首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NIH3T3 fibroblast cells transfected with the full-length coding regions of the mt1 and MT2 human melatonin receptors stably expressed the receptor, coupled to a pertussis-toxin-sensitive G protein and exhibiting high affinity for melatonin. Both mt1 and MT2 melatonin receptors mediated the incorporation of [35S]GTPgammaS into isolated membranes via receptor-catalyzed exchange of [35S]GTPgammaS for GDP. The relative intrinsic activity and potency of the compounds were subsequently studied by using [35S]GTPgammaS incorporation. The order of potency was equal to the order of apparent affinity. Melatonin and full agonists increased [35S]GTPgammaS binding. Luzindole did not increase basal [35S]GTPgammaS binding but competitively inhibited melatonin-stimulated [35S]GTPgammaS binding, thus exhibiting antagonist action. Two other mt1 antagonists, 4P-PDOT and N-[(2-phenyl-1H-indol-3-yl)ethyl]cyclobutanecarboxamide, behaved as partial agonists at the MT2 subtype, with relative intrinsic activities of 0.37 and 0.39, respectively. For the first time, these findings show important differences in analogue intrinsic activity between the human mt1 and MT2 melatonin receptor subtypes.  相似文献   

2.
A cDNA clone encoding a small GTP binding protein (Brho) was isolated from an embryonic cDNA library of Bombyx mori that encoded a polypeptide with 202 amino acids sharing 60-80% similarity with the Rho1 family of GTP binding proteins. The effector site and one of the guanine nucleotide binding sites differed from other members of the Rho family. To characterize the biochemical properties of Brho, the clone was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein. The recombinant protein was purified to homogeneity with glutathione S-Sepharose. The fusion protein bound [(35)S] GTPgammaS and [(3)H] GDP with association constants of 11x10(6) M(-1) and 6.2x10(6) M(-1), respectively. The binding of [(35)S] GTPgammaS was inhibited by GTP and GDP, but by no other nucleotides. The calculated GTP-hydrolysis activity was 89.6 m mol/min/mol of Brho. Bound [(35)S] GTPgammaS and [(3)H] GDP were exchanged with GTPgammaS most efficiently in the presence of 6 mM MgCl(2). These results suggest that Brho has a higher affinity for GTP than GDP, converts from the GTP-bound state into the GDP-bound state by intrinsic GTP hydrolytic activity, and returns to the GTP-bound state with the exchange of GDP with GTP. Arch.  相似文献   

3.
The midbrain periaqueductal gray matter (PAG) is an important brain region for the coordination of mu-opioid-induced pharmacological actions. The present study was designed to determine whether newly isolated mu-opioid peptide endomorphins can activate G proteins through mu-opioid receptors in the PAG by monitoring the binding to membranes of the non-hydrolyzable analog of GTP, guanosine-5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS). An autoradiographic [(35)S]GTPgammaS binding study showed that both endomorphin-1 and -2 produced similar anatomical distributions of activated G proteins in the mouse midbrain region. In the mouse PAG, endomorphin-1 and -2 at concentrations from 0.001 to 10 microM increased [(35)S]GTPgammaS binding in a concentration-dependent manner and reached a maximal stimulation of 74.6+/-3.8 and 72.3+/-4.0%, respectively, at 10 microM. In contrast, the synthetic selective mu-opioid receptor agonist [D-Ala(2),NHPhe(4), Gly-ol]enkephalin (DAMGO) had a much greater efficacy and produced a 112.6+/-5.1% increase of the maximal stimulation. The receptor specificity of endomorphin-stimulated [(35)S]GTPgammaS binding was verified by coincubating membranes with endomorphins in the presence of specific mu-, delta- or kappa-opioid receptor antagonists. Coincubation with selective mu-opioid receptor antagonists beta-funaltrexamine or D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Phe-Thr-NH(2) (CTOP) blocked both endomorphin-1 and-2-stimulated [(35)S]GTPgammaS binding. In contrast, neither delta- nor kappa-opioid receptor antagonist had any effect on the [(35)S]GTPgammaS binding stimulated by either endomorphin-1 or -2. These findings indicate that both endomorphin-1 and -2 increase [(35)S]GTPgammaS binding by selectively stimulating mu-opioid receptors with intrinsic activity less than that of DAMGO and suggest that these new endogenous ligands might be partial agonists for mu-opioid receptors in the mouse PAG.  相似文献   

4.
Following the discovery of nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP) and its endogenous ligand, an extensive search has started to find selective agonists and antagonists targeting this novel receptor-ligand system due to their therapeutic potentials. By the help of the combinatorial chemistry a series of hexapeptides with a general formula of Ac-RYY-R/K-W/I-R/K-NH(2) having high NOP receptor affinity and selectivity were identified. On the basis of this information we developed a number of novel compounds. The detailed structure-activity studies on the partial agonist Ac-RYYRIK-NH(2) are reported in this communication. Besides the modifications on N- and C-terminal, Arg-Cit exchange was performed on the template structure. The novel hexapeptides were analyzed in radioligand binding, functional biochemical [(35)S]GTPgammaS binding assays by using membranes from rat brains and Chinese hamster ovary cells expressing human NOP receptor. The agonist/antagonist properties were also tested on in the mouse vas deferens bioassay. C-terminal modification yielded a high affinity, selective and potent NOP ligand (Ac-RYYRIK-ol) with a partial agonist property. Several analogs of this compound were synthesized. The presence of the positively charged arginine residue at the first position turned out to be crucial for the biological activity of the hexapeptide. The N-terminal modifications with various acyl groups (ClAc, pivaloyl, formyl, benzoyl, mesyl) decreased the affinity of the ligand towards the receptor and the intrinsic activity for stimulating the G-protein activation was also decreased. The structure-activity studies on the hexapeptide derivatives provided some basic information on the structural requirements for receptor binding and activation.  相似文献   

5.
In Chinese Hamster Ovary (CHO) cells expressing cloned human 5-hydroxytryptamine1A A (5-HT1A) receptors, (R)-3-N,N-dicyclobutylamino-8-fluoro-[6-3H]-3,4-dihydro-2H-1-benzopyan-5-carboxamide ([3H]NAD-299) exhibited high affinity (Kd = 0.16 nM) and labeled 34% more receptors than 8-hydroxy-2-([2,3-3H]di-n-propylamino)tetralin ([3H]8-OH-DPAT). NAD-299 behaved as a silent antagonist in [35S]GTPgammaS binding similar to N-tert-butyl-3-(4-(2-methoxyphenyl)-piperazin-1-yl)-2-phenylpropanamide (WAY-100635) and (S)-5-fluoro-8-hydroxy-2-(di-n-propylamino)tetralin ((S)UH-301). 5-HT and 5-carboxamidotryptamine (5-CT) stimulated [35S]GTPgammaS binding 2.5-fold while spiperone and methiothepin inhibited [35S]GTPgammaS binding 1.4-fold. Furthermore, NAD-299 antagonised both the 5-HT stimulated and the spiperone inhibited [35S]GTPgammaS binding to basal levels. The KiL/KiH ratios for spiperone (0.66), methiothepin (0.39), WAY-100635 (0.32), (S)UH-301 (0.94), NAD-299 (1.29), NAN-190 (1.23), (S)pindolol (5.85), ipsapirone (13.1), buspirone (24.6), (+/-)8-OH-DPAT (47.3), flesinoxan (55.8), 5-HT (200) and 5-CT (389) correlated highly significantly with the intrinsic activity obtained with [35S] GTPgammaS (r = 0.97).  相似文献   

6.
As a model system to screen endogenous ligands for G(i)-coupled receptors, we have prepared and characterized a fusion protein of nociceptin receptor and alpha subunit of G(i2). We detected nociceptin binding to the fusion protein by measuring stimulation of [(35)S]GTPgammaS binding with an EC(50) of 2.0 nM and a gain of approximately five times. The stimulation by nociceptin of [(35)S]GTPgammaS binding to the fusion protein was clearly observed in the presence of an appropriate concentration of GDP, because the affinity for GDP was decreased in the presence of agonist. Full and partial agonists differed in their effects on apparent the affinity of the fusion protein for GDP: the IC(50) values for GDP to displace 100 pM [(35)S]GTPgammaS were estimated to be 2 micro M, 0.4 micro M, and 0.05 micro M in the presence of full agonist (nociceptin), partial agonist (F/G-NC), and antagonist (NBZH), respectively. We also detected the activity to stimulate [(35)S]GTPgammaS binding to the fusion protein in the brain extract derived from 2-3 g wet weight tissue without false-positive results. The active component was identified as endogenous nociceptin itself. These results indicate that the fusion protein of GPCR and Galpha(i) is useful for screening of endogenous ligands.  相似文献   

7.
Li J  Huang P  Chen C  de Riel JK  Weinstein H  Liu-Chen LY 《Biochemistry》2001,40(40):12039-12050
The roles of conserved aspartates in the third transmembrane domain of the rat mu opioid receptor (RMOR) were explored with mutations of D3.32(147) and D3.49(164). D3.49(164) in the highly conserved DRY motif was mutated to 13 amino acids. Except for the D3.49(164)E mutant, each mutant displayed little or no detectable [(3)H]diprenorphine binding, and pretreatment with naloxone greatly enhanced binding. D3.49(164)H, -Q, -Y, -M, and -E mutants were further studied. D3.32(147) was substituted with A or N. All seven mutants exhibited similar binding affinities for the antagonist [(3)H]diprenorphine as the wild-type. The D3.49(164)H, -Q, -Y, and -M mutants, but not the D3.49(164)E and D3.32(147) mutants, exhibited enhanced basal [(35)S]GTPgammaS binding which was comparable to the maximally activated level of the wild-type and was related to expression levels. Naloxone, naltrexone, and naloxone methiodide significantly inhibited the basal [(35)S]GTPgammaS binding of the D3.49(164) mutants, indicating inverse agonist activities. Treatment of the D3.49(164)Y mutant with pertussis toxin greatly reduced the basal [(35)S]GTPgammaS binding, demonstrating constitutive activation of Galpha(i)/Galpha(o). The D3.49(164)H, -Y, -M, and -Q mutants had higher affinities for DAMGO than the wild-type, which were not significantly lowered by GTPgammaS. Thus, mutation of D3.49(164) to H, Y, M, or Q in RMOR resulted in receptor assuming activated conformations. In contrast, the D3.49(164)E mutant displayed significantly lower basal [(35)S]GTPgammaS binding and reduced affinity for DAMGO. Upon incubation of membranes at 37 degrees C, the constitutively active D3.49(164)Y mutant was structurally less stable, whereas the inactivated D3.49(164)E mutant was more stable, than the wild-type. Computational simulations showed that the E3.49 side chain interacted strongly with the conserved R3.50 in the DRY motif and stabilized the inactive form of the receptor. Taken together, these results indicate that D3.49 plays an important role in constraining the receptor in inactive conformations.  相似文献   

8.
A series of carbamate analogues were synthesized from levorphanol (1a), cyclorphan (2a) or butorphan (3a) and evaluated in vitro for their binding affinity at mu, delta, and kappa opioid receptors. Functional activities of these compounds were measured in the [(35)S]GTPgammaS binding assay. Phenyl carbamate derivatives 2d and 3d showed the highest binding affinity for kappa receptor (K(i)=0.046 and 0.051 nM) and for mu receptor (K(i)=0.11 and 0.12 nM). Compound 1c showed the highest mu selectivity. The preliminary assay for agonist and antagonist properties of these ligands in stimulating [(35)S]GTPgammaS binding mediated by the kappa opioid receptor illustrated that all of these ligands were kappa agonists. At the mu receptor, compounds 1b, 1c, 2b, and 3b were agonists, while compounds 2c-e and 3c-e were mu agonists/antagonists.  相似文献   

9.
Tyr-D-Ala-Gly-Phe-D-Nle-Arg-Phe (DADN) a synthetic analogue of the endogenous Met-enkephalin-Arg-Phe (Tyr-Gly-Gly-Phe-Met-Arg-Phe; MERF), was investigated in radioligand binding assays, [(35)S]GTPgammaS stimulation experiments as well as in in vivo algesiometric tests. Binding properties of [(3)H]DADN were measured in crude membrane fractions of rat spinal cord tissues and in homogenates of Chinese hamster ovary (CHO) cells selectively expressing delta-, kappa-or micro-opioid receptors. The highest affinity for [(3)H]DADN binding was observed in membranes from CHO cells transfected with micro-opioid receptors confirming the micro-selectivity of the peptide. Unlabeled DADN was also investigated in functional biochemical experiments by measuring opioid receptor-mediated G-protein activation in rat brain membrane fractions. The peptide stimulated the activity of the regulatory G-proteins in a concentration dependent manner, and the stimulation was efficiently inhibited in the presence of micro-receptor specific antagonist ligands further supporting the selectivity profile of DADN. Intrathecally administered DADN produced a dose-related, naloxone-reversible antinociception in rat hot water tail-flick tests. Among the selective opioid antagonists tested, the delta-selective naltrindole (NTI) and the kappa-specific norbinaltorphimine (norBNI) showed only slight blocking effects compared with naloxone. The results obtained in the in vitro agonist-stimulated [(35)S]GTPgammaS binding assays are in good agreement with the opioid agonist effect seen in the in vivo pain test.  相似文献   

10.
Heterozygous CB1 receptor knockout mice were used to examine the effect of reduced CB1 receptor density on G-protein activation in membranes prepared from four brain regions: cerebellum, hippocampus, striatum/globus pallidus (striatum/GP) and cingulate cortex. Results showed that CB1 receptor levels were approximately 50% lower in heterozygous mice in all regions examined. However, maximal stimulation of [(35)S]guanosine-5'-(gamma-O-thio) triphosphate ([(35)S]GTPgammaS) binding by the high efficacy agonist WIN 55,212-2 was reduced by only 20-25% in most brain regions, with the exception of striatum/GP where the decrease in stimulation was as predicted (approximately 50%). Furthermore, although the efficacies of the cannabinoid partial agonists, methanandamide and (9)-tetrahydrocannabinol, were similarly lower in heterozygous mice, their relative efficacies compared with WIN 55,212-2 were generally unchanged. Saturation analysis of net WIN 55,212-2-stimulated [(35)S]GTPgammaS binding showed that decreased stimulation by WIN 55,212-2 in striatum/GP of heterozygous mice was caused by a decrease in the apparent affinity of net-stimulated [(35)S]GTPgammaS binding. The apparent maximal number of binding sites (B(max)) values of net WIN 55,212-2-stimulated [(35)S]GTPgammaS binding were unchanged in cerebellum and striatum/GP of heterozygous mice, but decreased in cingulate cortex, with a similar trend in hippocampus. Moreover, in every region except cingulate cortex, the maximal number of net-stimulated [(35)S]GTPgammaS binding sites per receptor was significantly increased in heterozygous mice. These results indicate region-dependent increases in the apparent efficiency of CB1 receptor-mediated G-protein activation in heterozygous CB1 knockout mice.  相似文献   

11.
The regulation of G protein activation by the rat corticotropin-releasing factor receptor type 1 (rCRFR1) in human embryonic kidney (HEK)293 (HEK-rCRFR1) cell membranes was studied. Corresponding to a high and low affinity ligand binding site, sauvagine and other peptidic CRFR1 ligands evoked high and low potency responses of G protein activation, differing by 64-fold in their EC(50) values as measured by stimulation of [(35)S]GTPgammaS binding. Contrary to the low potency response, the high potency response was of lower GTPgammaS affinity, pertussis toxin (PTX)-insensitive, and homologously desensitized. Distinct desensitization was also observed in the adenylate cyclase activity, when its high potency stimulation was abolished and the activity became low potently inhibited by sauvagine. From these results and immunoprecipitation of [(35)S]GTPgammaS-bound Galpha(s) and Galpha(i) subunits it is concluded that the high and low potency [(35)S]GTPgammaS binding stimulation reflected coupling to G(s) and G(i) proteins, respectively, only G(s) coupling being homologously desensitized. Immunoprecipitation of [(35)S]GTPgammaS-bound Galpha(q/11) revealed additional coupling to G(q/11), which also was homologously desensitized. Although Galpha(q/11) coupling was PTX-insensitive, half of the sauvagine-stimulated accumulation of inositol phosphates in the cells was PTX-sensitive, suggesting involvement of G(i) in addition to G(q/11)in the stimulation of inositol metabolism. It is concluded that CRFR1 signals through at least two different ways, one leading to G(s)- and G(q/11)-mediated signaling steps and desensitization and another leading to G(i) -mediated signals without being desensitized. Furthermore, the concentrations of the stimulating ligand and GTP and desensitization may be part of a regulatory mechanism determining the actual ratio of the coupling of CRFR1 to different G proteins.  相似文献   

12.
Two constructs encoding the human micro-opioid receptor (hMOR) fused at its C terminus to either one of two Galpha subunits, Galpha(o1) (hMOR-Galpha(o1)) and Galpha(i2) (hMOR-Galpha(i2)), were expressed in Escherichia coli at levels suitable for pharmacological studies (0.4-0.5 pmol/mg). Receptors fused to Galpha(o1) or to Galpha(i2) maintained high-affinity binding of the antagonist diprenorphine. Affinities of the micro-selective agonists morphine, [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO), and endomorphins as well as their potencies and intrinsic activities in stimulating guanosine 5'-O-(3-[(35)S]thiotriphosphate) ([(35)S]GTPgammaS) binding were assessed in the presence of added purified Gbetagamma subunits. Both fusion proteins displayed high-affinity agonist binding and agonist-stimulated [(35)S]GTPgammaS binding. In the presence of Gbetagamma dimers, the affinities of DAMGO and endomorphin-1 and -2 were higher at hMOR-Galpha(i2) than at hMOR-Galpha(o1), whereas morphine displayed similar affinities at the two chimeras. Potencies of the four agonists in stimulating [(35)S]GTPgammaS binding at hMOR-Galpha(o1) were similar, whereas at hMOR-Galpha(i2), endomorphin-1 and morphine were more potent than DAMGO and endomorphin-2. The intrinsic activities of the four agonists at the two fusion constructs were similar. The results confirm hMOR coupling to Galpha(o1) and Galpha(i2) and support the hypothesis of the existence of multiple receptor conformational states, depending on the nature of the G protein to which it is coupled.  相似文献   

13.
In this study we report data suggesting the presence of a non-CB1, non-CB2 cannabinoid site in the cerebellum of CB1-/- mice. We have carried out [(35)S]GTPgammaS binding experiments in striata, hippocampi, and cerebella of CB1-/- and CB1(+/+) mice with Delta(9)-THC, WIN55,212-2, HU-210, SR141716A, and SR144528. In CB1-/- mice Delta(9)-THC and HU-210 did not stimulate [(35)S]GTPgammaS binding. However, WIN55,212-2 was able to stimulate [(35)S]GTPgammaS binding in cerebella of CB1-/- mice. The maximal effect of this stimulation was 31% that of wild type animals. This effect was reversible neither by CB1 nor CB2 receptor antagonists. Similar results were obtained with the endogenous cannabinoid, anandamide. However, adenylyl cyclase was not inhibited by WIN55,212-2 or anandamide in the CB1(minus sign/minus sign) animals. In striata and hippocampi of CB1-/- mice no [(35)S]GTPgammaS stimulation curve could be obtained with WIN55,212. Our findings suggest that there is a non-CB1 non-CB2 receptor present in the cerebellum of CB1-/- mice.  相似文献   

14.
Opioid binding properties of Tyr-D-Ser-Gly-Phe-Leu-Thr-NH-NH-Gly-Mal (DSLET-Mal), a novel enkephalin-framed affinity label, was determined in rat brain membranes. In competition studies the ligand showed high affinity for the delta opioid sites, labelled by [(3)H][Ile(5,6)]deltorphin II (K(i) = 8 nM), whereas its binding to the mu ([(3)H]DAMGO) and kappa ([(3)H]EKC) sites was weaker. Preincubation of the rat brain membranes with DSLET-Mal at micromolar concentrations resulted in a wash-resistant and dose-dependent inhibition of the [(3)H][Ile(5,6)]deltorphin II binding sites (96% blocking at 10 microM concentration). Intracerebroventricular (ICV) administration of DSLET-Mal reduced the density of delta opioid receptors and had no effect on mu and kappa receptors, as determined by saturation binding studies. [Ile(5, 6)]deltorphin II-stimulated [(35)S]GTPgammaS binding was determined in membrane preparations of different brain areas of the ICV-treated animals. In both frontal cortex and hippocampus DSLET-Mal significantly decreased G protein activation by the delta agonist, having no effect on DAMGO stimulated [(35)S]GTPgammaS binding. DSLET-Mal had qualitatively similar effects on both receptor binding and G protein activation. These characteristics of the compound studied suggest that DSLET-Mal can serve as an affinity label for further studies of the delta-opioid receptors.  相似文献   

15.
Intrinsic activities of different delta opioid agonists were determined in a [35S]GTPgammaS binding assay using cell membranes from Chinese hamster ovary (CHO) cells stably expressing the wild type (hDOR/CHO) or W284L mutant human delta opioid receptor (W284L/CHO). Agonist binding affinities were regulated more robustly by sodium and guanine nucleotide in W284L/CHO than in hDOR/ CHO cell membranes. The W284L mutation selectively reduced the affinity of SNC 80 while having moderate effect ((-) TAN 67) or no effect (DPDPE) on the affinities of other delta selective agonists. The mutation had opposite effects on the intrinsic activities of agonists belonging to different chemical classes. The effects of the mutation on agonist affinities and potencies were independent from its effects on the intrinsic activities of the agonists. Maximal stimulation of [35S]GTPgammaS binding by SNC 80 was 2-fold higher in W284L mutant cell membranes than in wild type hDOR/CHO cell membranes, despite lower receptor expression levels in the W284L/CHO cells. The binding affinity of SNC 80 however, was significantly reduced (15-fold and 30-fold in the absence or presence of sodium+GDP respectively) in W284L/CHO cell membranes relative to wild type hDOR/CHO membranes. Conversely, the Emax of (-)TAN 67 in the [35S]GTPgammaS binding assay was markedly reduced (0.6-fold of that of the wild type) with only a slight (6-fold) reduction in its binding affinity. The affinity and intrinsic activity of DPDPE on the other hand remained unchanged at the W284L mutant hDOR. The mutation had similar effects on the affinities potencies and intrinsic activities of (-)TAN 67 and SB 219825. The results indicate that delta opioid agonists of different chemical classes use specific conformations for G protein activation.  相似文献   

16.
Melanin-concentrating hormone (MCH) is a cyclic nonadecapeptide involved in the regulation of feeding behavior, which acts through a G protein-coupled receptor (SLC-1) inhibiting adenylcyclase activity. In this study, 57 analogues of MCH were investigated on the recently cloned human MCH receptor stably expressed in HEK293 cells, on both the inhibition of forskolin-stimulated cAMP production and guanosine-5'-O-(3-[(35)S]thiotriphosphate ([(35)S]- GTPgammaS) binding. The dodecapeptide MCH-(6-17) (MCH ring between Cys(7) and Cys(16), with a single extra amino acid at the N terminus (Arg(6)) and at the C terminus (Trp(17))) was found to be the minimal sequence required for a full and potent agonistic response on cAMP formation and [(35)S]- GTPgammaS binding. We Ala-scanned this dodecapeptide and found that only 3 of 8 amino acids of the ring, namely Met(8), Arg(11), and Tyr(13), were essential to elicit full and potent responses in both tests. Deletions inside the ring led either to inactivity or to poor antagonists with potencies in the micromolar range. Cys(7) and Cys(16) were substituted by Asp and Lys or one of their analogues, in an attempt to replace the disulfide bridge by an amide bond. However, those modifications were deleterious for agonistic activity. In [(35)S]- GTPgammaS binding, these compounds behaved as weak antagonists (K(B) 1-4 microm). Finally, substitution in MCH-(6-17) of 6 out of 12 amino acids by non-natural residues and concomitant replacement of the disulfide bond by an amide bond led to three compounds with potent antagonistic properties (K(B) = 0.1-0.2 microm). Exploitation of these structure-activity relationships should open the way to the design of short and stable MCH peptide antagonists.  相似文献   

17.
A dopamine D(2Short) receptor:G(alphao) fusion protein was expressed in Sf9 cells using the baculovirus expression system. [(3)H]Spiperone bound to D(2Short):G(alphao) with a pK(d) approximately 10. Dopamine stimulated the binding of [(35)S]guanosine-5'-O-(3-thio)triphosphate (GTPgammaS) to D(2Short):G(alphao) expressed with Gbeta(1)gamma(2) (E(max)>460%; pEC(50) 5.43+/-0.06). Most of the putative D(2) antagonists behaved as inverse agonists (suppressing basal [(35)S]GTPgammaS binding) at D(2Short):G(alphao)/Gbeta(1)gamma(2) although (-)-sulpiride and ziprasidone were neutral antagonists. Competition of [(3)H]spiperone binding by dopamine and 10,11-dihydroxy-N-n-propylnorapomorphine revealed two binding sites of different affinities, even in the presence of GTP (100 micro M). The D(2Short):G(alphao) fusion protein is therefore a good model for characterising D(2) receptors.  相似文献   

18.
The human mu opioid receptor was expressed stably in Flp-In T-REx HEK293 cells. Occupancy by the agonist DAMGO (Tyr-d-Ala-Gly-N-methyl-Phe-Gly-ol) resulted in phosphorylation of the ERK1/2 MAP kinases, which was blocked by the opioid antagonist naloxone but not the cannabinoid CB1 receptor inverse agonist SR141716A. Expression of the human cannabinoid CB1 receptor in these cells from the inducible Flp-In T-REx locus did not alter expression levels of the mu opioid receptor. This allowed the cannabinoid CB1 agonist WIN55212-2 to stimulate ERK1/2 phosphorylation but resulted in a large reduction in the capacity of DAMGO to activate these kinases. Although lacking affinity for the mu opioid receptor, co-addition of SR141716A caused recovery of the effectiveness of DAMGO. In contrast co-addition of the CB1 receptor neutral antagonist O-2050 did not. Induction of the CB1 receptor also resulted in an increase of basal [(35)S]guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding and thereby a greatly reduced capacity of DAMGO to further stimulate [(35)S]GTPgammaS binding. CB1 inverse agonists attenuated basal [(35)S]GTPgammaS binding and restored the capacity of DAMGO to stimulate. Flp-In T-REx HEK293 cells were generated, which express the human mu opioid receptor constitutively and harbor a modified D163N cannabinoid CB1 receptor that lacks constitutive activity. Induction of expression of the modified cannabinoid CB1 receptor did not limit DAMGO-mediated ERK1/2 MAP kinase phosphorylation and did not allow SR141716A to enhance the function of DAMGO. These data indicate that it is the constitutive activity inherent in the cannabinoid CB1 receptor that reduces the capacity of co-expressed mu opioid receptor to function.  相似文献   

19.
2-Amino-4,5,6,7-tetrahydrobenzo(beta)thiophen-3-yl 4-chlorophenylmethanone (T62) is a member of a group of allosteric modulators of adenosine A1 receptors tested in animal models of neuropathic pain to increase the efficacy of adenosine. To determine its mechanisms at the level of receptor-G-protein activation, the present studies examined the effect of T62 on A1-stimulated [35S]guanosine-5'-O-(gamma-thio)-triphosphate ([35S]GTPgammaS) binding in brain membranes, and by [35S]GTPgammaS autoradiography using the A1 agonist, phenylisopropyladenosine (PIA), to activate G-proteins. In hippocampal membranes, T62 increased both basal and PIA-stimulated [35S]GTPgammaS binding. The effect of T62 was non-competitive in nature, since it increased the maximal effect of PIA, with no effect on agonist potency. GTPgammaS saturation analysis showed that T62 increased the number of G-proteins activated by agonist but had no effect on the affinity of activated G-proteins for GTPgammaS. [35S]GTPgammaS autoradiography showed that the neuroanatomical localization of T62-stimulated [35S]GTPgammaS binding was identical to that of PIA-stimulated activity. The increase in PIA-stimulated activity by T62 varied between brain regions, with areas of lower A1 activation producing the largest percent modulation by T62. These results suggest a mechanism of allosteric modulators to increase the number of activated G-proteins per receptor, and provide a neuroanatomical basis for understanding potential therapeutic effects of such drugs.  相似文献   

20.
The cysteine desulfurase enzymes NifS and IscS provide sulfur for the biosynthesis of Fe/S proteins. NifU and IscU have been proposed to serve as template or scaffold proteins in the initial Fe/S cluster assembly events, but the mechanism of sulfur transfer from NifS or IscS to NifU or IscU has not been elucidated. We have employed [(35)S]cysteine radiotracer studies to monitor sulfur transfer between IscS and IscU from Escherichia coli and have used direct binding measurements to investigate interactions between the proteins. IscS catalyzed transfer of (35)S from [(35)S]cysteine to IscU in the absence of additional thiol reagents, suggesting that transfer can occur directly and without involvement of an intermediate carrier. Surface plasmon resonance studies and isothermal titration calorimetry measurements further revealed that IscU binds to IscS with high affinity (K(d) approximately 2 microm) in support of a direct transfer mechanism. Transfer was inhibited by treatment of IscU with iodoacetamide, and (35)S was released by reducing reagents, suggesting that transfer of persulfide sulfur occurs to cysteinyl groups of IscU. A deletion mutant of IscS lacking C-terminal residues 376-413 (IscSDelta376-413) displayed cysteine desulfurase activity similar to the full-length protein but exhibited lower binding affinity for IscU, decreased ability to transfer (35)S to IscU, and reduced activity in assays of Fe/S cluster assembly on IscU. The findings with IscSDelta376-413 provide additional support for a mechanism of sulfur transfer involving a direct interaction between IscS and IscU and suggest that the C-terminal region of IscS may be important for binding IscU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号