首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular smooth muscle cells (VSMCs) are exposed to mechanical cyclic stretch in vivo, which play important roles in maintenance of vascular homeostasis and regulation of pathological vascular remodeling. Reversible protein phosphorylation is crucial for intracellular signaling transduction. However, the dynamic phosphorylated profile induced by cyclic stretch in VSMCs is still unclear. Using the stable isotope labeling by amino acid in cell culture, VSMCs were labeled and exposed to 10% physiological cyclic stretch in vitro at 1.25 Hz for 0 min, 15 min, 30 min, 1 h and 6 h, respectively. Using TiO2 beads and liquid chromatography tandem mass spectrometry, the temporal phosphoproteomic profiles in response to cyclic stretch were then detected. Bioinformatics analysis including fuzzy c-means clustering, functional classifications, and Ingenuity Pathway Analysis were applied to further reveal the potential mechanotranduction networks. The results indicated that protein kinase C (PKCs) family, Rho-associated coiled-coil containing protein kinase 1 (ROCK1) and Akt may participate in cyclic-stretch induced VSMC functions. Cyclic stretch repressed the expression of ROCK1, while it had no significant effect on the phosphorylation of PKCα/βII, PKCζ/λ and PKCδ/θ. PKCθ was activated first at short time-phase (15 min and 30 min), and again at long time-phase (6 h, 12 h and 24 h). The activation of p-PKCμ was immediate and short-term, similar to p-Akt. Our present in vitro work hence revealed that cyclic stretch activates complex mechanotransduction networks, suggesting that novel mechanoresponsive molecules, i.e., PKCθ, PKCμ, and ROCK1, may participate in the mechanotransduction and modulation VSMC functions.  相似文献   

2.
δ13C data are often used in trophodynamic research where diet-tissue fractionation (Δδ13C) is assumed to be 0-1‰ per trophic level and unaffected by the size of animals or their environment. Variation in Δδ13C will influence conclusions about food sources, energy pathways and trophic level. To assess the effects of body size, age and environmental conditions on Δδ13C, European sea bass (Dicentrarchus labrax) were reared on constant diets of dab (Limanda limanda) or (Ammodytes marinus) for 2years under natural environmental regimes. Bass were sampled approximately monthly to determine Δδ13C for muscle, heart and liver tissue and were 1.66‰, − 0.18‰, − 1.77‰ (sandeel diet) and 1.34‰, − 1.18‰, − 1.75‰ (dab diet) respectively. Arithmetic lipid correction increased Δδ13C to > 2‰ for muscle and liver. Δδ13C was dependent on body mass and experimental duration (age) and generally declined with weight or time even after correction for lipid content. For liver, increasing temperature increased Δδ13C. The Δδ13C estimates from this study were compared with all available published Δδ13C estimates for fish. Bass muscle Δδ13C was similar to previous estimates for fish white muscle Δδ13C (1.56 ± 1.10‰) and whole body Δδ13C (1.52 ± 1.13‰). Fractionations derived in this study, combined with those from the literature, support the use of diet-tissue fractionation values of between 1‰-2‰ for δ13C, rather than the commonly used 0‰ − 1‰. For muscle Δδ13C, 1.5‰ is appropriate.  相似文献   

3.
Leaves of 26 grass, herb, shrub and tree species were collected from mesotrophic grasslands to assess natural variability in bulk, fatty acid and monosaccharide δ13C values under different grazing management (cattle- or deer-grazed) on three sample dates (May, July and October) such that interspecific and spatiotemporal variations in whole leaf tissues and compound-specific δ13C values could be determined. The total mean leaf bulk δ13C value for plants was −28.9‰ with a range of values spanning 7.5‰. Significant interspecific variation between bulk leaf δ13C values was only determined in October (P = <0.001) when δ13C values of the leaf tissues from both sites was on average 1.5‰ depleted compared to during July and May. Samples from May were significantly different between fields (P = 0.03) indicating an effect from deer- or cattle-grazing in young leaves. The average individual monosaccharide δ13C value was 0.8‰ higher compared with whole leaf tissues. Monosaccharides were the most abundant components of leaf biomass, i.e. arabinose, xylose, mannose, galactose and glucose, and therefore, fluctuations in their individual δ13C values had a major influence on bulk δ13C values. An average depletion of ca. 1‰ in the bulk δ13C values of leaves from the deer-grazed field compared to the cattle-grazed field could be explained by a general depletion of 1.1‰ in glucose δ13C values, as glucose constituted >50% total leaf monosaccharides. In October, δ13C values of all monosaccharides varied between species, with significant variation in δ13C values of mannose and glucose in July, and mannose in May. This provided an explanation for the noted variability in the tissue bulk δ13C values observed in October 1999. The fatty acids C16:0, C18:2 and C18:3 were highly abundant in all plant species. Fatty acid δ13C values were lower than those of bulk leaf tissues; average values of −37.4‰ (C16:0), −37.0‰ (C18:2) and −36.5‰ (C18:3) were determined. There was significant interspecific variation in the δ13C values of all individual fatty acids during October and July, but only for C18:2 in May (P = <0.05). This indicated that seasonal trends observed in the δ13C values of individual fatty acids were inherited from the isotopic composition of primary photosynthate. However, although wide diversity in δ13C values of grassland plants ascribed to grazing management, interspecific and spatiotemporal influences was revealed, significant trends (P = <0.0001) for fatty acid and monosaccharide δ13C values: δ13C16:0 < δ13C18:2 < δ13C18:3 and δ13Carabinose > δ13Cxylose > δ13Cglucose > δ13Cgalactose, respectively, previously described, appear consistent across a wide range of species at different times of the year in fields under different grazing regimes.  相似文献   

4.
The flowers of 23 species of grass and herb plants were collected from a mesotrophic grassland to assess natural variability in bulk, monosaccharide and fatty acid δ13C values from one plant community and were compared with previous analyses of leaves from the same species. The total mean bulk δ13C value of flower tissues was −28.1‰, and there was no significant difference between the mean δ13Cflower values for grass (−27.8‰) and herb (−28.2‰) species. On average bulk δ13Cflower values were 1.1‰ higher than bulk δ13Cleaf values, however, the δ13Cflower and δ13Cleaf values of grasses did not differ between organs suggesting that carbon isotope discrimination is different in grass and herb species. The abundance of different monosaccharides abundance varied between plant types, i.e. xylose concentrations in the grass flowers were as high as 40%, compared with up to 15% in the herb species, but the general relationship δ13Carabinose > δ13Cxylose > δ13Cglucose > δ13Cgalactose which had been observed in leaves was similar in flowers (total mean δ13C values = −25.9‰, −27.2‰, −28.8‰ and −28.1‰, respectively). However, the average 5.4‰ depletion in the δ13C values of the C16:0, C18:2 and C18:3 fatty acids in flowers compared to bulk tissue was significantly greater than observed for leaves. The trend C16:0 < C18:2 < C18:3 previously observed in leaves was also observed in grass flowers (δ13CC16:0 = −33.8‰; δ13CC18:2 = −33.1‰; δ13CC18:3 = −34.2‰) but not herb flowers (δ13CC16:0 = −34.1‰; δ13CC18:2 = −32.4‰; δ13CC18:3 = −34.5‰). We conclude: (i) that the biological processes influencing carbon isotope discrimination in grass flowers are different from herbs flowers; and, (ii) that a range of post-photosynthetic fractionation effects caused the observed differences between flower and leaf δ13C values, especially the significant 13C-depletion in flower fatty acid δ13C values.  相似文献   

5.
Complexes of the types cis-Pt(amine)2I2 were transformed into the iodo-bridged dimers, which were characterized mainly by multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopy. For bulby amines, the dinuclear species were synthesized directly from K2[PtI4]. Compounds with several primary aliphatic and cyclic amines and two secondary amines were studied. In 195Pt NMR, two signals were observed between −3899 and −4080 ppm in acetone. These species were assigned to the cis and trans dinuclear compounds I(amine)Pt(μ-I)2PtI(amine). We suggest that the most shielded compound is the trans isomer. The difference between the two isomers is 12-13 ppm for the primary amine system and 26-27 ppm for the two secondary amines. There seems to be a slight dependence of the proton affinity in the gas phase of the amine (linear amines) with the δ(Pt) chemical shifts of the dinuclear Pt(II) compounds. The 2J(195Pt-1HN) coupling constants are slightly larger for the trans isomers (average 67 Hz, vs. 56 Hz). The 3J(195Pt-1H) coupling constants were detected only for the dimethylamine compounds, 46 Hz (trans) and 44 Hz (cis). In 13C NMR, the values of 2J(195Pt-13C) and 3J(195Pt-13C) were also found to be very slightly larger for the trans complexes (average 19 and 25 Hz vs. 15 and 18 Hz). The structures were confirmed by X-ray diffraction studies of the n-butylamine and diethylamine compounds. The two crystals were those of the trans dinuclear complexes.  相似文献   

6.
Pt(II) complexes of the types cis- and trans-Pt(amine)2I2 with amines containing a phenyl group were synthesized and studied mainly by IR and multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopies. The compounds are not very soluble. In 195Pt NMR spectroscopy, the cis isomers were observed at slightly lower fields than the trans analogues (average Δδ = 11 ppm) in acetone. In 1H NMR, the NH groups were also found at slightly lower fields in the cis isomers. The coupling constants 2J(195Pt-1HN) varied from 53 to 85 Hz and seem slightly smaller in the trans configuration. The 13C NMR spectra of most of the complexes were measured. No coupling constants J(195Pt-13C) were detected due to the low solubility of the compounds. The cis isomers containing a phenyl group on the N atom could not be isolated except for Ph-NH2 which was shown to be a mixture of isomers in acetone. The tetrasubstituted ionic compounds [Pt(amine)4]I2 for the less crowded ligands were also studied mainly by NMR spectroscopy in aqueous solution. The 195Pt chemical shifts vary between −2855 and −2909 ppm. The coupling constants 3J(195Pt-1H) are about 40 Hz. The iodo-bridged dinuclear species I(amine)Pt(μ-I)2Pt(amine)I were also synthesized and characterized. Two isomers are present in acetone solution for most of the compounds. Their δ(Pt) signals were observed at about −4000 ppm and their coupling constants 2J(195Pt-1HN) are around 69 Hz.  相似文献   

7.
Yan-Hong Wang 《Phytochemistry》2010,71(16):1825-1831
Several lines of evidence indicate that (+)-δ-cadinene-8-hydroxylase (CYP706B1) plays an important role in biosynthesis of gossypol in Gossypium arboreum L. ( [Luo et al., 2001] and [Wang et al., 2003]). The catalytically active enzyme has been expressed in yeast microsomes. Some microsomal preparations conjugated the hydroxylated (+)-δ-cadinene to a moiety that has not yet been identified. However, when microsomes were treated with n-octyl-β-d-glucoside (OG), a non-ionic detergent, (+)-δ-cadinene was reproducibly converted to the free alcohol, 8-hydroxy-(+)-δ-cadinene. OG had little effect on Km and slightly stimulated apparent Vmax. Enzymic activity was more than 10-fold more sensitive to inhibition by the N-substituted imidazole clotrimazole than to miconazole. Sesquiterpene olefins (−)-δ-cadinene, (−)-α-cubebene, (−)-α-muurolene, α-humulene, and a mixture of (−)- and (+)-α-copaene were inhibitory to hydroxylation of (+)-δ-cadinene. In addition, (−)-α-cubebene, (−)-α-muurolene, α-humulene, and, to a smaller extent, (−)-δ-cadinene served as alternative substrates for (+)-δ-cadinene-8-hydroxylase and were converted to mono-hydroxylated products. Of the five olefins tested, α-humulene and α-copaene are found in lysigenous glands of cotton (Elzen et al., 1985), which are also the site of gossypol accumulation ( [Bell et al., 1978] and [Mace et al., 1976]) and the probable site of its biosynthesis.  相似文献   

8.
Novel ionic mixed-ligands complexes of the types cis- and trans-[Pt(amine)2(pm)2](NO3)2 (where pm = pyrimidine) were synthesized and studied in the solid state by IR spectroscopy and in aqueous solution by multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopy. The results of the solution NMR characterization have shown that the isolated compounds are pure. In 195Pt NMR, the cis RNH2 complexes were observed at slightly lower fields (ave. −2441 ppm) than the equivalent trans analogues (ave. −2448 ppm). For Me2NH, the difference between the two isomers is larger (29 ppm). The complexes are observed at lower fields (difference of 100 ppm) than the corresponding [Pt(amine)4]2+ complexes, which might indicate the presence of π-backdonation in the Pt-pm bond. In 1H NMR, the coupling constants 3J(195Pt-1Hamine) are larger in the cis compounds (38-48 Hz) than in the trans analogues (30-36 Hz). The 3J(195Pt-1Hpm) values are also larger for the cis isomers. In 13C NMR spectroscopy, the coupling constants 3J(195Pt-13Camine) are 36 Hz (ave.) for the cis complexes and 26 Hz (ave.) for the trans isomers, while the 2J(195Pt-13Camine) are 18 Hz (cis) and 14 Hz (trans), respectively. The 3J(195Pt-13C5(pm)) values are 36 Hz (cis) and 28 Hz (trans). A few 2J(195Pt-13Cpm) couplings were observed (7-10 Hz).  相似文献   

9.
Although the highly conserved Ca2+/calmodulin-dependent protein kinase II (CaMKII) is known to play an essential role in cardiac myocytes, its involvement in the frequency-dependent acceleration of relaxation is still controversial. To investigate the functional significance of CaMKII autophosphorylation and its regulation by protein phosphatases (PPs) in heart, we developed a new mathematical model for the CaMKIIδ isoform. Due to better availability of experimental data, the model was first adjusted to the kinetics of the neuronal CaMKIIα isoform and then converted to a CaMKIIδ model by fitting to kinetic data of the δ isoform. Both models satisfactorily reproduced experimental data of the CaMKII-calmodulin interaction, the autophosphorylation rate, and the frequency dependence of activation. The level of autophosphorylated CaMKII cumulatively increased upon starting the Ca2+ stimulation at 3 Hz in the δ model. Variations in PP concentration remarkably affected the frequency-dependent activation of CaMKIIδ, suggesting that cellular PP activity plays a key role in adjusting CaMKII activation in heart. The inhibitory effect of PP was stronger for CaMKIIα compared to CaMKIIδ. Simulation results revealed a potential involvement of CaMKIIδ autophosphorylation in the frequency-dependent acceleration of relaxation at physiological heart rates and PP concentrations.  相似文献   

10.
The analysis of tissue's naturally occurring stable carbon and nitrogen isotope ratios is a useful tool to delineate trophic relationships. However, the interpretation of δ13C and δ15N is complicated by the influence of multiple factors such as the tissue-specific lipid content. The aim of this work was to evaluate the effects of lipid extraction on δ13C and δ15N compositions in muscle, hepatopancreas and gonads of a marine decapod crustacean, the spider crab Maja brachydactyla. Samples were analyzed for stable isotopes before and after lipid removal, using a derived Soxhlet extraction method. Differences in δ13C and δ15N were measured among tissues before and after treatment. Lipid extraction of muscle did not have a significant effect on either δ13C or δ15N. By contrast, ecologically significant shifts for both carbon and nitrogen stable isotopes ratios (+ 2.9 ± 0.8‰ for δ13C, and + 1.2 ± 0.7‰ for δ15N) were noticed in the hepatopancreas. In regard to gonads, lipid extraction led to a shift only on δ13C (+ 1.3 ± 0.3‰). Finally, the derived Soxhlet extraction method removed the lipid influence for δ13C, and had an effect on δ15N composition for lipid-rich samples. We recommend this treatment for carbon stable isotope studies on decapod crustacean lipid-rich tissues.  相似文献   

11.
Despite high taxonomic diversity elsewhere in North America during the Pleistocene, vertebrate faunas are exceedingly rare in the region of northern Mexico. Térapa, a unique fossil site located in the present-day desert of Northcentral Sonora, Mexico (29°41′N, 109°39′W, 605 m elevation), contributes to our understanding of the paleoecology and paleoclimate of the region during the Late Pleistocene, ca. 43,000-40,000 cal. yr BP. At least 60 vertebrate taxa, including amphibians, turtles, a crocodilian, snakes, birds and many mammals, have been recovered from an 11-m thick sequence of fossiliferous sediments. The diversity and tropical affinity of these taxa suggest a more-forested environment than the thornscrub desert habitat present in this region today.Isotopic analyses of tooth enamel carbonate from ancient mammalian herbivores suggest that the Sonoran desert has undergone considerable climate change since the Late Pleistocene. Bulk carbon (δ13C) and oxygen (δ18O) isotopes from nine mammalian fossils indicate a habitat mosaic with variations in diet that include browsers, mixed feeders and C4 hyper-grazers (δ13C range of − 10‰ to 2‰). Unique to this site are δ13C tooth enamel values of − 6.1 and − 5.6 ‰ for the deer Odocoileus, which suggest a more variable diet than strict browsing, including possibly feeding on CAM and/or C4 plants. Serial sampling of carbon (δ13C) and oxygen (δ18O) isotopes for ancient mammal teeth with hypsodont dentitions (fossil Equus and Bison,) as well as δ18O meteroric water estimates from well-supported climatic models suggest a cooler and more equable environment at Térapa during the Late Pleistocene. These results also support previous habitat reconstructions inferred from the macrobotanical and packrat midden records of northern Sonora (Mexico). High-resolution stable isotope geochemistry indicates that: 1) ancient Térapa was covered with forest and grassland habitats that extended northward into Mexico by about 350 km relative to their present-day northern limits during the Late Pleistocene; and 2) an Amount Effect (AE) is demonstrated in the fossil record at Térapa even though the climate was less seasonal compared to the modern desert habitat.  相似文献   

12.
The standard electrode potential (Eθ) has been known for many decades to predict the toxicity of metal ions. We have compiled acute toxicity data from fifteen studies and find that the toxicity of thirty metal ions correlates with Eθ at r2 = 0.868 when toxicity is expressed as log concentration of comparably effective doses. We have discovered an even stronger relationship between the prooxidant activity (PA) of metal ions and Eθ (and electronegativity, χ). Data compiled from thirty-four studies demonstrate that the PA of twenty-five metal ions correlates with Eθ at r2 = 0.983 (and χ at r2 = 0.968). PA was commonly measured as metal-induced peroxidation of cell membranes or accumulation of reactive oxygen species. None of the redox metals (capable of Fenton-like reactions) in our studies (i.e., Mn, Fe, Co, Ni, and Cu) was prooxidative or toxic beyond what was expected from Eθ or χ. We propose that the formation of superoxide-metal ion complexes is greater at greater Eθ or χ values and that these complexes, whether free or enzyme-bound, function in PA without redox cycling of the complexed ion.  相似文献   

13.
Levels of nucleotide divergence provide key evidence in the evolution of polyploids. The nucleotide diversity of 226 sequences of pgk1 gene in Triticeae species was characterized. Phylogenetic analyses based on the pgk1 gene were carried out to determine the diploid origin of polyploids within the tribe in relation to their Au, B, D, St, Ns, P, and H haplomes. Sequences from the Ns genome represented the highest nucleotide diversity values for both polyploid and diploid species with π = 0.03343 and θ = 0.03536 for polyploid Ns genome sequences and π = 0.03886 and θ = 0.03886 for diploid Psathyrostachys sequences, while Triticum urartu represented the lowest diversity among diploid species at π = 0.0011 and θ = 0.0011. Nucleotide variation of diploid Aegilops speltoides (π = 0.2441, presumed the B genome donor of Triticum species) is five times higher than that (π = 0.00483) of B genome in polyploid species. Significant negative Tajima's D values for the St, Au, and D genomes along with high rates of polymorphisms and low sequence diversity were observed. Origins of the Au, B, and D genomes were linked to T. urartu, A. speltoides, and A. tauschii, respectively. Putative St genome donor was Pseudoroegneria, while Ns and P donors were Psathyrostachys and Agropyron. H genome diploid donor is Hordeum.  相似文献   

14.
The 31P CP-MAS NMR spectra of trans-square-planar complexes of dihalonickel(II) complexes with tribenzyl-, tricyclohexyl- and tricyclohexylmethylphosphines have been examined and the chemical shift tensors determined. The spans, δ11-δ33, of the tensor components decrease with change in the halide, Cl > Br > I, for all the tertiary phosphines due principally to the deshielding of the δ33 component.  相似文献   

15.
Low-frequency sensorineural hearing loss (LFSNHL) is an unusual type of HL in which frequencies at 2000 Hz and below are predominantly affected. Most of the families with LFSNHL carry missense mutations in WFS1 gene, coding for wolframin.  相似文献   

16.
An irregular ventricular response during atrial fibrillation (AF) has been shown to mediate an increase in sympathetic nerve activity in human subjects. The molecular mechanisms remain unclear. This study aimed to investigate the impact of rate and irregularity on nerve growth factor (NGF) expression in cardiomyocytes, since NGF is known to be the main contributor to cardiac sympathetic innervation density. Cell cultures of neonatal rat ventricular myocytes were electrically stimulated for 48 h with increasing rates (0, 5 and 50 Hz) and irregularity (standard deviation (SD) = 5%, 25% and 50% of mean cycle length). Furthermore, we analyzed the calcineurin-NFAT and the endothelin-1 signalling pathways as possible contributors to NGF regulation during arrhythmic stimulation. We found that the increase of NGF expression reached its maximum at the irregularity of 25% SD by 5 Hz (NGF: 5 Hz 0% SD = 1 vs. 5 Hz 25% SD = 1.57, P < 0.05). Specific blockade of the ET-A receptor by BQ123 could abolish this NGF increase (NGF: 5 Hz 25% SD + BQ123 = 0.66, P < 0.05). High frequency electrical field stimulation (HFES) with 50 Hz decreased the NGF expression in a significant manner (NGF: 50 Hz = 0.55, P < 0.05). Inhibition of calcineurin-NFAT signalling with cyclosporine-A or 11R-VIVIT abolished the HFES induced NGF down-regulation (NGF: 50 Hz + CsA = 1.14, P < 0.05). In summary, this study reveals different signalling routes of NGF expression in cardiomyocytes exposed to increasing rates and irregularity. Whether this translates into different degrees of NGF expression and possibly neural sympathetic growth in various forms of ventricular rate control during AF remains to be elucidated in further studies.  相似文献   

17.
Discrimination of stable isotopes of carbon (δ13C) and nitrogen (δ15N) was examined for the amphipod Allorchestes compressa Dana using controlled laboratory experiments. Amphipods were fed exclusively on single diets (fresh or decomposed macroalgae or seagrass) for three weeks. Macrophyte type (i.e. seagrass, brown algae or red algae) had a greater influence on the stable isotope ratios of A. compressa than the state of decomposition of the macrophyte material. The experiments revealed that δ13C in A. compressa stabilised at values lower than those of the diets, which contrasts to the general assumption that consumer-diet discrimination of δ13C ranges from 0 to + 1‰. Amphipods fed on seagrass yielded the lowest δ13C values, which were 9 to 10‰ lower than their diet, while amphipods fed on macroalgae had values 2 to 4‰ lower than their diet. In addition, contrary to the general assumption that consumer-diet discrimination of δ15N ranges from + 3 to + 5‰, discrimination of δ15N was as low as − 1 and + 1 when A. compressa was fed on brown and red algae, respectively, but as high as + 3‰ when fed on seagrass. The results show that discrimination of stable isotopes of carbon and nitrogen can vary considerably depending on the food source, demonstrating that validation of assumptions about discrimination are critical for interpreting stable isotope data from field studies.  相似文献   

18.
NPC1 gene is an important gene closely related to the Niemann–Pick type C (NPC). Mutations in the NPC1 gene tend to cause Niemann–Pick type C, a lysosomal storage disorder. Previous studies have shown that NPC1 protein plays an important role in subcellular lipid transport, homeostasis, platelet function and formation, which are basic metabolic activities in the process of development. In this study, to explore the association between the NPC1 gene variation and body size traits in Qinchuan cattle, we detected four novel coding single nucleotide polymorphisms (cSNPs) in the bovine NPC1 gene, including one missense mutation (SNP1) and three synonymous mutations (SNP2, SNP3 and SNP4). Population genetic analyses of 518 individuals and association correlations between cSNPs and bovine body size traits were conducted in this research. A missense mutation at SNP1 locus was found to be significantly related to the heart girth, hip width and body weight (P < 0.01 or P < 0.05, 3.5-year-old). Two synonymous mutations at SNP2 and SNP3 loci also showed significant effects on hip width (P < 0.05, 3.5-year-old). One synonymous mutation at SNP4 locus showed significant effect on body weight (P < 0.05, 2.0-year-old). Combined haplotypes H2H6 and H6H6 showed significant effects on body size traits such as heart girth, hip width, and body weight (3.5-year-old, P < 0.01 or P < 0.05). This study provides evidence that the NPC1 gene might be involved in the regulation of bovine growth and body development, and may be considered as a candidate gene for marker assisted selection (MAS) in beef cattle breeding industry.  相似文献   

19.
The aim of the study was to determine the directionality of the coupling of mechanical vibrations across the biceps brachii muscle at different frequencies of interest during voluntary contraction. The vibrations that are naturally generated by skeletal muscles were recorded by a two-dimensional array of skin mounted accelerometers over the biceps brachii muscle (surface mechanomyogram, S-MMG) during voluntary isometric contractions in ten healthy young men. As a measure of the similarity of vibration between a given pair of accelerometers, the spatial coherence of S-MMG at low (f < 25 Hz) and high (f > 25 Hz) frequency bands were investigated to determine if the coupling of the natural mechanical vibrations were due to the different physiological muscle activity at low and high frequencies. In both frequency bands, spatial coherence values for sensor pairs aligned longitudinally along the proximal to distal ends of the biceps were significantly higher compared with those for the sensor pairs oriented perpendicular to the muscle fibers. This difference was more evident at the higher frequency band. The findings indicated that coherent mechanical oscillations mainly propagated along the longitudinal direction of the biceps brachii muscle fibers at high frequencies (f > 25 Hz).  相似文献   

20.
The ruthenium(II) hexaaqua complex [Ru(H2O)6]2+ reacts with dihydrogen under pressure to give the η2-dihydrogen ruthenium(II) pentaaqua complex [Ru(H2)(H2O)5]2+.The complex was characterized by 1H, 2H and 17O NMR: δH = −7.65 ppm, JHD = 31.2 Hz, δO = −80.4 ppm (trans to H2) and δO = −177.4 ppm (cis to H2).The H-H distance in coordinated dihydrogen was estimated to 0.889 Å from JHD, which is close to the value obtained from DFT calculations (0.940 Å).Kinetic studies were performed by 1H and 2H NMR as well as by UV-Vis spectroscopy, yielding the complex formation rate and equilibrium constants: kf = (1.7 ± 0.2) × 10−3 kg mol−1 s−1 and Keq = 4.0 ± 0.5 mol kg−1.The complex formation rate with dihydrogen is close to values reported for other ligands and thus it is assumed that the reaction with dihydrogen follows the same mechanisn (Id).In deuterated water, one can observe that [Ru(H2)(H2O)5]2+ catalyses the hydrogen exchange between the solvent and the dissolved dihydrogen.A hydride is proposed as the intermediate for this exchange.Using isotope labeling, the rate constant for the hydrogen exchange on the η2-dihydrogen ligand was determined as k1 = (0.24 ± 0.04) × 10−3 s−1.The upper and lower limits of the pKa of the coordinated dihydrogen ligand have been estimated:3 < pKa < 14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号