首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Large-scale production of electrically fused yeast protoplasts from Saccharomyces cerevisiae AH 22[pADH 040-2] and S. cerevisiae AH215 was achieved by the use of the so-called helical fusion chamber. Both strains were of the same mating type a and carried the following auxotrophic markers: his4 in the case of AH22 and leu2, his3 in the case of AH215.
AH22 also is a carrier of the plasmid pADH 040-2. This plasmid confers the leu2 gene of yeast and the β-lactamase gene from Escherichia coli , and this feature enables quick detection of plasmid-positive cells.
After dielectrophoresis (275 V/cm, 800 kHz) fusion was induced by two field pulses (10 kV/cm, 10 μs duration) applied at an interval of 0.5 s. 50 to 60 hybrids per run were isolated after regeneration on selection medium.  相似文献   

2.
This study was undertaken to examine the effects of various electric fields such as alternating current (a.c.) voltage, fusion pulse strength, pulse duration, pulse number and electrode geometry on blastomere fusion and developmental rates of mouse two-cell embryos. The a.c. voltages (6 and 12 V/mm) did not affect the fusion and developmental rates. High fusion and developmental rates were obtained when pulse strengths of 1.0 to 2.5 kV/cm, pulse durations of 30 to 90 mu sec and pulse numbers of 1 to 6 were applied using a wire chamber. Comparison of electrode geometries showed that fusion rates were similarly high (93 to 98%) when pulse strengths of 1.0 to 2.5 kV/cm were applied, regardless of the electrode geometry. However, significantly lower developmental rates were observed in a rectangular chamber compared with those in a wire chamber, except when the pulse strength was 1.0 kV/cm. It was further observed that in a rectangular chamber, the developmental rate decreased with increasing pulse strength from 1.0 to 2.0 and 2.5 kV/cm. The results of this study indicate that by using a wire chamber, electric fields can be successfully applied across a relatively wide range of pulse strength, duration and number to provide sufficiently high fusion and subsequent developmental rates. The fusion conditions did, however, vary with chambers of different electrode geometries.  相似文献   

3.
Abstract Electro-fusion was induced between protoplasts of the respiratory-deficient polyploid strain 93 and the respiratory-competent haploid strain 111a auxotrophic for tryptophan and lysine. Close membrane contact was achieved by exposing the protoplasts to an inhomogeneous alternating field (about 1 kV/cm, 2 MHz). Cell fusion was observed by application of two field pulses (8 kV/cm, 40 μs duration) applied at an interval of 10 s. After transferring onto selection medium hybrids could be isolated. These hybrids were at first heterokaryons giving rise to parental type spontaneous segregants on nutritionally complete medium. After several passages on selection medium stable hybrids could be selected. Genetic analysis of these hybrids showed that recombination had taken place with partial or even complete elimination of the chromosome set. We suggest that chromosome imbalance occurs in one hybrid.  相似文献   

4.
Yeast protoplasts from the haploid strains 21 a and 111a were exposed to an inhomogeneous alternating field (about 1 kV/cm, 2 MHz). Due to dielectrophoretic aggregation two or more cells with close membrane contact are formed between the electrodes. Cell fusion was observed by application of two field pulses (11 kV/cm, 7 s duration) applied at an interval of 1 s. The intensity of the field pulses is sufficiently high to induce reversible electrical breakdown at membrane sites oriented in the field direction. After a 8 to 14 days incubation period on selection medium two types of fusion products could be isolated: 1) Hybrids with a haploid constitution, respiratory-competent and auxotrophic for histidine. 2) Cells with a diploid cell size and prototrophic for histidine. The genetic analysis for mating types and auxotrophic markers show that in the second case plasmogamy followed by karyogamy had occurred.  相似文献   

5.
The kinetics of electrically induced fusion of human erythrocyte ghosts were monitored by the Tb/DPA and ANTS/DPX fluorescence fusion assays. Ghosts were aligned by dielectrophoresis using a 3-MHz 350-V/cm alternating field and were fused by single 15- or 50-microseconds electric field pulses of amplitude 2.5-5.0 kV/cm. Fusion was detected immediately after the pulse. The peak fluorescence change due to fusion was always obtained within 7 s of pulse application, and was highest for a 5.0 kV/cm 15-microseconds pulse. Probe leakage was measured separately and became apparent only 2-3 s after the initiation of fusion. Increasing pulse amplitudes produced higher fusion yields but produced more leakage from the fusion products. 50-microseconds pulses produced less fusion, resulting from a disruption of the dielectrophoretic alignment by fluid turbulence immediately after pulse application. Probe leakage was observed only when pulse application was preceded by dielectrophoresis, suggesting that close membrane positioning allows for additional membrane destabilization caused by the high field pulse. The fluorescence kinetics are interpreted using a simplified model depicting three major types of events: (a) fusion without observable leakage, (b) fusion followed by probe leakage, and (c) contact-related leakage from ghosts which do not undergo contents mixing.  相似文献   

6.
It was found that plasmid DNA (pUB 110) can be introduced into not only protoplasts but also intact cells of Bacillus subtilis by electric field pulses. The transformation of, B. subtilis using protoplasts results in an efficiency of 2.5 × 104 transformants per μg of DNA, with a single pulse of 50 jisec with an initial electric field strength of 7kV/cm. Even transformation of intact B. subtilis cells results in a maximum efficiency of 1.5 × 103 transformants per μg DNA, with a single pulse of 400 μsec with an initial electric field strength of 16kV/cm. The cell survival of protoplasts and intact cells was approximately 100% and 30%, respectively, under the conditions found to be optimal for the transformation process. Plasmid DNA isolated from pUB 110 containing transformants was indistinguishable from authentic preparations of pBU 110 on gel electrophoretic analysis.  相似文献   

7.
Summary Mixtures of protoplasts of two auxotrophic mutants of Physcomitrella patens, one requiring thiamine (aneurine), the other p-aminobenzoic acid, have been subjected to electrofusion. The protoplasts were aligned in an alternating electric field (500 KHz, 20 V RMS/cm) and induced to fuse by a brief DC pulse (800 V/cm, time constant lms). After culture, first on complete medium and then on selective medium, hybrid plants were obtained at a frequency of 3%. One hybrid with a morphology typical of polyploidy was also observed.Dedicated to Professor Georg Melchers to celebrate his 50-year association with the journal  相似文献   

8.
Abstract Electrofusion of protoplasts of two mutant strains of Hansenula polymorpha resulted in high fusion and hybrid yields when the calcium ions present in the conventional fusion medium replaced by zinc ions. The optimal fusion conditions were an alignment field of 0.4 kV cm−1 strength and 2 MHz frequency for 30 s, followed by two consecutive pulses of 12 kV cm−1 strength and 15 μs duration. With 0.05–0.1 mM zinc ions in the fusion medium an average clone number of 104–105 clones per 108 input cells was reached. The presence of about 0.6 mM magnesium ions in the zinc fusion medium was essential.  相似文献   

9.
Transgenic plants with the herbicide-resistance gene (bar gene) were obtained via organogenesis from isolated mesophyll protoplasts of Nierembergia repens after applying electroporation. Transient β-glucuronidase (GUS) activity of electroporated protoplasts assayed 2 days after applying an electric pulse showed that optimum condition (transient GUS activity 319 pmol 4 MU/mg per min and plating efficiency 2.43%) for electroporation was 0.5 kV/cm in field strength and 100 μF in capacitance. The protoplasts electroporated with the bar gene at this condition initiated formation of microcolonies on medium after 2 weeks. After 4 weeks of culture, equal volume of fresh 1/2-strength Murashige and Skoog (MS) medium containing 0.2 mg/l bialaphos was added for selection of transformed colonies. After 6 weeks of culture, growing colonies were transferred onto regeneration medium containing 1.0 mg/l bialaphos, on which they formed adventitious shoots 1–2 months after electroporation. The adventitious shoots rooted easily after transfer onto MS medium with bialaphos lacking plant-growth regulators. Transformation of these regenerants with the bar gene was confirmed by Southern analysis. Some of the transformants showed strong resistance to the application of bialaphos solution at 10.0 mg/l.  相似文献   

10.
Using an electric field pulse technique, we induced fusion between vacuoles and protoplasts of Kalanchoë daigremontiana , between protoplasts from etiolated and green leaf mesophyll, and between mesophyll protoplasts from plants of different physiological properties ( Avena sativa : C3 mechanism of photosynthesis, Kalanchoë daigremontiana : crassulacean acid metabolism). Close membrane contact amongst protoplasts or between protoplasts and vacuoles (as required for fusion) was achieved by the application of an alternating, non-uniform electric field to the suspension. Due to the dielectrophoresis effect the cells attach to each other along the field lines. The fusion process is initiated by the injection of an electric field pulse of high intensity and short duration (μs range). The field intensity has to be sufficiently high to induce reversible breakdown in the area of close membrane contact. After the application of the field pulse, the fusion process is initiated and completed within seconds to a few minutes, depending on the material investigated.
Fusion occurs between protoplasts and vacuoles as well as between protoplasts of different species. Both tonoplast and plasma membranes completely intermingled, indicating that in contrast to suggestions in the literature these membranes are compatible. Furthermore the cytoplasms of etiolated and green protoplasts obviously do not mix after fusion is completed, as etioplasts and chloroplasts kept separated from each other. In all experiments the volume of the fusion product equalled the sum of the compartments that underwent fusion. The wide spectrum of possible applications resulting from these fusion experiments in relation to metabolic problems is discussed.  相似文献   

11.
The trehalase activity plays an important role in extraction of trehalose from beer yeast. In this study, the effect of pulsed electric field processing on neutral trehalase activity in beer yeast was investigated. In order to develop and optimize a pulsed electric field (PEF) mathematical model for activating the neutral trehalase, we have investigated three variables, including electric field intensity (10-50 kV/cm), pulse duration (2-10 μs) and liquid-solid ratio (20-50 ml/g) and subsequently optimized them by response surface methodology (RSM). The experimental data were fitted to a second-order polynomial equation and profiled into the corresponding contour plots. Optimal condition obtained by RSM is as follows: electric field intensity 42.13 kV/cm, liquid-solid ratio 30.12 ml/g and pulse duration 5.46 μs. Under these conditions, with the trehalose decreased 8.879 mg/L, the PEF treatment had great effect on activating neutral trehalase in beer yeast cells.  相似文献   

12.
The electrical parameters important in the fusion of plant protoplasts aligned dielectrophoretically in high-frequency alternating electric fields have been established. Protoplasts were aligned in an alternating electric field between two relatively distant (1 mm) electrodes, by dielectrophoresis induced by field inhomogeneities caused by the protoplasts themselves. This arrangement allowed ease of manipulations, large throughput and low loss of protoplasts. In analytical experiments, sufficiently large samples could be used to study pulse duration-fusion response relations at different pulse voltages for protoplasts of different species, tissues and size (mesophyll protoplasts of Solanum brevidens, Triticum aestivum, Hordeum vulgare; suspension-culture protoplasts of Nicotiana sylvestris, N. rustica, Datura innoxia and S. brevidens; root-tip protoplasts of Vicia faba, hypocotyl protoplasts of Brassica napus). The percentage of aligned protoplasts that fused increased with increasing pulse parameters (pulse duration; voltage) above a threshold that was dependant on pulse voltage. The maximum fusion values obtained depended on a number of factors including protoplast origin, size and chain length. Leaf mesophyll protoplasts fused much more readily than suspension-culture protoplasts. For both types, there was a correlation of size with fusion yield: large protoplasts tended to fuse more readily than small protoplasts. In short chains (five protoplasts), fusion frequency was lower, but the proportion of one-to-one products was greater than in long chains (ten protoplasts). In formation by electrofusion of heterokaryons between mesophyll and suspension-culture protoplasts, the fusion-frequency response curves reflected those of homofusion of mesophyll protoplasts rather than suspension-culture protoplasts. There was no apparent limitation to the fusion of the smallest mesophyll protoplast with the largest suspension-culture protoplasts. Based on these observations, it is possible to direct fusion towards a higher frequency of one-to-one (mesophyll/suspension) products by incorporating low densities of mesophyll protoplasts in high densities of suspensionculture protoplasts and by using a short fusion pulse. The viability of fusion products, assessed by staining with fluorescein diacetate, was not impaired by standard fusion conditions. On a preparative scale, heterokaryons (S. brevidens mesophyll-N. sylvestris or D. innoxia suspension-culture) were produced by electrofusion and cultured in liquid or embedded in agar, and were capable of wall formation, division and growth. It is concluded that the electrode arrangement described is more suitable for carrying out directed fusions of plant protoplasts than that employing closer electrodes.  相似文献   

13.
The killer character was electrically introduced into protoplasts of three yeast strains. These were the killer-negative variant of the K1 killer strain Saccharomyces cerevisiae T 158 C (his-); the killer-sensitive laboratory strain S. cerevisiae AH 215 (leu-, his-); and the killer-sensitive industrial strain S. cerevisiae AS 4/H2 (rho-). The killer dsRNA used for electroinjection was isolated from the super-killer strain S. cerevisiae T 158 C. Optimum numbers of transformed cells were obtained after regeneration and selection in appropriate media if the protoplasts were exposed to three exponentially decaying field pulses of 18.2 kV/cm strength and 40 microseconds duration at 4 degrees C. In the case of the killer-negative variant of S. cerevisiae T 158 C the majority of the protoplasts were transformed, whereas in the case of the two other strains the yield of transformed clones was much less. This latter result is expected if the expression of the electroinjected dsRNA was diminished in these two strains. Gel electrophoresis of the dsRNA of the clones of the three strains supported the conclusion that the transformed clones exhibited killer activity. The transformed clones of all three species were stable.  相似文献   

14.
By variation of physical parameters (field strength, pulse duration) which result in electrofusion and electroporation, properties of the plasma membrane of different types of plant cell protoplasts were analyzed. The lower threshold for that field pulse intensity at which membrane breakdown occurred (recorded as fusion event) depended on pulse duration, protoplast size, and protoplast type (tobacco, oat; vacuolated, evacuolated). This fusion characteristic of plant protoplasts can also be taken as a measure of the charging process of the membrane and allows thus a non-invasive determination of the time constant and the specific membrane capacitance. Although the fusion yield was comparable at pulse duration/field strength couples of, e.g., 10 s/1.5 kV*cm–1 and 200 s/0.5 kV*cm–1, hybrid viability was not. Rates of cell wall regeneration and cell division of tobacco mesophyll protoplasts were not affected but may have been increased at short pulse duration/high field strength. Plating efficiency, in contrast, was significantly decreased with longer pulse duration at low field strengths.  相似文献   

15.
《Plant science》1988,57(3):215-223
Electrofusion has successfully been used for the production of somatic hybrid plants of Solanum melongena (eggplant) and S. khasianum. This fusion was carried out in a movable multi-electrode (2 mm apart) fusion chamber (500–700 μl capacity) containing a mixture (1:1) of mesophyll protoplasts of both species. Following an alignment of protoplasts induced by an A.C. fields of 125 V/cm and 1 Mhz, fusion was initiated by an exposure of the protoplast samples to a train of 3–4 D.C. pulses of 1.2 kV/cm, each 20 μs. The fusion rate was estimated at 30–40%, at least 30% of which were binary fusions. The mixture of fused protoplasts cultured in KM8p medium containing 0.2 mg/l 2,4-D, 0.5 mg/l zeatin, 1 mg/l NAA and 6.5% (w/v) glucose produced abundant calli, some of which gave rise to shoots on regeneration medium. Although no selection methods have been used, a total of 83 somatic hybrid plants were recovered from 83 individual calli in 3 fusion experiments. They accounted for 40–50% of all the regenerated plants. Several traits of the hybrids were intermediate to those of the parents. All the hybrid plants flowered preciously. The pollen viability averaged 12%, but none of them had set fruits. A random sample of the hybrids gave chromosome numbers ranging from 46 to 48. These numbers approximated to the expected tetraploid level (2n = 4x = 48 chromosomes) The hybridity was confirmed by the banding patterns ofperoxidase activities whcih were composed of the bands of both parents.  相似文献   

16.
George W. Bates 《Planta》1985,165(2):217-224
The electrical fusion of protoplasts has been studied in order to maximize the formation of heterokaryons for culture. Heterokaryons of Nicotiana tabacum L. mesophyll protoplasts and N. plumbaginifolia Viviani supension-cell protoplasts were identified in fixed and stained as well as living material; a quantitative fusion index was thereby developed. With this index the efficiencies of various electric fields and fusion-chamber designs have been determined. Optimal fusion was obtained with an alternating-current (AC) field of 150 V/cm and direct-current (DC) square-wave pulses of 1000 V/cm. A new, simple-to-use, largescale fusion chamber is described in which batches of up to 5·105 protoplasts (0.5 ml of cells at 106/ml) can be fused in 5–7 min with efficiencies approaching 40%. Half of the fusion products are heterokaryons, thus fusion is random. Of the fusion products, 60% are bi- or trinucleate. Using fusion procedures similar to those described here Bates and C. Hasenkampf (1985, Theor. Appl. Genet., in press) have recovered viable somatic hybrids which have been regenerated.Abbreviations AC alternating current - DC direct current - PEG polyethylene glycol  相似文献   

17.
本文针对建立空间细胞电融合技术存在的三个主要问题进行了研究。结果表明,用低温(4℃)、融合介质(0.55 mol/L甘露醇)并添加0.1%纤维素酶保存原生质体,72 h内可以使约94%细胞维持无壁状态,同时并未使细胞丧失再生能力,基本满足从地面制备亲本细胞到在微重力条件下进行电融合,对亲本细胞保持无壁状态的要求。为减少剪切力环境对亲本细胞造成的损伤,一方面用超速离心方法对亲本细胞之一去液泡,另一方面用电泳代替蠕动泵混合亲本细胞。而且,由于原生质体壁生长与其膜电位之间存在负相关性,因此利用电泳方法可以有效地富集和优化亲本细胞。根据地面实验结果推测,空间有/无液泡亲本细胞电融合的较适合参数可能为:交流电场强度90V/cm,频率0.8 MHz,排列时间20 s,直流脉冲1.0—1.3 kV/cm,幅宽40μs,两次脉冲。  相似文献   

18.
We studied electrofusion of mouse two-cell embryos in order to define parameters which would result in a high yield of fused embryos. Various cell alignment times (from <10 to >60 s) and alternating current percentages (2 to 100%) were examined. The fusion parameters tested were the number of fusion pulses (1-9), pulse length (30-90 mus) and pulse strength (0.50-1.79 kV/cm). Furthermore different combinations of these three parameters were tested. In addition the influence of several embryo culture media on the fusion rates was examined. The results show that the fusion rate of the embryos increases with shorter alignment and higher percentages of the alternating current. The highest fusion rate (95%) was obtained by use of one pulse with a duration of 70 mus and a field strength of 0.60-0.79 kV/cm. The survival rate of the embryos was best if Whitten Medium was used before and after the fusion pulses. The fusion of two-cell stages results in tetraploid embryos which can serve as models for studies in polyploid cells.  相似文献   

19.
Abstract Electrical parameters were determined and quantified for the stimulation of the optimum alignment and fusion of Aspergillus nidulans protoplasts. In a non-homogeneous alternating electrical field A. nidulans protoplasts aligned to form pearl chains associated with the electrodes of the fusion chamber. Most protoplasts were in pearl chains in an alignment field frequency of 3.0 MHz but maximum pair formation occurred at 1.0 MHz. At a field strength between 100 and 1000 V · cm−1 pearl chain formation occurred with minimal protoplast rotation or lysis. The application of DC pulses resulted in protoplast fusion. Most fusion events were observed after two 500 V · cm−1 DC pulses with a 0.5 s interpulse period. Using 1 × 103 protoplasts · cm−3 in a 7 μm fusion chamber a maximum of 17.2 ± 2.0% fusion events were achieved.  相似文献   

20.
Electrorotation of Oat Protoplasts before and after Fusion   总被引:1,自引:0,他引:1  
This paper describes an experimental chamber suitable for inducingcell fusion by an electric field and for measuring the rotationalbehaviour of single protoplasts and fusion products in high-frequencyrotating fields. Intact protoplasts from Avena sativa L. leavesrotate before, during and after fusion, as demonstrated by therotation spectra of cells. The electrorotation technique allowselectrical properties of fused cells to be examined within asecond after applying the fusion pulse. (Received June 23, 1986; Accepted June 19, 1987)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号