首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Förster Resonance Energy Transfer (FRET) measured with Fluorescence Lifetime Imaging Microscopy (FLIM) is a powerful technique to investigate spatio-temporal regulation of protein-protein interactions in living cells. When using standard fitting methods to analyze time domain FLIM, the correct estimation of the FRET parameters requires a high number of photons and therefore long acquisition times which are incompatible with the observation of dynamic protein-protein interactions. Recently, non-fitting strategies have been developed for the analysis of FLIM images: the polar plot or “phasor” and the minimal fraction of interacting donor mfD. We propose here a novel non-fitting strategy based on the calculation of moments. We then compare the performance of these three methods when shortening the acquisition time: either by reducing the number of counted photons N or the number of temporal channels Nch, which is particularly adapted for the original fast-FLIM prototype presented in this work that employs the time gated approach. Based on theoretical calculations, Monte Carlo simulations and experimental data, we determine the domain of validity of each method. We thus demonstrate that the polar approach remains accurate for a large range of conditions (low N, Nch or small fractions of interacting donor fD). The validity domain of the moments method is more restricted (not applicable when fD<0.25 or when Nch = 4) but it is more precise than the polar approach. We also demonstrate that the mfD is robust in all conditions and it is the most precise strategy; although it does not strictly provide the fraction of interacting donor. We show using the fast-FLIM prototype (with an acquisition rate up to 1 Hz) that these non-fitting strategies are very powerful for on-line analysis on a standard computer and thus for quantifying automatically the spatio-temporal activation of Rac-GTPase in living cells by FRET.  相似文献   

2.
The fluorescent-protein based fluorescence resonance energy transfer (FRET) approach is a powerful method for quantifying protein-protein interactions in living cells, especially when combined with fluorescence lifetime imaging microscopy (FLIM). To compare the performance of different FRET couples for FRET-FLIM experiments, we first tested enhanced green fluorescent protein (EGFP) linked to different red acceptors (mRFP1-EGFP, mStrawberry-EGFP, HaloTag (TMR)-EGFP, and mCherry-EGFP). We obtained a fraction of donor engaged in FRET (fD) that was far from the ideal case of one, using different mathematical models assuming a double species model (i.e., discrete double exponential fixing the donor lifetime and double exponential stretched for the FRET lifetime). We show that the relatively low fD percentages obtained with these models may be due to spectroscopic heterogeneity of the acceptor population, which is partially caused by different maturation rates for the donor and the acceptor. In an attempt to improve the amount of donor protein engaged in FRET, we tested mTFP1 as a donor coupled to mOrange and EYFP, respectively. mTFP1 turned out to be at least as good as EGFP for donor FRET-FLIM experiments because 1), its lifetime remained constant during light-induced fluorescent changes; 2), its fluorescence decay profile was best fitted with a single exponential model; and 3), no photoconversion was detected. The fD value when combined with EYFP as an acceptor was the highest of all tandems tested (0.7). Moreover, in the context of fast acquisitions, we obtained a minimal fD (mfD) for mTFP1-EYFP that was almost two times greater than that for mCherry-EGFP (0.65 vs. 0.35). Finally, we compared EGFP and mTFP1 in a biological situation in which the fusion proteins were highly immobile, and EGFP and mTFP1 were linked to the histone H4 (EGFP-H4 and mTFP1-H4) in fast FLIM acquisitions. In this particular case, the fluorescence intensity was more stable for EGFP-H4 than for mTFP1-H4. Nevertheless, we show that mTFP1/EYFP stands alone as the best FRET-FLIM couple in terms of fD analysis.  相似文献   

3.
Numerous unimolecular, genetically-encoded Förster Resonance Energy Transfer (FRET) probes for monitoring biochemical activities in live cells have been developed over the past decade. As these probes allow for collection of high frequency, spatially resolved data on signaling events in live cells and tissues, they are an attractive technology for obtaining data to develop quantitative, mathematical models of spatiotemporal signaling dynamics. However, to be useful for such purposes the observed FRET from such probes should be related to a biological quantity of interest through a defined mathematical relationship, which is straightforward when this relationship is linear, and can be difficult otherwise. First, we show that only in rare circumstances is the observed FRET linearly proportional to a biochemical activity. Therefore in most cases FRET measurements should only be compared either to explicitly modeled probes or to concentrations of products of the biochemical activity, but not to activities themselves. Importantly, we find that FRET measured by standard intensity-based, ratiometric methods is inherently non-linear with respect to the fraction of probes undergoing FRET. Alternatively, we find that quantifying FRET either via (1) fluorescence lifetime imaging (FLIM) or (2) ratiometric methods where the donor emission intensity is divided by the directly-excited acceptor emission intensity (denoted Ralt) is linear with respect to the fraction of probes undergoing FRET. This linearity property allows one to calculate the fraction of active probes based on the FRET measurement. Thus, our results suggest that either FLIM or ratiometric methods based on Ralt are the preferred techniques for obtaining quantitative data from FRET probe experiments for mathematical modeling purposes.  相似文献   

4.
We have compared the performance of two Troponin-C-based calcium FRET sensors using fluorescence lifetime read-outs. The first sensor, TN-L15, consists of a Troponin-C fragment inserted between CFP and Citrine while the second sensor, called mTFP-TnC-Cit, was realized by replacing CFP in TN-L15 with monomeric Teal Fluorescent Protein (mTFP1). Using cytosol preparations of transiently transfected mammalian cells, we have measured the fluorescence decay profiles of these sensors at controlled concentrations of calcium using time-correlated single photon counting. These data were fitted to discrete exponential decay models using global analysis to determine the FRET efficiency, fraction of donor molecules undergoing FRET and calcium affinity of these sensors. We have also studied the decay profiles of the donor fluorescent proteins alone and determined the sensitivity of the donor lifetime to temperature and emission wavelength. Live-cell fluorescence lifetime imaging (FLIM) of HEK293T cells expressing each of these sensors was also undertaken. We confirmed that donor fluorescence of mTFP-TnC-Cit fits well to a two-component decay model, while the TN-L15 lifetime data was best fitted to a constrained four-component model, which was supported by phasor analysis of the measured lifetime data. If the constrained global fitting is employed, the TN-L15 sensor can provide a larger dynamic range of lifetime readout than the mTFP-TnC-Cit sensor but the CFP donor is significantly more sensitive to changes in temperature and emission wavelength compared to mTFP and, while the mTFP-TnC-Cit solution phase data broadly agreed with measurements in live cells, this was not the case for the TN-L15 sensor. Our titration experiment also indicates that a similar precision in determination of calcium concentration can be achieved with both FRET biosensors when fitting a single exponential donor fluorescence decay model to the fluorescence decay profiles. We therefore suggest that mTFP-based probes are more suitable for FLIM experiments than CFP-based probes.  相似文献   

5.
A method for spectral analysis of Förster resonance energy transfer (FRET) signals is presented, taking into consideration both the contributions of unpaired donor and acceptor fluorophores and the influence of incomplete labeling of the interacting partners. It is shown that spectral analysis of intermolecular FRET cannot yield accurate values of the Förster energy transfer efficiency E, unless one of the interactors is in large excess and perfectly labeled. Instead, analysis of donor quenching yields a product of the form Efdpa, where fd is the fraction of donor-type molecules participating in donor-acceptor complexes and pa is the labeling probability of the acceptor. Similarly, analysis of sensitized emission yields a product involving Efa. The analysis of intramolecular FRET (e.g., of tandem constructs) yields the product Epa. We use our method to determine these values for a tandem construct of cyan fluorescent protein and yellow fluorescent protein and compare them with those obtained by standard acceptor photobleaching and fluorescence lifetime measurements. We call the method lux-FRET, since it relies on linear unmixing of spectral components.  相似文献   

6.
We report what to our knowledge is a novel approach for simultaneous imaging of two different Förster resonance energy transfer (FRET) sensors in the same cell with minimal spectral cross talk. Previous methods based on spectral ratiometric imaging of the two FRET sensors have been limited by the availability of suitably bright acceptors for the second FRET pair and the spectral cross talk incurred when measuring in four spectral windows. In contrast to spectral ratiometric imaging, fluorescence lifetime imaging (FLIM) requires measurement of the donor fluorescence only and is independent of emission from the acceptor. By combining FLIM-FRET of the novel red-shifted TagRFP/mPlum FRET pair with spectral ratiometric imaging of an ECFP/Venus pair we were thus able to maximize the spectral separation between our chosen fluorophores while at the same time overcoming the low quantum yield of the far red acceptor mPlum. Using this technique, we could read out a TagRFP/mPlum intermolecular FRET sensor for reporting on small Ras GTP-ase activation in live cells after epidermal growth factor stimulation and an ECFP/Venus Cameleon FRET sensor for monitoring calcium transients within the same cells. The combination of spectral ratiometric imaging of ECFP/Venus and high-speed FLIM-FRET of TagRFP/mPlum can thus increase the spectral bandwidth available and provide robust imaging of multiple FRET sensors within the same cell. Furthermore, since FLIM does not require equal stoichiometries of donor and acceptor, this approach can be used to report on both unimolecular FRET biosensors and protein-protein interactions with the same cell.  相似文献   

7.
Protein-protein interactions can be studied in vitro, e.g. with bacterial or yeast two-hybrid systems or surface plasmon resonance. In contrast to in vitro techniques, in vivo studies of protein-protein interactions allow examination of spatial and temporal behavior of such interactions in their native environment. One approach to study protein-protein interactions in vivo is via Förster Resonance Energy Transfer (FRET). Here, FRET efficiency of selected FRET-pairs was studied at the single cell level using sensitized emission and Frequency Domain-Fluorescence Lifetime Imaging Microscopy (FD-FLIM). For FRET-FLIM, a prototype Modulated Electron-Multiplied FLIM system was used, which is, to the best of our knowledge, the first account of Frequency Domain FLIM to analyze FRET in single bacterial cells. To perform FRET-FLIM, we first determined and benchmarked the best fluorescent protein-pair for FRET in Bacillus subtilis using a novel BglBrick-compatible integration vector. We show that GFP-tagRFP is an excellent donor-acceptor pair for B. subtilis in vivo FRET studies. As a proof of concept, selected donor and acceptor fluorescent proteins were fused using a linker that contained a tobacco etch virus (TEV)-protease recognition sequence. Induction of TEV-protease results in loss of FRET efficiency and increase in fluorescence lifetime. The loss of FRET efficiency after TEV induction can be followed in time in single cells via time-lapse microscopy. This work will facilitate future studies of in vivo dynamics of protein complexes in single B. subtilis cells.  相似文献   

8.
Quantification of the intracellular equilibrium dissociation constant of the interaction, Kd, is challenging due to the variability of the relative concentrations of the interacting proteins in the cell. Fluorescence lifetime imaging microscopy (FLIM) of the donor provides an accurate measurement of the molecular fraction of donor involved in FRET, but the fraction of bound acceptor is also needed to reliably estimate Kd. We present a method that exploits the spectroscopic properties of the widely used eGFP – mCherry FRET pair to rigorously determine the intracellular Kd based on imaging the fluorescence lifetime of only the donor (single‐channel FLIM). We have assessed the effect of incomplete labelling and determined its range of application for different Kd using Monte Carlo simulations. We have demonstrated this method estimating the intracellular Kd for the homodimerisaton of the oncogenic protein 3‐phosphoinositide‐dependent kinase 1 (PDK1) in different cell lines and conditions, revealing a competitive mechanism for its regulation. The measured intracellular Kd was validated against in‐vitro data. This method provides an accurate and generic tool to quantify protein interactions in situ.

  相似文献   


9.
Numerous unimolecular, genetically-encoded F?rster Resonance Energy Transfer (FRET) probes for monitoring biochemical activities in live cells have been developed over the past decade. As these probes allow for collection of high frequency, spatially resolved data on signaling events in live cells and tissues, they are an attractive technology for obtaining data to develop quantitative, mathematical models of spatiotemporal signaling dynamics. However, to be useful for such purposes the observed FRET from such probes should be related to a biological quantity of interest through a defined mathematical relationship, which is straightforward when this relationship is linear, and can be difficult otherwise. First, we show that only in rare circumstances is the observed FRET linearly proportional to a biochemical activity. Therefore in most cases FRET measurements should only be compared either to explicitly modeled probes or to concentrations of products of the biochemical activity, but not to activities themselves. Importantly, we find that FRET measured by standard intensity-based, ratiometric methods is inherently non-linear with respect to the fraction of probes undergoing FRET. Alternatively, we find that quantifying FRET either via (1) fluorescence lifetime imaging (FLIM) or (2) ratiometric methods where the donor emission intensity is divided by the directly-excited acceptor emission intensity (denoted R(alt)) is linear with respect to the fraction of probes undergoing FRET. This linearity property allows one to calculate the fraction of active probes based on the FRET measurement. Thus, our results suggest that either FLIM or ratiometric methods based on R(alt) are the preferred techniques for obtaining quantitative data from FRET probe experiments for mathematical modeling purposes.  相似文献   

10.
Förster resonance energy transfer (FRET) microscopy is widely used to study protein interactions in living cells. Typically, spectral variants of the Green Fluorescent Protein (FPs) are incorporated into proteins expressed in cells, and FRET between donor and acceptor FPs is assayed. As appreciable FRET occurs only when donors and acceptors are within 10 nm of each other, the presence of FRET can be indicative of aggregation that may denote association of interacting species. By monitoring the excited-state (fluorescence) decay of the donor in the presence and absence of acceptors, dual-component decay analysis has been used to reveal the fraction of donors that are FRET positive (i.e., in aggregates)._However, control experiments using constructs containing both a donor and an acceptor FP on the same protein repeatedly indicate that a large fraction of these donors are FRET negative, thus rendering the interpretation of dual-component analysis for aggregates between separately donor-containing and acceptor-containing proteins problematic. Using Monte-Carlo simulations and analytical expressions, two possible sources for such anomalous behavior are explored: 1) conformational heterogeneity of the proteins, such that variations in the distance separating donor and acceptor FPs and/or their relative orientations persist on time-scales long in comparison with the excited-state lifetime, and 2) FP dark states.  相似文献   

11.
New imaging methodologies in quantitative fluorescence microscopy and nanoscopy have been developed in the last few years and are beginning to be extensively applied to biological problems, such as the localization and quantification of protein interactions. Fluorescence resonance energy transfer (FRET) detected by fluorescence lifetime imaging microscopy (FLIM) is currently employed not only in biophysics or chemistry but also in bio-medicine, thanks to new advancements in technology and also new developments in data treatment. FRET–FLIM can be a very useful tool to ascertain protein interactions occurring in single living cells. In this review, we stress the importance of increasing the acquisition speed when working in vivo employing Time-Domain FLIM. The development of the new mathematical-based non-fitting methods allows the determining of the fraction of interacting donor without the requirement of high count statistics, and thus allows the performing of high speed acquisitions in FRET–FLIM to still be quantitative.  相似文献   

12.
Fluorescence lifetime imaging (FLIM) is widely applied to obtain quantitative information from fluorescence signals, particularly using Förster Resonant Energy Transfer (FRET) measurements to map, for example, protein-protein interactions. Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset). This approach is often considered to be prohibitively slow and/or computationally expensive but we present here a computationally efficient global analysis algorithm for the analysis of time-correlated single photon counting (TCSPC) or time-gated FLIM data based on variable projection. It makes efficient use of both computer processor and memory resources, requiring less than a minute to analyse time series and multiwell plate datasets with hundreds of FLIM images on standard personal computers. This lifetime analysis takes account of repetitive excitation, including fluorescence photons excited by earlier pulses contributing to the fit, and is able to accommodate time-varying backgrounds and instrument response functions. We demonstrate that this global approach allows us to readily fit time-resolved fluorescence data to complex models including a four-exponential model of a FRET system, for which the FRET efficiencies of the two species of a bi-exponential donor are linked, and polarisation-resolved lifetime data, where a fluorescence intensity and bi-exponential anisotropy decay model is applied to the analysis of live cell homo-FRET data. A software package implementing this algorithm, FLIMfit, is available under an open source licence through the Open Microscopy Environment.  相似文献   

13.
Deregulation of epidermal growth factor receptor (EGFR) signaling has been correlated with the development of a variety of human carcinomas. EGF-induced receptor dimerization and consequent trans- auto-phosphorylation are among the earliest events in signal transduction. Binding of EGF is thought to induce a conformational change that consequently unfolds an ectodomain loop required for dimerization indirectly. It may also induce important allosteric changes in the cytoplasmic domain. Despite extensive knowledge on the physiological activation of EGFR, the effect of targeted therapies on receptor conformation is not known and this particular aspect of receptor function, which can potentially be influenced by drug treatment, may in part explain the heterogeneous clinical response among cancer patients. Here, we used Förster resonance energy transfer/fluorescence lifetime imaging microscopy (FRET/FLIM) combined with two-color single-molecule tracking to study the effect of ATP-competitive small molecule tyrosine kinase inhibitors (TKIs) and phosphatase-based manipulation of EGFR phosphorylation on live cells. The distribution of dimer on-times was fitted to a monoexponential to extract dimer off-rates (koff). Our data show that pretreatment with gefitinib (active conformation binder) stabilizes the EGFR ligand-bound homodimer. Overexpression of EGFR-specific DEP-1 phosphatase was also found to have a stabilizing effect on the homodimer. No significant difference in the koff of the dimer could be detected when an anti-EGFR antibody (425 Snap single-chain variable fragment) that allows for dimerization of ligand-bound receptors, but not phosphorylation, was used. These results suggest that both the conformation of the extracellular domain and phosphorylation status of the receptor are involved in modulating the stability of the dimer. The relative fractions of these two EGFR subpopulations (interacting versus free) were obtained by a fractional-intensity analysis of ensemble FRET/FLIM images. Our combined imaging approach showed that both the fraction and affinity (surrogate of conformation at a single-molecule level) increased after gefitinib pretreatment or DEP-1 phosphatase overexpression. Using an EGFR mutation (I706Q, V948R) that perturbs the ability of EGFR to dimerize intracellularly, we showed that a modest drug-induced increase in the fraction/stability of the EGFR homodimer may have a significant biological impact on the tumor cell’s proliferation potential.  相似文献   

14.
Quantitative imaging methods based on Förster resonance energy transfer (FRET) rely on the determination of an apparent FRET efficiency (Eapp), as well as donor and acceptor concentrations, to uncover the identity and relative abundance of the supramolecular (or quaternary) structures of associating macromolecules. Theoretical work has provided “structure-based” relationships between Eapp distributions and the quaternary structure models that underlie them. By contrast, the body of work that predicates the “signal-based” dependence of Eapp on directly measurable quantities (i.e., fluorescence emission of donors and acceptors) relies largely on plausibility arguments, one of which is the seemingly obvious assumption that the fraction of fluorescent molecules in the ground state pretty nearly equals the total concentration of molecules. In this work, we use the kinetic models of fluorescence in the presence and absence of FRET to rigorously derive useful relationships between Eapp and measurable fluorescence signals. Analysis of these relationships reveals a few anticipated results and some unexpected explanations for known experimental FRET puzzles, and it provides theoretical foundations for optimizing measurement strategies.  相似文献   

15.
Fluorescence lifetime measurements can provide quantitative readouts of local fluorophore environment and can be applied to biomolecular interactions via Förster resonant energy transfer (FRET). Fluorescence lifetime imaging (FLIM) can therefore provide a high content analysis (HCA) modality to map protein‐protein interactions (PPIs) with applications in drug discovery, systems biology and basic research. We present here an automated multiwell plate reader able to perform rapid unsupervised optically sectioned FLIM of fixed and live biological samples and illustrate its potential to assay PPIs through application to Gag protein aggregation during the HIV life cycle. We demonstrate both hetero‐FRET and homo‐FRET readouts of protein aggregation and report the first quantitative evaluation of a FLIM HCA assay by generating dose response curves through addition of an inhibitor of Gag myristoylation. Z ′ factors exceeding 0.6 are realised for this FLIM FRET assay. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
@Chromatin nanoscale architecture in live cells can be studied by Förster resonance energy transfer (FRET) between fluorescently labeled chromatin components, such as histones. A higher degree of nanoscale compaction is detected as a higher FRET level, since this corresponds to a higher degree of proximity between donor and acceptor molecules. However, in such a system, the stoichiometry of the donors and acceptors engaged in the FRET process is not well defined and, in principle, FRET variations could be caused by variations in the acceptor‐to‐donor ratio rather than distance. Here, to get a FRET level independent of the acceptor‐to‐donor ratio, we combine fluorescence lifetime imaging detection of FRET with a normalization of the FRET level to a pixel‐wise estimation of the acceptor‐to‐donor ratio. We use this method to study FRET between two DNA binding dyes staining the nuclei of live cells. We show that this acceptor‐to‐donor ratio corrected FRET imaging reveals variations of nanoscale compaction in different chromatin environments. As an application, we monitor the rearrangement of chromatin in response to laser‐induced microirradiation and reveal that DNA is rapidly decompacted, at the nanoscale, in response to DNA damage induction.   相似文献   

17.

Background

Despite the broad use of FRET techniques, available methods for analyzing protein-protein interaction are subject to high labor and lack of systematic analysis. We propose an open source software allowing the quantitative analysis of fluorescence lifetime imaging (FLIM) while integrating the steady-state fluorescence intensity information for protein-protein interaction studies.

Findings

Our developed open source software is dedicated to fluorescence lifetime imaging microscopy (FLIM) data obtained from Becker & Hickl SPC-830. FLIM-FRET analyzer includes: a user-friendly interface enabling automated intensity-based segmentation into single cells, time-resolved fluorescence data fitting to lifetime value for each segmented objects, batch capability, and data representation with donor lifetime versus acceptor/donor intensity quantification as a measure of protein-protein interactions.

Conclusions

The FLIM-FRET analyzer software is a flexible application for lifetime-based FRET analysis. The application, the C#. NET source code, and detailed documentation are freely available at the following URL: http://FLIM-analyzer.ip-korea.org.
  相似文献   

18.
Protein localization in living cells and tissues using FRET and FLIM   总被引:8,自引:0,他引:8  
Interacting proteins assemble into molecular machines that control cellular homeostasis in living cells. While the in vitro screening methods have the advantage of providing direct access to the genetic information encoding unknown protein partners, they do not allow direct access to interactions of these protein partners in their natural environment inside the living cell. Using wide-field, confocal, or two-photon (2p) fluorescence resonance energy transfer (FRET) microscopy, this information can be obtained from living cells and tissues with nanometer resolution. One of the important conditions for FRET to occur is the overlap of the emission spectrum of the donor with the absorption spectrum of the acceptor. As a result of spectral overlap, the FRET signal is always contaminated by donor emission into the acceptor channel and by the excitation of acceptor molecules by the donor excitation wavelength. Mathematical algorithms are required to correct the spectral bleed-through signal in wide-field, confocal, and two-photon FRET microscopy. In contrast, spectral bleed-through is not an issue in FRET/FLIM imaging because only the donor fluorophore lifetime is measured; also, fluorescence lifetime imaging microscopy (FLIM) measurements are independent of excitation intensity or fluorophore concentration. The combination of FRET and FLIM provides high spatial (nanometer) and temporal (nanosecond) resolution when compared to intensity-based FRET imaging. In this paper, we describe various FRET microscopy techniques and its application to protein-protein interactions.  相似文献   

19.
20.
Fluorescence recovery after photobleaching (FRAP) is the preferred method for analyzing the lateral mobility of fluorescently-tagged proteins in the plasma membranes (PMs) of live cells. FRAP experiments are described as being easy to perform; however, the analysis of the acquired data can be difficult. The evaluation procedure must be properly combined with the imaging setup of the confocal microscope to provide unbiased results.With the aim of increasing the accuracy of determining the diffusion coefficient (D) and mobile fraction (Mf) of PM proteins, we developed a novel method for FRAP analysis in the equatorial plane of the cell. This method is based on the calculation of photobleaching characteristics, derived from the light intensity profile and optical parameters of the confocal microscope, and on the model of fluorescent molecule diffusion in PM regions outside of the focal plane. Furthermore, cell movement artifacts in the FRAP data are ameliorated by using a region of interest, which is not fixed but instead moves adaptively in coordination with the movement of cells.When this method was used to determine the mobility of the δ-opioid receptor-eYFP in HEK293 cells, a highly significant decrease in receptor mobility was detected in cholesterol-depleted cells. This decrease was fully reversible by the replenishment of cholesterol levels. Our results demonstrate the crucial role played by cholesterol in the dynamic organization of δ-opioid receptors in the PM under in vivo conditions. Our method may be applied for the determination of the D and Mf values of other PM proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号