首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There have been a growing number of observations of oscillating protein levels (p53 and NFkB) in eukaryotic signalling pathways. This has resulted in a renewed interest in the mechanism by which such oscillations might occur. Recent computational work has shown that a multisite phosphorylation mechanism such as that found in the MAPK cascade can theoretically exhibit bistability. The bistable behavior was shown to arise from sequestration and saturation mechanisms for the enzymes that catalyse the multisite phosphorylation cycle. These effects generate the positive feedback necessary for bistability. In this paper we describe two kinds of oscillatory dynamics which can occur in a network by which, both use such bistable multisite phosphorylated cycles. In the first example, the fully phosphorylated form of the phosphorylated cycle represses the production of the kinase, which carries out the phosphorylation of the unphosphorylated states of the cycle. The dynamics of this system leads to a relaxation oscillator. In the second example, we consider a cascade of two cycles, in which the fully phosphorylated form of the kinase, in the first cycle, phosphorylates the unphosphorylated forms in the second cycle. A feedback loop, by which the fully phosphorylated form of the second cycle inhibits the kinase step in the first cycle is also present. In this case we obtain a ring oscillator. Both these networks illustrate the versatility of the multisite bistable network.  相似文献   

2.
Previous studies have suggested that positive feedback loops and ultrasensitivity are prerequisites for bistability in covalent modification cascades. However, it was recently shown that bistability and hysteresis can also arise solely from multisite phosphorylation. Here we analytically demonstrate that double phosphorylation of a protein (or other covalent modification) generates bistability only if: (a) the two phosphorylation (or the two dephosphorylation) reactions are catalyzed by the same enzyme; (b) the kinetics operate at least partly in the zero-order region; and (c) the ratio of the catalytic constants of the phosphorylation and dephosphorylation steps in the first modification cycle is less than this ratio in the second cycle. We also show that multisite phosphorylation enlarges the region of kinetic parameter values in which bistability appears, but does not generate multistability. In addition, we conclude that a cascade of phosphorylation/dephosphorylation cycles generates multiple steady states in the absence of feedback or feedforward loops. Our results show that bistable behavior in covalent modification cascades relies not only on the structure and regulatory pattern of feedback/feedforward loops, but also on the kinetic characteristics of their component proteins.  相似文献   

3.
Mitogen-activated protein kinase (MAPK) cascades can operate as bistable switches residing in either of two different stable states. MAPK cascades are often embedded in positive feedback loops, which are considered to be a prerequisite for bistable behavior. Here we demonstrate that in the absence of any imposed feedback regulation, bistability and hysteresis can arise solely from a distributive kinetic mechanism of the two-site MAPK phosphorylation and dephosphorylation. Importantly, the reported kinetic properties of the kinase (MEK) and phosphatase (MKP3) of extracellular signal-regulated kinase (ERK) fulfill the essential requirements for generating a bistable switch at a single MAPK cascade level. Likewise, a cycle where multisite phosphorylations are performed by different kinases, but dephosphorylation reactions are catalyzed by the same phosphatase, can also exhibit bistability and hysteresis. Hence, bistability induced by multisite covalent modification may be a widespread mechanism of the control of protein activity.  相似文献   

4.
Bistability is a nonlinear phenomenon widely observed in nature including in biochemical reaction networks. Deterministic chemical kinetics studied in the past has shown that bistability occurs in systems with strong (cubic) nonlinearity. For certain mesoscopic, weakly nonlinear (quadratic) biochemical reaction systems in a small volume, however, stochasticity can induce bistability and bifurcation that have no macroscopic counterpart. We report the simplest yet known reactions involving driven phosphorylation-dephosphorylation cycle kinetics with autocatalytic kinase. We show that the noise-induced phenomenon is correlated with free energy dissipation and thus conforms with the open-chemical system theory. A previous reported noise-induced bistability in futile cycles is found to have originated from the kinase synchronization in a bistable system with slow transitions, as reported here.  相似文献   

5.
6.
Bistability is considered wide-spread among bacteria and eukaryotic cells, useful e.g. for enzyme induction, bet hedging, and epigenetic switching. However, this phenomenon has mostly been described with deterministic dynamic or well-mixed stochastic models. Here, we map known biological bistable systems onto the well-characterized biochemical Schlögl model, using analytical calculations and stochastic spatiotemporal simulations. In addition to network architecture and strong thermodynamic driving away from equilibrium, we show that bistability requires fine-tuning towards small cell volumes (or compartments) and fast protein diffusion (well mixing). Bistability is thus fragile and hence may be restricted to small bacteria and eukaryotic nuclei, with switching triggered by volume changes during the cell cycle. For large volumes, single cells generally loose their ability for bistable switching and instead undergo a first-order phase transition.  相似文献   

7.
Bistability is a common mechanism to ensure robust and irreversible cell cycle transitions. Whenever biological parameters or external conditions change such that a threshold is crossed, the system abruptly switches between different cell cycle states. Experimental studies have uncovered mechanisms that can make the shape of the bistable response curve change dynamically in time. Here, we show how such a dynamically changing bistable switch can provide a cell with better control over the timing of cell cycle transitions. Moreover, cell cycle oscillations built on bistable switches are more robust when the bistability is modulated in time. Our results are not specific to cell cycle models and may apply to other bistable systems in which the bistable response curve is time-dependent.  相似文献   

8.
9.
10.
BACKGROUND: Important signaling properties, like adaptation, oscillations, and bistability, can emerge at the level of relatively simple systems of signaling proteins. Here, we have examined the quantitative properties of one well-studied signaling system, the JNK cascade. We experimentally assessed the response of JNK to a physiological stimulus (progesterone) and a pathological stress (hyperosmolar sorbitol) in Xenopus laevis oocytes, a cell type that is well-suited to the quantitative analysis of cell signaling. Our aim was to determine whether JNK responses are graded (Michaelian) in character; ultrasensitive in character, resembling the responses of cooperative enzymes; or bistable and all-or-none in character. RESULTS: The responses of JNK to both progesterone and sorbitol were found to be essentially all-or-none. Individual oocytes had either very high or very low JNK activities, with few oocytes possessing intermediate levels of JNK activity. Moreover, JNK activation was autocatalytic, indicating that the JNK cascade is either embedded in or downstream of a positive feedback loop. JNK also exhibited hysteresis, a form of biochemical memory, in its response to sorbitol. These findings indicate that the JNK cascade is part of a bistable signaling system in oocytes. CONCLUSIONS: In Xenopus oocytes, JNK responds to physiological and pathological stimuli in an all-or-none manner. The JNK response shows all the hallmarks of a bistable response, including strong positive feedback and hysteresis. Bistability is a recurring theme in the biochemistry of oocyte maturation and early embryogenesis; the Mos/MEK/p42 MAPK cascade also exhibits bistable responses, and the Cdc2/cyclin B system is hypothesized to be bistable as well. However, the mechanisms underpinning the positive feedback and bistability in the three cases are different, suggesting that evolution has repeatedly converged upon bistability as a way of producing digital responses.  相似文献   

11.
In this work, we develop a minimal two-cycle model for the action of DNA girase. One of the cycles describes the ATP dependent chemicomechanical transduction performed by the enzyme. The other cycle describes the relaxing activity exhibited by girase on supercoiled DNA in the absence of substrates. Supercoiling of DNA is described as a random walk on a topological index. The mechanical energy storage in DNA is manifested in the fact that in general, the kinetic constants for the cycles do not satisfy Wegscheider relations. Finally, a connection is established between the degree of DNA supercoiling and the hydrolysis of ATP.  相似文献   

12.
Mitogen-activated protein kinases are crucial regulators of various cell fate decisions including proliferation, differentiation, and apoptosis. Depending on the cellular context, the Raf-Mek-Erk mitogen-activated protein kinase cascade responds to extracellular stimuli in an all-or-none manner, most likely due to bistable behavior. Here, we describe a previously unrecognized positive-feedback mechanism that emerges from experimentally observed sequestration effects in the core Raf-Mek-Erk cascade. Unphosphorylated/monophosphorylated Erk sequesters Mek into Raf-inaccessible complexes upon weak stimulation, and thereby inhibits cascade activation. Mek, once phosphorylated by Raf, triggers Erk phosphorylation, which in turn induces dissociation of Raf-inaccessible Mek-Erk heterodimers, and thus further amplifies Mek phosphorylation. We show that this positive circuit can bring about bistability for parameter values measured experimentally in living cells. Previous studies revealed that bistability can also arise from enzyme depletion effects in the Erk double (de)phosphorylation cycle. We demonstrate that the feedback mechanism proposed in this article synergizes with such enzyme depletion effects to bring about a much larger bistable range than either mechanism alone. Our results show that stable docking interactions and competition effects, which are common in protein kinase cascades, can result in sequestration-based feedback, and thus can have profound effects on the qualitative behavior of signaling pathways.  相似文献   

13.
The stochastic dynamics of T cell receptor (TCR) signaling are studied using a mathematical model intended to capture kinetic proofreading (sensitivity to ligand-receptor binding kinetics) and negative and positive feedback regulation mediated, respectively, by the phosphatase SHP1 and the MAP kinase ERK. The model incorporates protein-protein interactions involved in initiating TCR-mediated cellular responses and reproduces several experimental observations about the behavior of TCR signaling, including robust responses to as few as a handful of ligands (agonist peptide-MHC complexes on an antigen-presenting cell), distinct responses to ligands that bind TCR with different lifetimes, and antagonism. Analysis of the model indicates that TCR signaling dynamics are marked by significant stochastic fluctuations and bistability, which is caused by the competition between the positive and negative feedbacks. Stochastic fluctuations are such that single-cell trajectories differ qualitatively from the trajectory predicted in the deterministic approximation of the dynamics. Because of bistability, the average of single-cell trajectories differs markedly from the deterministic trajectory. Bistability combined with stochastic fluctuations allows for switch-like responses to signals, which may aid T cells in making committed cell-fate decisions.  相似文献   

14.
Periodic predator – prey dynamics in constant environments are usually taken as indicative of deterministic limit cycles. It is known, however, that demographic stochasticity in finite populations can also give rise to regular population cycles, even when the corresponding deterministic models predict a stable equilibrium. Specifically, such quasi-cycles are expected in stochastic versions of deterministic models exhibiting equilibrium dynamics with weakly damped oscillations. The existence of quasi-cycles substantially expands the scope for natural patterns of periodic population oscillations caused by ecological interactions, thereby complicating the conclusive interpretation of such patterns. Here we show how to distinguish between quasi-cycles and noisy limit cycles based on observing changing population sizes in predator – prey populations. We start by confirming that both types of cycle can occur in the individual-based version of a widely used class of deterministic predator – prey model. We then show that it is feasible and straightforward to accurately distinguish between the two types of cycle through the combined analysis of autocorrelations and marginal distributions of population sizes. Finally, by confronting these results with real ecological time series, we demonstrate that by using our methods even short and imperfect time series allow quasi-cycles and limit cycles to be distinguished reliably.  相似文献   

15.
Switches (bistability) and oscillations (limit cycle) are omnipresent in biological networks. Synthetic genetic networks producing bistability and oscillations have been designed and constructed experimentally. However, in real biological systems, regulatory circuits are usually interconnected and the dynamics of those complex networks is often richer than the dynamics of simple modules. Here we couple the genetic Toggle switch and the Repressilator, two prototypic systems exhibiting bistability and oscillations, respectively. We study two types of coupling. In the first type, the bistable switch is under the control of the oscillator. Numerical simulation of this system allows us to determine the conditions under which a periodic switch between the two stable steady states of the Toggle switch occurs. In addition we show how birhythmicity characterized by the coexistence of two stable small-amplitude limit cycles, can easily be obtained in the system. In the second type of coupling, the oscillator is placed under the control of the Toggleswitch. Numerical simulation of this system shows that this construction could for example be exploited to generate a permanent transition from a stable steady state to self-sustained oscillations (and vice versa) after a transient external perturbation. Those results thus describe qualitative dynamical behaviors that can be generated through the coupling of two simple network modules. These results differ from the dynamical properties resulting from interlocked feedback loops systems in which a given variable is involved at the same time in both positive and negative feedbacks. Finally the models described here may be of interest in synthetic biology, as they give hints on how the coupling should be designed to get the required properties.  相似文献   

16.
17.
Phenotypic cell-to-cell variability or cell population heterogeneity originates from two fundamentally different sources: unequal partitioning of cellular material at cell division and stochastic fluctuations associated with intracellular reactions. We developed a mathematical and computational framework that can quantitatively isolate both heterogeneity sources and applied it to a genetic network with positive feedback architecture. The framework consists of three vastly different mathematical formulations: a), a continuum model, which completely neglects population heterogeneity; b), a deterministic cell population balance model, which accounts for population heterogeneity originating only from unequal partitioning at cell division; and c), a fully stochastic model accommodating both sources of population heterogeneity. The framework enables the quantitative decomposition of the effects of the different population heterogeneity sources on system behavior. Our results indicate the importance of cell population heterogeneity in accurately predicting even average population properties. Moreover, we find that unequal partitioning at cell division and sharp division rates shrink the region of the parameter space where the population exhibits bistable behavior, a characteristic feature of networks with positive feedback architecture. In addition, intrinsic noise at the single-cell level due to slow operator fluctuations and small numbers of molecules further contributes toward the shrinkage of the bistability regime at the cell population level. Finally, the effect of intrinsic noise at the cell population level was found to be markedly different than at the single-cell level, emphasizing the importance of simulating entire cell populations and not just individual cells to understand the complex interplay between single-cell genetic architecture and behavior at the cell population level.  相似文献   

18.
For a system of biochemical reactions, it is known from the work of T.G. Kurtz [J. Appl. Prob. 8, 344 (1971)] that the chemical master equation model based on a stochastic formulation approaches the deterministic model based on the Law of Mass Action in the infinite system-size limit in finite time. The two models, however, often show distinctly different steady-state behavior. To further investigate this “paradox,” a comparative study of the deterministic and stochastic models of a simple autocatalytic biochemical reaction, taken from a text by the late J. Keizer, is carried out. We compute the expected time to extinction, the true stochastic steady state, and a quasistationary probability distribution in the stochastic model. We show that the stochastic model predicts the deterministic behavior on a reasonable time scale, which can be consistently obtained from both models. The transition time to the extinction, however, grows exponentially with the system size. Mathematically, we identify that exchanging the limits of infinite system size and infinite time is problematic. The appropriate system size that can be considered sufficiently large, an important parameter in numerical computation, is also discussed.  相似文献   

19.
In computational neuroscience, decision-making may be explained analyzing models based on the evolution of the average firing rates of two interacting neuron populations, e.g., in bistable visual perception problems. These models typically lead to a multi-stable scenario for the concerned dynamical systems. Nevertheless, noise is an important feature of the model taking into account both the finite-size effects and the decision’s robustness. These stochastic dynamical systems can be analyzed by studying carefully their associated Fokker–Planck partial differential equation. In particular, in the Fokker–Planck setting, we analytically discuss the asymptotic behavior for large times towards a unique probability distribution, and we propose a numerical scheme capturing this convergence. These simulations are used to validate deterministic moment methods recently applied to the stochastic differential system. Further, proving the existence, positivity and uniqueness of the probability density solution for the stationary equation, as well as for the time evolving problem, we show that this stabilization does happen. Finally, we discuss the convergence of the solution for large times to the stationary state. Our approach leads to a more detailed analytical and numerical study of decision-making models applied in computational neuroscience.  相似文献   

20.
Sensitivity analysis quantifies the dependence of system behavior on the parameters that affect the process dynamics. Classical sensitivity analysis, however, does not directly apply to discrete stochastic dynamical systems, which have recently gained popularity because of its relevance in the simulation of biological processes. In this work, sensitivity analysis for discrete stochastic processes is developed based on density function (distribution) sensitivity, using an analog of the classical sensitivity and the Fisher Information Matrix. There exist many circumstances, such as in systems with multistability, in which the stochastic effects become nontrivial and classical sensitivity analysis on the deterministic representation of a system cannot adequately capture the true system behavior. The proposed analysis is applied to a bistable chemical system--the Schl?gl model, and to a synthetic genetic toggle-switch model. Comparisons between the stochastic and deterministic analyses show the significance of explicit consideration of the probabilistic nature in the sensitivity analysis for this class of processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号