首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Curved membranes are an essential feature of dynamic cellular structures, including endocytic pits, filopodia protrusions and most organelles. It has been proposed that specialized proteins induce curvature by binding to membranes through two primary mechanisms: membrane scaffolding by curved proteins or complexes; and insertion of wedge-like amphipathic helices into the membrane. Recent computational studies have raised questions about the efficiency of the helix-insertion mechanism, predicting that proteins must cover nearly 100% of the membrane surface to generate high curvature, an improbable physiological situation. Thus, at present, we lack a sufficient physical explanation of how protein attachment bends membranes efficiently. On the basis of studies of epsin1 and AP180, proteins involved in clathrin-mediated endocytosis, we propose a third general mechanism for bending fluid cellular membranes: protein-protein crowding. By correlating membrane tubulation with measurements of protein densities on membrane surfaces, we demonstrate that lateral pressure generated by collisions between bound proteins drives bending. Whether proteins attach by inserting a helix or by binding lipid heads with an engineered tag, protein coverage above ~20% is sufficient to bend membranes. Consistent with this crowding mechanism, we find that even proteins unrelated to membrane curvature, such as green fluorescent protein (GFP), can bend membranes when sufficiently concentrated. These findings demonstrate a highly efficient mechanism by which the crowded protein environment on the surface of cellular membranes can contribute to membrane shape change.  相似文献   

2.
Synucleins and apolipoproteins have been implicated in a number of membrane and lipid trafficking events. Lipid interaction for both types of proteins is mediated by 11 amino acid repeats that form amphipathic helices. This similarity suggests that synucleins and apolipoproteins might have comparable effects on lipid membranes, but this has not been shown directly. Here, we find that α-synuclein, β-synuclein, and apolipoprotein A-1 have the conserved functional ability to induce membrane curvature and to convert large vesicles into highly curved membrane tubules and vesicles. The resulting structures are morphologically similar to those generated by amphiphysin, a curvature-inducing protein involved in endocytosis. Unlike amphiphysin, however, synucleins and apolipoproteins do not require any scaffolding domains and curvature induction is mediated by the membrane insertion and wedging of amphipathic helices alone. Moreover, we frequently observed that α-synuclein caused membrane structures that had the appearance of nascent budding vesicles. The ability to function as a minimal machinery for vesicle budding agrees well with recent findings that α-synuclein plays a role in vesicle trafficking and enhances endocytosis. Induction of membrane curvature must be under strict regulation in vivo; however, as we find it can also cause disruption of membrane integrity. Because the degree of membrane curvature induction depends on the concerted action of multiple proteins, controlling the local protein density of tubulating proteins may be important. How cellular safeguarding mechanisms prevent such potentially toxic events and whether they go awry in disease remains to be determined.  相似文献   

3.
Marsh D 《Biophysical journal》2007,93(11):3884-3899
Lipid-protein interactions are an important determinant of the stability and function of integral and transmembrane proteins. In addition to local interactions at the lipid-protein interface, global interactions such as the distribution of internal lateral pressure may also influence protein conformation. It is shown here that the effects of the membrane lateral pressure profile on the conformation or insertion of proteins in membranes are equivalent to the elastic response to the frustrated spontaneous curvature, co, of the component lipid monolayer leaflets. The chemical potential of the protein in the membrane is predicted to depend linearly on the spontaneous curvature of the lipid leaflets, just as does the contribution of the protein to the elastic bending energy of the lipid, and to be independent of the hydrophobic tension, γphob, at the lipid-water interface. Analysis of the dependence of protein partitioning or conformational transitions on spontaneous curvature of the constituent lipids gives an experimental estimate for the cross-sectional intramembrane shape of the protein or its difference between conformations. Values in the region of 50-110 Å2 are estimated for the effective cross-sectional shape changes on the insertion and conductance transitions of alamethicin, and on the activation of CTP:phosphocholine cytidylyltransferase or rhodopsin in lipid membranes. Much larger values are estimated for the mechanosensitive channel, MscL. Values for the change in intramembrane shape may also be used, together with determinations of lipid relative association constants, to estimate contributions of direct lipid-protein interactions to the lateral pressure experienced by the protein. Changes in chemical potential ∼12 kJ mol−1 can be estimated for radial changes of 1 Å in a protein of diameter 40 Å.  相似文献   

4.
The discovery of proteins that recognize membrane curvature created a paradigm shift by suggesting that membrane shape may act as a cue for protein localization that is independent of lipid or protein composition. Here we review recent data on membrane curvature sensing by three structurally unrelated motifs: BAR domains, amphipathic helices and membrane-anchored proteins. We discuss the conclusion that the curvature of the BAR dimer is not responsible for sensing and that the sensing properties of all three motifs can be rationalized by the physicochemical properties of the curved membrane itself. We thus anticipate that membrane curvature will promote the redistribution of proteins that are anchored in membranes through any type of hydrophobic moiety, a thesis that broadens tremendously the implications of membrane curvature for protein sorting, trafficking and signaling in cell biology.  相似文献   

5.
The internal membranes of eukaryotic cells are all twists and bends characterized by high curvature. During recent years it has become clear that specific proteins sustain these curvatures while others simply recognize membrane shape and use it as “molecular information” to organize cellular processes in space and time. Here we discuss this new important recognition process termed membrane curvature sensing (MCS). First, we review a new fluorescence-based experimental method that allows characterization of MCS using measurements on single vesicles and compare it to sensing assays that use bulk/ensemble liposome samples of different mean diameter. Next, we describe two different MCS protein motifs (amphipathic helices and BAR domains) and suggest that in both cases curvature sensitive membrane binding results from asymmetric insertion of hydrophobic amino acids in the lipid membrane. This mechanism can be extended to include the insertion of alkyl chain in the lipid membrane and consequently palmitoylated and myristoylated proteins are predicted to display similar curvature sensitive binding. Surprisingly, in all the aforementioned cases, MCS is predominantly mediated by a higher density of binding sites on curved membranes instead of higher affinity as assumed so far. Finally, we integrate these new insights into the debate about which motifs are involved in sensing versus induction of membrane curvature and what role MCS proteins may play in biology.  相似文献   

6.
Lipids in biological membrane fusion   总被引:8,自引:0,他引:8  
The results reviewed suggest that membrane fusion in diverse biological fusion reactions involves formation of some specific intermediates: stalks and pores. Energy of these intermediates and, consequently, the rate and extent of fusion depend on the propensity of the corresponding monolayers of membranes to bend in the required directions.Proteins and peptides can control the bending energy of membrane monolayers in a number of ways. Monolayer lipid composition may be altered by different phospholipases [50, 85, 90], flipases and translocases [4, 50]. Proteins and peptides can change monolayer spontaneous curvature or hydrophobic void energy by direct interaction with membrane lipids [20, 32, 111]. Proteins may also provide some barriers for lipid diffusion in the plane of the monolayer [83, 141]. If diffusion of lipids at some specific membrane sites (e.g., in the vicinity of fusion protein) is somehow hindered, the energy of the bent fusion intermediates would reflect the elastic properties of these particular sites rather than the spontaneous curvature of the whole monolayers. Proteins may deform membranes while bringing them locally into close contact. The alteration of the geometric (external) curvature will certainly change the elastic energy of the initial state and, thus affect the energetic barriers of the formation of the intermediates [143]. In addition, the area and the energy of the stalk can be reduced by preliminary bending of the contacting membranes [111]. The possible effects of proteins and polymers on local elastic properties and local shapes of the membranes have been recently analyzed [22, 39, 45, 63]. These studies may provide a good basis for future development of theoretical models of protein-mediated fusion.  相似文献   

7.
Bending membranes   总被引:1,自引:0,他引:1  
It is widely assumed that peripheral membrane proteins induce intracellular membrane curvature by the asymmetric insertion of a protein segment into the lipid bilayer, or by imposing shape by adhesion of a curved protein domain to the membrane surface. Two papers now provide convincing evidence challenging these views. The first shows that specific assembly of a clathrin protein scaffold, coupled to the membrane, seems to be the most prevalent mechanism for bending a lipid bilayer in a cell. The second reports that membrane crowding, driven by protein-protein interactions, can also drive membrane bending, even in the absence of any protein insertion into the bilayer.  相似文献   

8.
The sculpting of membranes into dynamic, curved shapes is central to intracellular cargo trafficking. Though the generation of membrane curvature during trafficking necessarily involves both lipids and membrane-associated proteins, current mechanistic views focus primarily on the formation of rigid cages and curved scaffolds by protein assemblies. Here we report on a different mechanism for the control of membrane deformation, unrelated to the imposition of predefined curvature, involving modulation of membrane material properties: Sar1, a GTPase that regulates vesicle trafficking from the endoplasmic reticulum, lowers the rigidity of the lipid bilayer membrane to which it binds. In vitro assays in which optically trapped microspheres create controlled membrane deformations revealed a monotonic decline in bending modulus as a function of Sar1 concentration, down to nearly zero rigidity, indicating a dramatic lowering of the energetic cost of curvature generation. This is the first demonstration that a vesicle trafficking protein lowers the rigidity of its target membrane, leading to a new conceptual framework for vesicle biogenesis.  相似文献   

9.
Arf family GTP-binding proteins function in the regulation of membrane-trafficking events and in the maintenance of organelle structure. They act at membrane surfaces to modify lipid composition and to recruit coat proteins for the generation of transport vesicles. Arfs associate with membranes through insertion of an N-terminal myristoyl moiety in conjunction with an adjacent amphipathic alpha-helix, which embeds in the lipid bilayer when Arf1 is GTP-bound. In this issue of the Biochemical Journal, Lundmark et al. report that myristoylated Arfs in the presence of GTP bind to and cause tubulation of liposomes, and that GTP exchange on to Arfs is more efficient in the presence of liposomes of smaller diameter (increased curvature). These findings suggest that Arf protein activation and membrane interaction may initiate membrane curvature that will be enhanced further by coat proteins during vesicle formation.  相似文献   

10.
11.
In cells, β-barrel membrane proteins are transported in unfolded form to an outer membrane into which they fold and insert. Model systems have been established to investigate the mechanisms of insertion and folding of these versatile proteins into detergent micelles, lipid bilayers and even synthetic amphipathic polymers. In these experiments, insertion into lipid membranes is initiated from unfolded forms that do not display residual β-sheet secondary structure. These studies therefore have allowed the investigation of membrane protein folding and insertion in great detail. Folding of β-barrel membrane proteins into lipid bilayers has been monitored from unfolded forms by dilution of chaotropic denaturants that keep the protein unfolded as well as from unfolded forms present in complexes with molecular chaperones from cells. This review is aimed to provide an overview of the principles and mechanisms observed for the folding of β-barrel transmembrane proteins into lipid bilayers, the importance of lipid–protein interactions and the function of molecular chaperones and folding assistants. This article is part of a Special Issue entitled: Lipid–protein interactions.  相似文献   

12.
Tumor protein D54 (TPD54) is an abundant cytosolic protein that belongs to the TPD52 family, a family of four proteins (TPD52, 53, 54, and 55) that are overexpressed in several cancer cells. Even though the functions of these proteins remain elusive, recent investigations indicate that TPD54 binds to very small cytosolic vesicles with a diameter of ca. 30 nm, half the size of classical (e.g., COPI and COPII) transport vesicles. Here, we investigated the mechanism of intracellular nanovesicle capture by TPD54. Bioinformatical analysis suggests that TPD54 contains a small coiled-coil followed by four amphipathic helices (AH1-4), which could fold upon binding to lipid membranes. Limited proteolysis, CD spectroscopy, tryptophan fluorescence, and cysteine mutagenesis coupled to covalent binding of a membrane-sensitive probe showed that binding of TPD54 to small liposomes is accompanied by large structural changes in the amphipathic helix region. Furthermore, site-directed mutagenesis indicated that AH2 and AH3 have a predominant role in TPD54 binding to membranes both in cells and using model liposomes. We found that AH3 has the physicochemical features of an amphipathic lipid packing sensor (ALPS) motif, which, in other proteins, enables membrane binding in a curvature-dependent manner. Accordingly, we observed that binding of TPD54 to liposomes is very sensitive to membrane curvature and lipid unsaturation. We conclude that TPD54 recognizes nanovesicles through a combination of ALPS-dependent and ALPS-independent mechanisms.  相似文献   

13.
The morphology and curvature of biological bilayers are determined by the packing shapes and interactions of their participant molecules. Bacteria, except photosynthetic groups, usually lack intracellular membrane organelles. Strong overexpression in Escherichia coli of a foreign monotopic glycosyltransferase (named monoglycosyldiacylglycerol synthase), synthesizing a nonbilayer-prone glucolipid, induced massive formation of membrane vesicles in the cytoplasm. Vesicle assemblies were visualized in cytoplasmic zones by fluorescence microscopy. These have a very low buoyant density, substantially different from inner membranes, with a lipid content of ≥60% (w/w). Cryo-transmission electron microscopy revealed cells to be filled with membrane vesicles of various sizes and shapes, which when released were mostly spherical (diameter ≈100 nm). The protein repertoire was similar in vesicle and inner membranes and dominated by the glycosyltransferase. Membrane polar lipid composition was similar too, including the foreign glucolipid. A related glycosyltransferase and an inactive monoglycosyldiacylglycerol synthase mutant also yielded membrane vesicles, but without glucolipid synthesis, strongly indicating that vesiculation is induced by the protein itself. The high capacity for membrane vesicle formation seems inherent in the glycosyltransferase structure, and it depends on the following: (i) lateral expansion of the inner monolayer by interface binding of many molecules; (ii) membrane expansion through stimulation of phospholipid synthesis, by electrostatic binding and sequestration of anionic lipids; (iii) bilayer bending by the packing shape of excess nonbilayer-prone phospholipid or glucolipid; and (iv) potentially also the shape or penetration profile of the glycosyltransferase binding surface. These features seem to apply to several other proteins able to achieve an analogous membrane expansion.  相似文献   

14.
Lee MC  Orci L  Hamamoto S  Futai E  Ravazzola M  Schekman R 《Cell》2005,122(4):605-617
Secretory proteins traffic from the ER to the Golgi via COPII-coated transport vesicles. The five core COPII proteins (Sar1p, Sec23/24p, and Sec13/31p) act in concert to capture cargo proteins and sculpt the ER membrane into vesicles of defined geometry. The molecular details of how the coat proteins deform the lipid bilayer into vesicles are not known. Here we show that the small GTPase Sar1p directly initiates membrane curvature during vesicle biogenesis. Upon GTP binding by Sar1p, membrane insertion of the N-terminal amphipathic alpha helix deforms synthetic liposomes into narrow tubules. Replacement of bulky hydrophobic residues in the alpha helix with alanine yields Sar1p mutants that are unable to generate highly curved membranes and are defective in vesicle formation from native ER membranes despite normal recruitment of coat and cargo proteins. Thus, the initiation of vesicle budding by Sar1p couples the generation of membrane curvature with coat-protein assembly and cargo capture.  相似文献   

15.
The equilibrium theory for lipid membranes is used to describe the structure of nuclear pores and the membrane shapes accompanying endocytosis. The commonly used variant of the theory contains a fixed parameter called the spontaneous curvature which accounts for asymmetry in the bending response of the membrane. This is replaced here by a variable distribution of spontaneous curvature representing the influence of attached proteins. The required adjustments to the standard theory are described and the resulting model is applied to the study of membrane morphology at the cites of protein-assisted nuclear pore formation and endocytosis.  相似文献   

16.
The amphipathic helix, in which hydrophobia and hydrophilic residues are grouped on opposing faces, is a structural mot if found in many peptides and proteins that bind to membranes. One of the physical properties of membranes that can be altered by the binding of amphipathic helices is membrane monolayer curvature strain. Class A amphipathic helices, which are present in exchangeable plasma lipoproteins, can stabilize membranes by reducing negative monolayer curvature strain; proline-punctuated class A amphipathic helical segments are particularly effective in this regard. This property is suggested to be associated with some of the beneficial biological effects of this protein. On the other hand, lytic amphipathic helical peptides can act by increasing negative curvature strain or by forming pores composed of helical clusters. Thus, different amphipathic helical peptides can be membrane stabilizing or be lytic to membranes, depending on the structural motif of the helix, which in turn determines the nature of its association with membranes. Features of these peptides that are responsible for their specific properties are discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
Marsh D 《Biophysical journal》2001,81(4):2154-2162
The surface expansion that is induced by the lateral pressure in the brush region of lipid membranes containing grafted polymers is deduced from the scaling and mean-field theories for the polymer brush, together with the equation of state for a lipid monolayer at the equivalence pressure with fluid lipid bilayers. Depending on the length and mole fraction of the polymer lipid, the membrane expansion can be appreciable. Direct experimental evidence for this lateral expansion comes from recent spin-label measurements with lipid membranes containing poly(ethylene glycol)-grafted lipids. The expansion in lipid area modifies the elastic constants of the polymer-grafted membranes in a way that opposes the direct elastic response of the polymer itself. Calculations as a function of polymer lipid content indicate that the net change in isothermal area expansion modulus of the membrane is negative but small, in contrast to previous predictions. A similar situation applies to the curvature elastic moduli of membranes containing short polymer lipids. For longer polymer lipids, however, the direct contribution of the polymer brush to the bending elastic constants dominates, and the increase in bending moduli with increasing polymer lipid content rapidly exceeds the basal values of the bare lipid membrane. The spontaneous (or intrinsic) curvature of the component monolayer of polymer lipid-containing membranes is calculated for the first time. The polymer brush contribution to spontaneous curvature scales quadratically with the polymer length, and at least quadratically with the mole fraction of polymer lipid.  相似文献   

18.
Beta-barrel membrane proteins occur in the outer membranes of Gram-negative bacteria, mitochondria and chloroplasts. The membrane-spanning sequences of beta-barrel membrane proteins are less hydrophobic than those of alpha-helical membrane proteins, which is probably the main reason why completely different folding and membrane assembly pathways have evolved for these two classes of membrane proteins. Some beta-barrel membrane proteins can be spontaneously refolded into lipid bilayer model membranes in vitro. They may also have this ability in vivo although lipid and protein chaperones likely assist with their assembly in appropriate target membranes. This review summarizes recent work on the thermodynamic stability and the mechanism of membrane insertion of beta-barrel membrane proteins in lipid model and biological membranes. How lipid compositions affect folding and assembly of beta-barrel membrane proteins is also reviewed. The stability of these proteins in membranes is not as large as previously thought (<10 kcal/mol) and is modulated by elastic forces of the lipid bilayer. Detailed kinetic studies indicate that beta-barrel membrane proteins fold in distinct steps with several intermediates that can be characterized in vitro. Formation of the barrel is synchronized with membrane insertion and all beta-hairpins insert simultaneously in a concerted pathway.  相似文献   

19.
Chlorpromazine (CP), anamphipathic, antipsychotic agent, causes concave membrane bending inred blood cells with formation of stomatocytic shapes by modulation ofthe phospholipid bilayer. This study was designed to investigate theeffects of CP on the shape of bovine aortic endothelial cells (BAEC)and their membranes in confluent monolayers with phase-contrast andtransmission electron microscopy. Exposure of BAECs tonanomolar levels of CP leads to membrane curvature changes. Withincreasing CP concentrations, the membrane assumed a shape withenhanced numbers of intracellular caveolae and projection ofpseudopodia at all junctions. At higher CP concentrations (up to 150 µM), the endothelial cells assumed almost spherical shapes. Theevidence suggests that CP may affect lipid bilayer bending of BAECs inanalogy with previous observations on erythrocytes, supporting theformation of caveolae and pseudopodia in BAECs due to the induction ofconcave membrane bending, as well as an effect on endothelialcell membrane adhesion at higher CP concentrations withloss of cellular attachment at junctions.

  相似文献   

20.
The majority of biosynthetic secretory proteins initiate their journey through the endomembrane system from specific subdomains of the endoplasmic reticulum. At these locations, coated transport carriers are generated, with the Sar1 GTPase playing a critical role in membrane bending, recruitment of coat components, and nascent vesicle formation. How these events are appropriately coordinated remains poorly understood. Here, we demonstrate that Sar1 acts as the curvature-sensing component of the COPII coat complex and highlight the ability of Sar1 to bind more avidly to membranes of high curvature. Additionally, using an atomic force microscopy-based approach, we further show that the intrinsic GTPase activity of Sar1 is necessary for remodeling lipid bilayers. Consistent with this idea, Sar1-mediated membrane remodeling is dramatically accelerated in the presence of its guanine nucleotide-activating protein (GAP), Sec23-Sec24, and blocked upon addition of guanosine-5′-[(β,γ)-imido]triphosphate, a poorly hydrolysable analog of GTP. Our results also indicate that Sar1 GTPase activity is stimulated by membranes that exhibit elevated curvature, potentially enabling Sar1 membrane scission activity to be spatially restricted to highly bent membranes that are characteristic of a bud neck. Taken together, our data support a stepwise model in which the amino-terminal amphipathic helix of GTP-bound Sar1 stably penetrates the endoplasmic reticulum membrane, promoting local membrane deformation. As membrane bending increases, Sar1 membrane binding is elevated, ultimately culminating in GTP hydrolysis, which may destabilize the bilayer sufficiently to facilitate membrane fission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号