of three resistant families and two susceptible families were chosen and pooled into two respective groups: “R” and “S”. These two groups of oysters were conditioned for 6 months on two food levels (4% and 12% of oyster soft-tissue dry weight in algal dry weight per day) with a temperature gradient that mimicked the Marennes-Oléron natural cycle during the oyster reproductive period. Oyster mortality remained low for the first two months, but then rapidly increased in July when seawater temperature reached 19 °C and above. Mortality was higher in “S” oysters than in “R” oysters, and also higher in oysters fed the 12% diet than those fed 4%, resulting in a decreasing, relative order in cumulative mortality as follows; 12% “S” > 12% “R” > 4% “S” > 4% “R”. Although the observed mortality rates were lower than those previously observed in the field, the mortality differential between “R” and “S” oysters was similar. Gonadal development, estimated by tissue lipid content, followed a relative order yielding a direct, positive relationship between reproductive effort and mortality as we reported precedently by quantitative histology. Regarding hemocyte parameters, one of the most striking observations was that reactive oxygen species (ROS) production was significantly higher in “S” oysters than in “R” oysters in May and June, regardless of food level. The absence of known environmental stress under these experimental conditions suggests that the ROS increase in “S” oyster could be related to their higher reproductive activity. Finally, a higher increase in hyalinocyte counts was observed for”S” oysters, compared to “R” oysters, in July, just before mortality. Taken together, our results suggest an association of genetically based resistance to summer mortality, reproductive strategy and hemocyte parameters.  相似文献   

15.
Bispecific antibody and antibody-like molecules are of wide interest as potential therapeutics that can recognize two distinct targets. Among the variety of ways such molecules have been engineered is by creating “knob” and “hole” heterodimerization sites in the CH3 domains of two antibody heavy chains. The molecules produced in this manner maintain their biological activities while differing very little from the native human IgG sequence. To better understand the knob-into-hole interface, the molecular mechanism of heterodimerization, and to engineer Fc domains that could improve the assembly and purity of heterodimeric reaction products, we sought crystal structures of aglycosylated heterodimeric and homodimeric “knob” and “hole” Fc fragments derived from bacterial expression. The structure of the knob-into-hole Fc was determined at 2.64 Å. Except for the sites of mutation, the structure is very similar to that of the native human IgG1 Fc, consistent with a heterodimer interaction kinetic KD of < 1 nM. Homodimers of the “knob” and “hole” mutants were also obtained, and their X-ray structures were determined at resolutions 2.5 Å and 2.1 Å, respectively. Both kinds of homodimers adopt a head-to-tail quaternary structure and thus do not contain direct knob/knob or hole/hole CH3 interactions. The head-to-tail arrangement was disfavored by adding site-directed mutations at F241 and F243 in the CH2 domains, leading to increases in both rate and efficiency of bispecific (heterodimer) assembly.  相似文献   

16.
Decrease in interstitial pH of the tumor stroma and over-expression of low density lipoprotein (LDL) receptors by several types of neoplastic cells have been suggested to be important determinants of selective retention of photosensitizers by proliferative tissues. The interactions of chlorin e6 (Ce6), a photosensitizer bearing three carboxylic groups, with plasma proteins and DOPC unilamellar vesicles are investigated by fluorescence spectroscopy. The binding constant to liposomes, with reference to the DOPC concentration, is 6 × 103 M− 1 at pH 7.4. Binding of Ce6 to LDL involves about ten high affinity sites close to the apoprotein and some solubilization in the lipid compartment. The overall association constant is 5.7 × 107 M− 1 at pH 7.4. Human serum albumin (HSA) is the major carrier (association constant 1.8 × 108 M− 1 at pH 7.4). Whereas the affinity of Ce6 for LDL and liposomes increases at lower pH, it decreases for albumin. Between pH 7.4 and 6.5, the relative affinities of Ce6 for LDL versus HSA, and for membranes versus HSA, are multiplied by 4.6 and 3.5, respectively. These effects are likely driven by the ionization equilibria of the photosensitizer carboxylic chains. Then, the cellular uptake of chlorin e6 may be facilitated by its pH-mediated redistribution within the tumor stroma.  相似文献   

17.
18.
The complexation of VO2+ ion with the high molecular mass components of the blood serum, human serum transferrin (hTf) and albumin (HSA), has been re-examined using EPR spectroscopy. In the case of transferrin, the results confirm those previously obtained, showing that VO2+ ion occupies three different binding sites, A, B1 and B2, distinguishable in the X-band anisotropic spectrum recorded in D2O. With albumin the results show that a dinuclear complex (VO)2dHSA is formed in equimolar aqueous solutions or with an excess of protein; in the presence of an excess of VO2+, the multinuclear complex (VO)xmHSA is the prevalent species, where x = 5-6 indicates the equivalents of metal ion coordinated by HSA. The structure of the dinuclear species is discussed and the donor atoms involved in the metal coordination are proposed on the basis of the measured EPR parameters. Two different binding modes of albumin can be distinguished varying the pH, with only one species being present at the physiological value. The results show that the previously named “strong” site is not the N-terminal copper binding site, and some hypothesis on the metal coordination is discussed, with the 51V Az values for the proposed donor sets obtained by DFT (density functional theory) calculations. Finally, preliminary results obtained in the ternary system VO2+/hTf/HSA are shown in order to determine the different binding strength of the two proteins. Due to the low VO2+ concentration used, the recording of the EPR spectra through the repeated acquisition of the weak signals is essential to obtain a good signal to noise ratio in these systems.  相似文献   

19.
The effect of non-ionic detergents on baclofen (GABAB-R agonist)-stimulated G-protein activity was measured as a [35S]GTPγS binding assay in the plasma membranes (PM) isolated from the brain tissue. The effect was clearly biphasic — a decrease in the activity was followed by an activation maximum and finally, at high concentrations, drastic inhibition of the G-protein activity was noticed. Contrarily, specific radioligand binding to GABAB-receptor was inhibited in the whole range of detergent concentrations step by step, i.e. it was strictly monophasic. The magnitude of both detergent effects was decreased in the same order of potency: Brij58 > Triton X-100 > Digitonin. The identical order was found when comparing detergents ability to alter fluorescence anisotropy of the membrane probe 1,6-diphenyl-1,3,5-hexatriene (rDPH) incorporated into the hydrophobic PM interior. Decrease of rDPH, in the order of Brij58 > Triton X-100 > Digitonin, was reflected as decrease of the S-order parameter and rotation correlation time ? paralleled by an increase of diffusion wobbling constant Dw (analysis by time-resolved fluorescence according to “wobble-in-cone” model). The influence of the detergents on the membrane organization at the polar headgroup region was characterized by Laurdan generalized polarization (GP). As before, the effect of detergents on GP parameters proceeded in the order: Brij58 > Triton X-100 > Digitonin.  相似文献   

20.
The inhibitory switch (IS) domain of p21-activated kinase 1 (PAK1) stabilizes full-length PAK1 in an inactive conformation by binding to the PAK1 kinase domain. Competitive binding of small guanosine triphosphatases to the IS domain disrupts the autoinhibitory interactions and exposes the IS domain binding site on the surface of the kinase domain. To build an affinity reagent that selectively binds the activated state of PAK1, we used molecular modeling to reengineer the isolated IS domain so that it was soluble and stable, did not bind to guanosine triphosphatases and bound more tightly to the PAK1 kinase domain. Three design strategies were tested: in the first and second cases, extension and redesign of the N-terminus were used to expand the hydrophobic core of the domain, and in the third case, the termini were redesigned to be adjacent in space so that the domain could be stabilized by insertion into a loop in a host cyan fluorescent protein (CFP). The best-performing design, called CFP-PAcKer, was based on the third strategy and bound the kinase domain of PAK1 with an affinity of 400 nM. CFP-PAcKer binds more tightly to a full-length variant of PAK1 that is stabilized in the “open” state (Kd = 3.3 μM) than to full-length PAK1 in the “closed” state (undetectable affinity), and binding can be monitored with fluorescence by placing an environmentally sensitive fluorescence dye on CFP-PAcKer adjacent to the binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号