首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mody NA  King MR 《Biophysical journal》2008,95(5):2556-2574
A three-dimensional multiscale computational model, platelet adhesive dynamics (PAD), is developed and applied in Part I and Part II articles to characterize and quantify key biophysical aspects of GPIbα-von-Willebrand-factor (vWF)-mediated interplatelet binding at high shear rates, a necessary and enabling step that initiates shear-induced platelet aggregation. In this article, an adhesive dynamics model of the transient aggregation of two unactivated platelets via GPIbα-vWF-GPIbα bridging is developed and integrated with the three-dimensional hydrodynamic flow model discussed in Part I. Platelet binding efficiencies predicted by PAD are in good agreement with platelet aggregation behavior observed experimentally, as documented in the literature. Deviations from average vWF ligand size or healthy GPIbα-vWF-A1 binding kinetics are observed in simulations to have significant effects on the dynamics of transient platelet aggregation, i.e., the efficiency of platelet aggregation and characteristics of bond failure, in ways that typify diseased conditions. The GPIbα-vWF-A1 bond formation rate is predicted to have piecewise linear dependence on the prevailing fluid shear rate, with a sharp transition in fluid shear dependency at 7200 s−1. Interplatelet bond force-loading is found to be complex and highly nonlinear. These results demonstrate PAD as a powerful predictive modeling tool for elucidating platelet adhesive phenomena under flow.  相似文献   

2.
Suspensions of blood platelets aggregate and degranulate when subjected to a shearing flow of sufficient intensity. This work examines, by means of a population balance technique, the kinetics of platelet aggregation in a shear field. The particle collision efficiency, epsilon, and the particle void volume fraction, phi, are estimated from particle number density data. The collision efficiency represents the fraction of particle collisions that result in the binding together of the involved particles. We term epsilon and phi population balance properties because they refer to physical characteristics of platelets and aggregates that are pertinent to their aggregation behavior. Experiments focused on the dependence of epsilon on platelet concentration, shearing rate, and time in a controlled shear field. The collision efficiency is lower in dilute platelet suspensions. This finding supports an ADP-mediated mechanism for shear aggregation. The collision efficiency passes through a maximum with respect to shearing rate, suggesting a competition between the opposing effects of increasing platelet activation and increasing collision violence. The collision efficiency is highest during the first ten seconds in the shear field and declines significantly thereafter. Even at its maximum, however, epsilon for shear aggregation is small: only about one in every thousand particle collisions results in binding.  相似文献   

3.
A population balance equation (PBE) mathematical model for analyzing platelet aggregation kinetics was developed in Part I (Huang, P. Y., and J. D. Hellums. 1993. Biophys. J. 65: 334-343) of a set of three papers. In this paper, Part II, platelet aggregation and related reactions are studied in the uniform, known shear stress field of a rotational viscometer, and interpreted by means of the model. Experimental determinations are made of the platelet-aggregate particle size distributions as they evolve in time under the aggregating influence of shear stress. The PBE model is shown to give good agreement with experimental determinations when either a reversible (aggregation and disaggregation) or an irreversible (no disaggregation) form of the model is used. This finding suggests that for the experimental conditions studied disaggregation processes are of only secondary importance. During shear-induced platelet aggregation, only a small fraction of platelet collisions result in the binding together of the involved platelets. The modified collision efficiency is approximately zero for shear rates below 3000 s-1. It increases with shear rates above 3000 s-1 to about 0.01 for a shear rate of 8000 s-1. Addition of platelet chemical agonists yields order of magnitude increases in collision efficiency. The collision efficiency for shear-induced platelet aggregation is about an order of magnitude less at 37 degrees C than at 24 degrees C. The PBE model gives a much more accurate representation of aggregation kinetics than an earlier model based on a monodispersed particle size distribution.  相似文献   

4.
Fibrinogen binding to receptors on activated platelets is a prerequisite for platelet aggregation. However, the regions of fibrinogen interacting with these receptors have not been completely characterized. Fibronectin also binds to platelet fibrinogen receptors. Moreover, the amino acid sequence Arg-Gly-Asp-Ser, corresponding to the cell attachment site of fibronectin, is located near the carboxyl-terminal region of the alpha-chain of fibrinogen. We have examined the ability of this tetrapeptide to inhibit platelet aggregation and fibrinogen binding to activated platelets. Arg-Gly-Asp-Ser, but not the peptide Arg-Gly-Tyr-Ser-Leu-Gly, inhibited platelet aggregation stimulated by ADP, collagen, and gamma-thrombin without inhibiting platelet shape change or secretion. At a concentration of 60-80 microM, Arg-Gly-Asp-Ser inhibited the aggregation of ADP-stimulated gel-filtered platelets approximately equal to 50%. Arg-Gly-Asp-Ser, but not Arg-Gly-Tyr-Ser-Leu-Gly, also inhibited fibrinogen binding to ADP-stimulated platelets. This inhibition was competitive with a Ki of approximately equal to 25 microM but was incomplete even at higher tetrapeptide concentrations, indicating that Arg-Gly-Asp-Ser is a partial competitive inhibitor of fibrinogen binding. These data suggest that a region near the carboxyl-terminus of the alpha-chain of fibrinogen interacts with the fibrinogen receptor on activated platelets. The data also support the concept that the sequence Arg-Gly-Asp-Ser has been conserved for use in a variety of cellular adhesive processes.  相似文献   

5.
Hydrodynamic shear stress of sufficient intensity is known to cause platelet activation and aggregation and to alter the effects of biochemical platelet agonists and antagonists. In this work, a population balance equation (PBE) model is developed for analysis of platelet aggregation and disaggregation kinetics under the influence of a shear field. The model incorporates both aggregation and disaggregation by splitting and/or erosion mechanisms. This paper, the first of a series of three, deals with the formulation, simplification, and validation of the PBE and with the estimation of parameters involved in the PBE. These population parameters include collision efficiency, void fraction (related to the particle collision diameter), and the breakage rate coefficient. The platelet particle size distribution is determined experimentally, both initially and at some later times. The PBE can then be used to match satisfactorily the observed particle histograms, by appropriate choice of parameters of the model as functions of time, platelet size, and magnitude of physical or chemical stimuli. Besides providing information on adhesive forces and on the rates of aggregation and disaggregation, these parameters infer the physical properties of platelets and platelet aggregates. These properties are of potential value in increasing our understanding of the processes involved in thrombotic disease and/or therapy. A numerical procedure for solving the PBE is validated by application to simple cases for which analytical solutions are available. The model is applied to analysis of experiments, and parameter sensitivity studies are used to order the importance of the parameters and to reduce the complexity of the model. The simplified model is shown to give good agreement with experimental observations.  相似文献   

6.
Blood platelets have a receptor for macromolecular adhesive glycoproteins, located on a heteroduplex membrane glycoprotein complex (GPIIb/IIIa) that only becomes "exposed" when platelets are activated. Binding of the adhesive glycoproteins, in particular fibrinogen, to the receptor is required for platelet aggregation, which in turn is required to arrest bleeding. A murine monoclonal antibody whose rate of binding to the receptor is affected by platelet activation was both cross-linked and fragmented to assess the effects of changes in molecular size on its rate of binding to unactivated and activated platelets. The results indicate that small molecules can bind more rapidly to the receptors on unactivated platelets than can large molecules and that activation involves a conformational and/or microenvironmental change that permits the large molecules to bind more rapidly.  相似文献   

7.
We have modeled platelet aggregation in a linear shear flow by accounting for two body collision hydrodynamics, platelet activation and receptor biology. Considering platelets and their aggregates as unequal-sized spheres with DLVO interactions (psi(platelet) = -15 mV, Hamaker constant = 10(-19) J), detailed hydrodynamics provided the flow field around the colliding platelets. Trajectory calculations were performed to obtain the far upstream cross-sectional area and the particle flux through this area provided the collision frequency. Only a fraction of platelets brought together by a shearing fluid flow were held together if successfully bound by fibrinogen cross-bridging GPIIb/IIIa receptors on the platelet surfaces. This fraction was calculated by modeling receptor-mediated aggregation using the formalism of Bell (Bell, G. I. 1979. A theoretical model for adhesion between cells mediated by multivalent ligands. Cell Biophys. 1:133-147) where the forward rate of bond formation dictated aggregation during collision and was estimated from the diffusional limited rate of lateral association of receptors multiplied by an effectiveness factor, eta, to give an apparent rate. For a value of eta = 0.0178, we calculated the overall efficiency (including both receptor binding and hydrodynamics effects) for equal-sized platelets with 50,000 receptors/platelet to be 0.206 for G = 41.9 s(-1), 0.05 for G = 335 s(-1), and 0.0086 for G = 1920 s(-1), values which are in agreement with efficiencies determined from initial platelet singlet consumption rates in flow through a tube. From our analysis, we predict that bond formation proceeds at a rate of approximately 0.1925 bonds/microm2 per ms, which is approximately 50-fold slower than the diffusion limited rate of association. This value of eta is also consistent with a colloidal stability of unactivated platelets at low shear rates. Fibrinogen was calculated to mediate aggregation quite efficiently at low shear rates but not at high shear rates. Although secondary collisions (an orbitlike trajectory) form only a small fraction of the total number of collisions, they become important at high shear rates (>750 s(-1)), as these are the only collisions that provide enough time to result in successful aggregate formation mediated by fibrinogen. The overall method provides a hydrodynamic and receptor correction of the Smoluchowski collision kernel and gives a first estimate of eta for the fibrinogen-GPIIb/IIIa cross-bridging of platelets. We also predict that secondary collisions extend the shear rate range at which fibrinogen can mediate successful aggregation.  相似文献   

8.
The process of platelet aggregation as detected by turbidity changes in the platelet aggregometer was studied relative to light scattering by large particles. For latex beads a plot of light scattering intensity/unit mass versus particle size gave increased light scattering intensity for small particle sizes but decreased scattering at large particle size. This behavior is predicted by Rayleigh-Gans theory. These results were related to the platelet aggregometer, an optical instrument used to measure the association of small particles (monomeric platelets) to large particles (platelet aggregates). Formalin-fixed platelets do not show changes in light transmission due to energy-requiring processes, such as shape change, so that turbidity changes in the presence of aggregating agents could be attributed to a change in platelet aggregation state. Small platelet aggregates showed increased turbidity compared to a similar mass of monomeric platelets. In fact, very large platelet aggregates that were visible to the unaided eye were needed to produce a decrease in light scattering intensity. Thus, turbidity can either increase or decrease with platelet aggregation depending on the size of the aggregates. Studies of platelet aggregation that show no initial increase in turbidity must be characterized by dominance of large platelet aggregates and monomeric platelets.  相似文献   

9.
The adhesion and aggregation of platelets during hemostasis and thrombosis represents one of the best-understood examples of cell–matrix adhesion. Platelets are exposed to a wide variety of extracellular matrix (ECM) proteins once blood vessels are damaged and basement membranes and interstitial ECM are exposed. Platelet adhesion to these ECM proteins involves ECM receptors familiar in other contexts, such as integrins. The major platelet-specific integrin, αIIbβ3, is the best-understood ECM receptor and exhibits the most tightly regulated switch between inactive and active states. Once activated, αIIbβ3 binds many different ECM proteins, including fibrinogen, its major ligand. In addition to αIIbβ3, there are other integrins expressed at lower levels on platelets and responsible for adhesion to additional ECM proteins. There are also some important nonintegrin ECM receptors, GPIb-V-IX and GPVI, which are specific to platelets. These receptors play major roles in platelet adhesion and in the activation of the integrins and of other platelet responses, such as cytoskeletal organization and exocytosis of additional ECM ligands and autoactivators of the platelets.The balance between hemostasis and thrombosis relies on a finely tuned adhesive response of blood platelets. Inadequate adhesion leads to bleeding, whereas excessive or inappropriate adhesion leads to thrombosis. Resting platelets are nonadhesive anuclear discs and do not interact with the vessel wall, but they have a plethora of receptors that sense activating signals (agonists) of various sorts. The activating signals include soluble factors such as thrombin, adenosine diphosphate (ADP), and epinephrine, all of which act on G-protein-coupled receptors (GPCRs) on the platelets. In addition, certain receptors for extracellular matrix (ECM) proteins (e.g., GPIb, GPVI, and some integrins) can also act as activating receptors. These diverse receptors trigger intracellular signaling pathways that activate (1) actin assembly leading to cell shape change and extension of filopodia; (2) exocytosis of secretory granules that release additional platelet agonists as well as adhesive ECM proteins; and (3) activation of additional cell-surface receptors such as the major platelet-specific integrin, αIIbβ3, that contribute further to the adhesion and aggregation of activated platelets. Thus, the interactions of platelet-ECM adhesion receptors with ECM proteins from the vessel wall, from the plasma, and from the platelets themselves, are central to both the initial adhesion and the subsequent activation and aggregation of platelets (Varga-Szabo et al. 2008). These adhesive interactions, together with coagulation (to which platelets also contribute), generate the fibrin clot, essentially a facultative ECM that forms the initial occlusion of the damaged vessel but also serves as a subsequent ECM substrate for wound healing. In this article, we will review what is known about the roles of ECM proteins and their receptors in platelet adhesion and aggregation, summarize the roles of the clot and provisional ECM in subsequent wound healing, point out various unanswered questions, and discuss briefly the contributions of the relevant cell–ECM interactions to disease and the potential for therapeutic interventions.  相似文献   

10.
We studied the influence of parathyroid hormone (PTH) on the functional activity of white rat and human platelets, and examined in particular possible mechanisms of PTH influence on the platelet aggregation activity. It has been stated that PTH renders a marked dose-dependent proaggregative effect on platelets. Possible mechanisms of proaggregative effect of parathyroid hormone were examined on platelets using substances with defined mechanisms of the effect. Examination of PTH effect on lectin-intermediated aggregation in a suspension of washed platelets shows that metabolic activation of platelets by PTH causes an increased expression on their plasmic membrane mainly of glycoprotein complex IIb-IIIa and in a lesser degree of glycoprotein complexes Ia-IIa and IV which take part in the formation of interplatelet contact.  相似文献   

11.
Shear rate can affect protein adsorption and platelet aggregation by regulating both the collision frequency and the capture efficiency (alpha). These effects were evaluated in well defined shear field in a micro-couette for shear rate G = 10 - 1000 s-1. The rate of protein binding was independent of G, shown for adsorption of albumin to latex beads and PAC1 to activated platelets. The initial aggregation rate for ADP-activated platelets in citrated platelet-rich plasma followed second order kinetics at the initial platelet concentrations between 20,000 and 60,000/microliters. alpha values, which dropped nearly fivefold for a 10-fold increase in G, were approximately proportional to G-1, contrary to a minor drop predicted by the theory that includes protein cross-bridging. Varying ADP concentration did not change alpha of maximally activated platelet subpopulations, suggesting that aggregation between unactivated and activated platelets is negligible. Directly blocking the unoccupied but activated GPIIb-IIIa receptors without affecting pre-bound Fg on "RGD"-activated, fixed platelets (AFP) by GRGDSP or Ro 43-5054 eliminated aggregation, suggesting that cross-bridging of GPIIb-IIIa on adjacent platelets by fibrinogen mediates aggregation. Alpha for AFP remained maximal (approximately 0.24) over 25-75% Fg occupancy, otherwise decreasing rapidly, with a half-maximum occurring at around 2% occupancy, suggesting that very few bound Fg were required to cause significant aggregation.  相似文献   

12.
ADP-induced platelet responses play an important role in the maintenance of hemostasis. There has been disagreement concerning the identity of an ADP receptor on the platelet surface. The chemical structure of 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl) shows considerable resemblance to that of the adenine moiety of adenine-based nucleotides. The reagent has been previously used by other investigators as an affinity label for adenine nucleotide-requiring enzymes, such as mitochondrial ATPase and the catalytic subunit of cAMP-dependent protein kinase. Since ADP-induced platelet responses depend on the binding of ADP to its receptor, we investigated the effect on ADP-induced platelet responses and the nature of ADP-binding protein modified by NBD-Cl. NBD-Cl inhibited ADP-induced shape change and aggregation of platelets in platelet-rich plasma in a concentration- and time-dependent manner. NBD-Cl also inhibited ADP-induced shape change, aggregation, exposure of fibrinogen binding sites, secretion, and calcium mobilization in washed platelets. NBD-Cl did not act as an agonist for platelet shape change and aggregation. Covalent modification of platelets by NBD-Cl blocked the ability of ADP to antagonize the increase in intracellular levels of cAMP mediated by iloprost (a stable analogue of prostaglandin I2). NBD-Cl was quite specific in inhibiting platelet aggregation by those agonists, e.g., ADP, collagen, and U44619 (a thromboxane mimetic), that completely or partially depend on the binding of ADP to its receptor. Autoradiogram of the gel obtained by SDS-PAGE of solubilized platelets modified by [14C]-NBD-Cl showed the presence of a predominant radiolabeled protein band at 100 kDa corresponding to aggregin, a putative ADP receptor. The intensity of this band was considerably decreased when platelets were either preincubated with ADP and ATP or covalently modified by a sulfhydryl group modifying reagent before modification by [14C]-NBD-Cl. These results (1) indicate that covalent modification of aggregin by NBD-Cl contributed to loss of the ADP-induced platelet responses, and (2) suggest that there is a sulfhydryl group in the ADP-binding domain of aggregin. © 1996 Wiley-Liss, Inc.  相似文献   

13.
In view of the high incidence of thromboembolic complications after the insertion of cardiac valve prostheses, platelet adhesiveness and aggregation was measured in whole blood before, during, and for several days after this operation in 10 patients. Cardiopulmonary bypass resulted in a profound decrease in the platelet count, in the number of adhesive platelets, and in platelet aggregation. These changes returned to near preoperative levels by the sixth postoperative day. Thereafter a consistent and sustained increase in platelet count, in the number of adhesive platelets, and in platelet aggregation was observed. The results suggest that the prevalence of thromboembolism after valve replacement may be due partly to changes in platelet behaviour.  相似文献   

14.
Many endocarditis pathogens activate human platelets and this has been proposed to contribute to virulence. Here we report for the first time that many clinical isolates of Enterococcus faecalis, a common pathogen in infective endocarditis, aggregate human platelets. 84 isolates from human blood and urine were screened for their ability to aggregate platelets from four different donors. Platelet aggregation occurred for between 11 and 65% of isolates depending on the donor. In one donor, a significantly larger proportion of isolates from blood than from urine caused platelet aggregation. Median time to aggregation was 11 min and had a tendency to be shorter for blood isolates as compared to urine isolates. Immunoglobulin G (IgG) was shown to be essential in mediating activation and aggregation. Platelet aggregation could be abolished by an IgG-specific proteinase (IdeS), by an antibody blocking FcRγIIa on platelets, or by preabsorption of plasma with an E. faecalis isolate. Fibrinogen binding to bacteria or platelets does not contribute to platelet activation or aggregation under our experimental conditions. These results indicate that platelet activation and aggregation by E. faecalis is dependent on both host and bacterial factors and that it may be involved in the pathogenesis of invasive disease with this organism.  相似文献   

15.
The initial step in the interaction of thrombin with human platelets in binding of the enzyme to the platelet surface. The effects of digestion of isolated platelets with trypsin and neuraminidase on aggregation, release of serotonin and binding of thrombin have been examined.Trypsin is a powerful inducer of platelet aggregation as well as the release reaction. The aggregation effect of trypsin may be blocked with disodium ehtylenediaminetatraacetate (EDTA). Further, in the presence of EDTA, trypsin-induced release of [14C]serotonin is 15–20% lower compared to controls and the initial lag period is prolonged. Conditions were developed under which trypsin did neither aggregate nor release serotonin from platelets. Even under these conditions, trypsin caused a profound loss in the thrombin binding capacity of platelets. Thus, the trypsin-induced fall in the thrombin binding capacity and the platelet response are dissociated. This loss in the thrombin binding by trypsin is due to a lower number of binding sites available on the platelet surface and is not due to an altered affinity.Neuraminidase did not induce platelet aggregation or the release reaction. The ability of platelets to bind thrombin was also unimpaired by prior digestion with neuraminidase. Thus, the sialic acid at the platelet surface is not essential in the function of thrombin recognition by the receptor. This moiety may nontheless be a constituent of a glycoprotein which might act as the thrombin receptor.  相似文献   

16.
In part 1, we reported that human (H) platelets, activated with high concentrations (10 microM) of adenosine diphosphate, aggregate under Brownian diffusion (nonstirred, platelet-rich plasma) with an apparent efficiency of collision (alpha B) approximately 4 times and 8 times larger than observed, respectively, for canine (C) and rabbit (R) platelets. Further evaluations of parallel inhibition of alpha B and shape change suggested a central role for platelet pseudopods in mediating the long-range interactions associated with the elevated alpha B values. We found that greater than 90% of all platelet contacts in the doublets and triplets formed were via at least one pseudopod. We therefore compared pseudopod number and length per platelet generated by approximately 30 s post ADP activation in nonstirred PRP from human, canine, and rabbit donors, using phase-contrast, video-enhanced microscopy of fixed platelets. Theoretical calculations assessing the effects of pseudopod length and number on the collision frequency enhanced by an increased radius of a collision sphere supported the experimental observations that approximately 3 or 4 pseudopods per human or canine platelet, and approximately 5 or 6 pseudopods per rabbit platelet yield optimal alpha B values, with the average pseudopod length: approximately 3:2:1 for H/C/R, paralleling the alpha B differences. After correcting for effects of pseudopods and platelet size on platelet diffusion and sedimentation, it still appeared that the small number of long pseudopods formed on human platelets could largely explain the unusually large alpha B values. The quantitative discrepancies between theory and experiment do not appear related to time-dependent refractoriness within the less than 60 s of observation, but may be related to biochemical differences in dynamics and surface density of adhesive (sticky sites) present on the pseudopod surface.  相似文献   

17.
The binding of platelets to collagen is the first step in hemostasis. We attempted three approaches for elucidation of the chemical nature of receptors of human platelets for collagen. First, we examined the effect of platelet surface alteration by chymotrypsin treatment. On increasing the concentration of chymotrypsin, collagen-induced platelet aggregation and the release reaction decreased, and in parallel with this change, remarkable decrease of membrane glycoproteins IIb and V, as well as 400 kDa and 300 kDa membrane proteins, was observed. Secondly, effects of several lectins on the platelet-collagen interaction were examined. Lens culinaris agglutinin was found to specifically inhibit the platelet aggregation and release reaction induced by collagen. This inhibition appeared to be caused mainly by blocking of the collagen receptors on platelets by Lens culinaris agglutinin. Furthermore, Lens culinaris agglutinin was found to bind preferentially to glycoprotein IIb as identified by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of platelet membranes followed by staining with 125I-Lens culinaris agglutinin. In addition, a polymerized preparation of Lens culinaris agglutinin induced platelet aggregation. Thirdly, the membrane component which could bind to collagen-Sepharose 4B was determined. Analysis by SDS-polyacrylamide gel electrophoresis combined with autoradiography or fluorography revealed that glycoprotein IIb was most enriched in the bound fraction to collagen. From these results, glycoprotein IIb is most likely a receptor for collagen on human platelet membranes.  相似文献   

18.
5'-p-Fluorosulfonylbenzoyl adenosine (FSBA), a nucleotide analog of ADP, has been shown to inhibit ADP-induced shape change, aggregation and exposure of fibrinogen binding sites concomitant with covalent modification of a single surface membrane polypeptide of Mr 100,000 (aggregin). Since thrombin can aggregate platelets which have been modified by FSBA and are refractory to ADP, we tested the hypothesis that thrombin-induced platelet aggregation might involve cleavage of aggregin. At a low concentration of thrombin (0.05 U/ml), platelet aggregation, exposure of fibrinogen receptors and cleavage of aggregin in FSBA-modified platelets did not occur, indicating ADP dependence. In contrast, incubation of [3H]FSBA-labeled intact platelets with a higher concentration of thrombin (0.2 U/ml) resulted in cleavage of radiolabeled aggregin, aggregation, and exposure of fibrinogen binding sites. Under identical conditions, aggregin in membranes isolated from [3H]FSBA-labeled platelets was not cleaved by thrombin. Thrombin-induced platelet aggregation and cleavage of aggregin were concomitantly inhibited by a mixture of 2-deoxy-D-glucose, D-gluconic acid 1,5-lactone, and antimycin A. These results suggest that thrombin cleaves aggregin indirectly by activating an endogeneous protease. Thrombin is known to elevate intracellular Ca2+ concentration and thereby activates intracellular calcium dependent thiol proteases (calpains). In contrast to serine protease inhibitors, calpain inhibitors including leupeptin, antipain, and ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid (chelator of Ca2+) inhibited platelet aggregation and cleavage of aggregin in [3H]FSBA-labeled platelets. Leupeptin, at a concentration of 10-20 microM, used in these experiments, did not inhibit the amidolytic activity of thrombin, thrombin-induced platelet shape change, or the rise in intracellular Ca2+. Purified platelet calpain II caused aggregation of unmodified and FSBA-modified platelets and cleaved aggregin in [3H]FSBA-labeled platelets as well as in isolated membranes. The latter is in marked contrast to the action of thrombin on [3H]FSBA-labeled membranes. Thus, thrombin-induced platelet aggregation may involve intracellular activation of calpain which proteolytically cleaves aggregin thus unmasking latent fibrinogen receptors, a necessary prerequisite for platelet aggregation.  相似文献   

19.
Wheat germ agglutinin induced aggregation and secretion of serotonin from human platelets in plasma. This aggregation of platelets was blocked by ethylenediaminetetraacetate, azide or prostaglandin E1. The secretion of serotonin was not affected by ethylenediaminetetraacetate but was inhibited by progstaglin E1. Thus, wheat germ agglutinin acts on platelets in plasma as a true aggregating agent.Washed platelets showed increased light transmission when treated with the lectin which was not blocked by ethylenediaminetetraacetate or prostaglandin E1. The capacity to inhibit platelet clumping by the above agents was restored if plasma was added back to the cell suspension. Washed platelets did not release serotonin under the conditions of cell clumping. Thus, in contrast to platelets in plasma, washed platelets are agglutinated by the lection.Platelets fixed in formaldehyde were not agglutinated by the lectin in the aggregometer but agglutination was observed in the microtiter plate. This agglutination may be mediated by interplatelet bridging. These results show that the same agent may act on platelets by different mechanisms depending on the state of the cell and its environment.  相似文献   

20.
Sphingosine is a potent inhibitor of [3H]phorbol dibutyrate binding and protein kinase C activity in vitro and in human platelets (Hannun, Y., Loomis, C., Merrill, A., and Bell, R. (1986) J. Biol. Chem. 261, 12604-12609). Preincubation of platelets with sphingosine resulted in the inhibition of platelet secretion and second phase aggregation in response to ADP, gamma-thrombin, collagen, arachidonic acid, and platelet activating factor. Sphingosine did not affect the initial shape change of platelets or the first phase of aggregation in response to these agonists. Ristocetin-induced platelet agglutination was not affected by sphingosine. Sphingosine inhibition of secondary aggregation (secretion and second phase aggregation) was overcome by phorbol dibutyrate and by the cell-permeable protein kinase C activator, dioctanoylglycerol. Furthermore, platelet secretion and irreversible aggregation were induced by protein kinase C activators in platelets that had been "primed" to undergo initial shape change and first phase aggregation by low concentrations of agonists. These results suggest that protein kinase C activation is a necessary component in the signal transducing pathways that lead to platelet activation. Higher concentrations of agonists, however, induced irreversible aggregation and partial secretion in the presence of sphingosine, suggesting the existence of protein kinase C-independent pathways for platelet activation. These results demonstrate the utility of sphingosine as a pharmacologic tool in probing the role of protein kinase C in signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号