首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of selected bacterial strains and consortia to mineralize degradation intermediates produced by Phanerochaete chrysosporium from 14C-labeled synthetic lignins was studied. Three different molecular weight fractions of the intermediates were subjected to the action of the bacteria, which had been grown on a lignin-related dimeric compound. Two consortia isolated from wood being decayed naturally by a Ganoderma species of white rot fungus (the palo podrido system) mineralized 10 to 11% of the fraction with a molecular weight of approximately 500 but less than 4% of the higher- and lower-molecular-weight fractions. The consortia mineralized 5 to 9% of the original lignins. The ability of two pseudomonads isolated earlier from lignin-rich environments to mineralize the original lignins or fungus degradation products was much lower.  相似文献   

2.
Biphenyl and polychlorinated biphenyls (PCBs) are typical environmental pollutants. However, these pollutants are hard to be totally mineralized by environmental microorganisms. One reason for this is the accumulation of dead-end intermediates during biphenyl and PCBs biodegradation, especially benzoate and chlorobenzoates (CBAs). Until now, only a few microorganisms have been reported to have the ability to completely mineralize biphenyl and PCBs. In this research, a novel bacterium HC3, which could degrade biphenyl and PCBs without dead-end intermediates accumulation, was isolated from PCBs-contaminated soil and identified as Sphingobium fuliginis. Benzoate and 3-chlorobenzoate (3-CBA) transformed from biphenyl and 3-chlorobiphenyl (3-CB) could be rapidly degraded by HC3. This strain has strong degradation ability of biphenyl, lower chlorinated (mono-, di- and tri-) PCBs as well as mono-CBAs, and the biphenyl/PCBs catabolic genes of HC3 are cloned on its plasmid. It could degrade 80.7% of 100 mg L −1 biphenyl within 24 h and its biphenyl degradation ability could be enhanced by adding readily available carbon sources such as tryptone and yeast extract. As far as we know, HC3 is the first reported that can degrade biphenyl and 3-CB without accumulation of benzoate and 3-CBA in the genus Sphingobium, which indicates the bacterium has the potential to totally mineralize biphenyl/PCBs and might be a good candidate for restoring biphenyl/PCBs-polluted environments.  相似文献   

3.
High-molecular-weight lignin was methylated with diazomethane. The lignin (i.e., phenolic lignin) and methylated lignin (i.e., non-phenolic lignin) were mixed with fully bleached softwood pulp. Degradation of the lignin preparations by the white rot fungus Pycnoporus cinnabarinus was studied. After a 3-month incubation with the fungus, over 40% of the non-phenolic lignin and about 70% the phenolic lignin were degraded. The presence of phenolic hydroxyl groups in lignin greatly enhanced the degradation rate of lignin. This study reveals that P. cinnabarinus, an exclusively laccase-producing fungus, is capable of oxidatively degrading both phenolic and non-phenolic lignins. The ability of the fungus to degrade non-phenolic lignin suggests that a laccase/mediator system is involved in the complete degradation of lignin. After the fungal degradation of lignins, the content of carboxylic acids substantially increased for both phenolic and non-phenolic lignins.  相似文献   

4.
[C-lignin]lignocellulose was solubilized by alkaline heat treatment and separated into different molecular size fractions for use as the sole source of carbon in anaerobic enrichment cultures. This study is aimed at determining the fate of low-molecular-weight, polyaromatic lignin derivatives during anaerobic degradation. Gel permeation chromatography was used to preparatively separate the original C-lignin substrate into three component molecular size fractions, each of which was then fed to separate enrichment cultures. Biodegradability was assessed by monitoring total carbon dioxide and methane production, evolution of labeled gases, loss of C-activity from solution, and changes in gel permeation chromatographic elution patterns. Results indicated that the smaller the size of the molecular weight fraction, the more extensive the degradation to gaseous end products. In addition, up to 30% of the entire soluble lignin-derived carbon was anaerobically mineralized to carbon dioxide and methane.  相似文献   

5.
A polycyclic aromatic hydrocarbon (PAH)-degrading culture enriched from contaminated river sediments and a Mycobacterium sp. isolated from the enrichment were tested to investigate the possible synergistic and antagonistic interactions affecting the degradation of pyrene in the presence of low molecular weight PAHs. The Mycobacterium sp. was able to mineralize 63% of the added pyrene when it was present as a sole source of carbon and energy. When the enrichment culture and the isolated bacterium were exposed to phenanthrene, de novo protein synthesis was not required for the rapid mineralization of pyrene, which reached 52% in chloramphenicol-treated cultures and 44% in the absence of the protein inhibitor. In the presence of chloramphenicol, < 1% of the added pyrene was mineralized by the mixed culture after exposure to anthracene and naphthalene. These compounds did not inhibit pyrene utilization when present at the same time as pyrene. Concurrent mineralization of pyrene and phenanthrene after exposure to either compound was observed. Cross-acclimation between ring classes of PAHs may be a potentially important interaction influencing the biodegradation of aromatic compounds in contaminated environments.  相似文献   

6.
A role of termites in decomposition processes was quantitatively evaluated in a dry evergreen forest (DEF) in Thailand, using respiration rates and biomasses of fungus combs as well as of termites themselves. The termite population and fungus combs mineralized 11.2% of carbon (C) in the annual aboveground litterfall (AAL) by their respiration. Fungus combs were responsible for a major part (7.2% of the AAL) of the C mineralization mediated by termites. For comparison, fractions of AAL mineralized by respiration from termite populations and fungus combs were estimated for tropical forests and savannas where termites have been well studied, assuming that there is the same ratio as for the DEF between biomass of fungus combs and abundance of fungus growers. Termites in dry tropical forests (annual rainfall<2,000 mm) are shown to mineralize about 10% of C in the AAL by respiration from their populations and fungus combs, and their ecological impact in savannahs is comparable in this aspect. A significant negative correlation between fraction of AAL and annual rainfall demonstrates that the importance of termites in decomposition processes is greater in dry tropical forests than in moist tropical forests. Considering that fungus combs contributed significantly to AAL mineralization in most of the tropical forests and savannas, fungus growers are a much more influential group than previously expected in tropical ecosystems.T. Abe deceased on 27 March 2000  相似文献   

7.
[14C-lignin]lignocellulose was solubilized by alkaline heat treatment and separated into different molecular size fractions for use as the sole source of carbon in anaerobic enrichment cultures. This study is aimed at determining the fate of low-molecular-weight, polyaromatic lignin derivatives during anaerobic degradation. Gel permeation chromatography was used to preparatively separate the original 14C-lignin substrate into three component molecular size fractions, each of which was then fed to separate enrichment cultures. Biodegradability was assessed by monitoring total carbon dioxide and methane production, evolution of labeled gases, loss of 14C-activity from solution, and changes in gel permeation chromatographic elution patterns. Results indicated that the smaller the size of the molecular weight fraction, the more extensive the degradation to gaseous end products. In addition, up to 30% of the entire soluble lignin-derived carbon was anaerobically mineralized to carbon dioxide and methane.  相似文献   

8.
The white rot fungus Pleurotus ostreatus was able to mineralize to (sup14)CO(inf2) 7.0% of [(sup14)C]catechol, 3.0% of [(sup14)C]phenanthrene, 0.4% of [(sup14)C]pyrene, and 0.19% of [(sup14)C]benzo[a]pyrene by day 11 of incubation. It also mineralized [(sup14)C]anthracene (0.6%) much more slowly (35 days) and [(sup14)C]fluorene (0.19%) within 15 days. P. ostreatus did not mineralize fluoranthene. The activities of the enzymes considered to be part of the ligninolytic system, laccase and manganese-inhibited peroxidase, were observed during fungal growth in the presence of the various polycyclic aromatic hydrocarbons. Although activity of both enzymes was observed, no distinct correlation to polycyclic aromatic hydrocarbon degradation was found.  相似文献   

9.
Pentachlorophenol (PCP) is a widespread, highly toxic contaminant of soil and water that is generally recalcitrant to microbial breakdown and thus may be considered a good candidate for phytoremediation. PCP toxicity and rates of mineralization were compared in crested wheatgrass seedlings that were either sterile or root-inoculated with microbial consortia derived from soil at a PCP-contaminated site. Inoculated seedlings were more tolerant to PCP and mineralized threefold more 14C-PCP than sterile seedlings. Only 10% of the recovered radioactivity from sterile seedlings represented mineralized PCP, indicating that rhizosphere microorganisms are primarily responsible for PCP mineralization. The levels of PCP degradation exhibited by several microbial consortia and isolates in liquid culture were not correlated with their ability to protect crested wheatgrass seedlings from PCP toxicity. Most probable number estimates showed that the presence of crested wheatgrass root exudates enhanced the number of PCP-degrading microorganisms by 100-fold in liquid culture, indicating that exudate components provide some nutritive benefit, possibly as PCP co-metabolites. A close association of plants and rhizosphere microorganisms appears to be necessary for crested wheatgrass survival in PCP-contaminated soil, although understanding the molecular details of this association requires further research.  相似文献   

10.
Biodegradation of a mixture of PAHs was assessed in forest soil microcosms performed either without or with bioaugmentation using individual fungi and bacterial and a fungal consortia. Respiratory activity, metabolic intermediates and extent of PAH degradation were determined. In all microcosms the low molecular weight PAH’s naphthalene, phenanthrene and anthracene, showed a rapid initial rate of removal. However, bioaugmentation did not significantly affect the biodegradation efficiency for these compounds. Significantly slower degradation rates were demonstrated for the high molecular weight PAH’s pyrene, benz[a]anthracene and benz[a]pyrene. Bioaugmentation did not improve the rate or extent of PAH degradation, except in the case of Aspergillus sp. Respiratory activity was determined by CO2 evolution and correlated roughly with the rate and timing of PAH removal. This indicated that the PAHs were being used as an energy source. The native microbiota responded rapidly to the addition of the PAHs and demonstrated the ability to degrade all of the PAHs added to the soil, indicating their ability to remediate PAH-contaminated soils.  相似文献   

11.
The fungus Phoma herbarum isolated from soil showed growth on highly pure lignin extracted from spruce wood and on synthetic lignin (DHP). The lignin remaining after cultivation was shown to have a lower molecular weight. The reduction in the numbers of ether linkages of the extracted lignins was also observed by derivatization followed by reductive cleavage (DFRC) in combination with 31P NMR studies. The fungal strain showed an ability to degrade synthetic lignin by extracellular catalysts. GC–MS was applied to study the evolution of low molar mass adducts, e.g., monolignols and it was shown that a reduced coniferyl alcohol product was produced from DHP in a cell-free environment. The work has demonstrated the ability of soil microbes to grow on lignin as sole carbon source. The potential impact is in the production of low molar mass renewable phenols for material application.  相似文献   

12.
In this study we evaluated the capacity of a defined microbial consortium (five bacteria: Mycobacterium fortuitum, Bacillus cereus, Microbacterium sp., Gordonia polyisoprenivorans, Microbacteriaceae bacterium, Naphthalene-utilizing bacterium; and a fungus identified as Fusarium oxysporum) isolated from a PAHs contaminated landfarm site to degrade and mineralize different concentrations (0, 250, 500 and 1000 mg kg(-1)) of anthracene, phenanthrene and pyrene in soil. PAHs degradation and mineralization was evaluated by gas chromatography and respirometry, respectively. The microbial consortium degraded on average, 99%, 99% and 96% of the different concentrations of anthracene, phenanthrene and pyrene in the soil, in 70 days, respectively. This consortium mineralized 78%, on average, of the different concentrations of the 3 PAHs in soil after 70 days. Contrarily, the autochthonous soil microbial population showed no substantial mineralization of the PAHs. Bacterial and fungal isolates from the consortium, when inoculated separately to the soil, were less effective in anthracene mineralization compared to the consortium. This signifies synergistic promotion of PAHs mineralization by mixtures of the monoculture isolates (the microbial consortium).  相似文献   

13.
14.
The effect of successive inoculation with hydrocarbon-degrading bacteria on the dynamics of petroleum hydrocarbons degradation in soil was investigated in this study. Oily sludge was used as a source of mixed hydrocarbons pollutant. Two bacterial consortia composed of alkanes and polycyclic aromatic hydrocarbon degraders were constructed from bacteria isolated from soil and oily sludge. These consortia were applied to incubated microcosms either in one dose at the onset of the incubation or in two doses at the beginning and at day 62 of the incubation period, which lasted for 198 days. During this period, carbon mineralization was evaluated by respirometry while total petroleum hydrocarbons and its fractions were gravimetrically evaluated by extraction from soil and fractionation. Dosing the bacterial consortia resulted in more than 30% increase in the overall removal of total petroleum hydrocarbons from soil. While alkane removal was only slightly improved, aromatic and asphaltic hydrocarbon fraction removal was significantly enhanced by the addition of the second consortium. Polar compounds (resins) were enriched only as a result of aromatics and asphaltene utilization. Nonetheless, their concentration declined back to the original level by the end of the incubation period.  相似文献   

15.
Anaerobic enrichment cultures acclimated for 2 years to use a 14C-labeled, lignin-derived substrate with a molecular weight of 600 as a sole source of carbon were characterized by capillary and packed column gas chromatography. After acclimation, several of the active methanogenic consortia were inhibited with 2-bromoethanesulfonic acid, which suppressed methane formation and enhanced accumulation of a series of metabolic intermediates. Volatile fatty acids levels in 2-bromoethanesulfonic acid-amended cultures were 10 times greater than those in the uninhibited, methane-forming consortia with acetate as the predominant component. Furthermore, in the 2-bromoethanesulfonic acid-amended consortia, almost half of the original substrate carbon was metabolized to 10 monoaromatic compounds, with the most appreciable quantities accumulated as cinnamic, benzoic, caffeic, vanillic, and ferulic acids. 2-Bromoethanesulfonic acid seemed to effectively block CH4 formation in the anaerobic food chain, resulting in the observed buildup of volatile fatty acids and monoaromatic intermediates. Neither fatty acids nor aromatic compounds were detected in the oligolignol substrate before its metabolism, suggesting that these anaerobic consortia have the ability to mediate the cleavage of the β-aryl-ether bond, the most common intermonomeric linkage in lignin, with the subsequent release of the observed constituent aromatic monomers.  相似文献   

16.
Biodegradation of methyl tert-butyl ether (MTBE) by cometabolism has shown to produce recalcitrant metabolic intermediates that often accumulate. In this work, a consortium containing Pseudomonads was studied for its ability to fully degrade oxygenates by cometabolism. This consortium mineralized MTBE and TBA with C3-C7 n-alkanes. The highest degradation rates for MTBE (75 +/- 5 mg g(protein) (-1) h(-1)) and TBA (86.9 +/- 7.3 mg g(protein) (-1) h(-1)) were obtained with n-pentane and n-propane, respectively. When incubated with radiolabeled MTBE and n-pentane, it converted more than 96% of the added MTBE to (14)C-CO(2). Furthermore, the consortium degraded tert-amyl methyl ether, tert-butyl alcohol (TBA), tert-amyl alcohol, ethyl tert-butyl ether (ETBE) when n-pentane was used as growth source. Three Pseudomonads were isolated but only two showed independent MTBE degradation activity. The maximum degradation rates were 101 and 182 mg g(protein) (-1) h(-1) for Pseudomonas aeruginosa and Pseudomonas citronellolis, respectively. The highest specific affinity (a degrees (MTBE)) value of 4.39 l g(protein) (-1) h(-1) was obtained for Pseudomonas aeruginosa and complete mineralization was attained with a MTBE: n-pentane ratio (w/w) of 0.7. This is the first time that Pseudomonads have been reported to fully mineralize MTBE by cometabolic degradation.  相似文献   

17.
Polymeric lignin isolated from ground spruce phloem/bark tissue following decay by the actinomyceteStreptomyces viridosporus (T7A) was characterized chemically and compared to undergraded lignin from the same source. The chemical transformations resulting from degradation were compared to those that result from fungal degradation of softwood lignins by brown- and white-rot fungi. Degradative chemical analyses showed thatS. viridosporus-degraded lignin was significantly altered in structure. Much of the integrity of the basic 4-hydroxy-3-methoxyphenylpropane subunit structure was lost. Actinomycete-decayed lignin was decreased in carbon and enriched in oxygen and hydrogen contents. It also had been extensively demethylated. Chemical analysed indicated that phenylpropanoid side-chains had been oxidized by introduction of -carbonyls and by side-chain shortening reactions. Although the degraded lignin remained polymeric, it was significantly dearomatized. These changes are similar to those previously reported for white-rotted lignins, except for the increased hydrogen content. The evidence indicated that lignin degradation byS. viridosporus is oxidative and involves demethylations, ring cleavage reactions, and oxidative attack on phenylpropanoid side-chains. Also, some reduced structures accumulate in the polymer and some low molecular weight intermediates are released into the growth medium.Abbreviations MWL milled wood lignin - TMS trimethylsyily - PCA protocatechuic acid Paper nunfber 81512 of the Idaho Agricultural Experiment Station  相似文献   

18.
A thermophilic bacterium capable of low-molecular-weight polyethylene (LMWPE) degradation was isolated from a compost sample, and was identified as Chelatococcus sp. E1, through sequencing of the 16S rRNA gene. LMWPE was prepared by thermal degradation of commercial PE in a strict nitrogen atmosphere. LMWPE with a weight-average-molecular-weight (Mw) in the range of 1,700–23,700 was noticeably mineralized into CO2 by the bacterium. The biodegradability of LMWPE decreased as the Mw increased. The low molecular weight fraction of LMWPE decreased significantly as a result of the degradation process, and thereby both the number-average-molecular-weight and Mw increased after biodegradation. The polydispersity of LMWPE was either narrowed or widened, depending on the initial Mw of LMWPE, due to the preferential elimination of the low molecular weight fraction, in comparison to the high molecular weight portion. LMWPE free from an extremely low molecular weight fraction was also mineralized by the strain at a remarkable rate, and FTIR peaks assignable to C–O stretching appeared as a result of microbial action. The FTIR peaks corresponding to alkenes also became more intense, indicating that dehydrogenations occurred concomitantly with microbial induced oxidation.  相似文献   

19.
The phenylurea herbicide diuron [N-(3,4-dichlorophenyl)-N,N-dimethylurea] is widely used in a broad range of herbicide formulations, and consequently, it is frequently detected as a major water contaminant in areas where there is extensive use. We constructed a linuron [N-(3,4-dichlorophenyl)-N-methoxy-N-methylurea]- and diuron-mineralizing two-member consortium by combining the cooperative degradation capacities of the diuron-degrading organism Arthrobacter globiformis strain D47 and the linuron-mineralizing organism Variovorax sp. strain SRS16. Neither of the strains mineralized diuron alone in a mineral medium, but combined, the two strains mineralized 31 to 62% of the added [ring-U-(14)C]diuron to (14)CO(2), depending on the initial diuron concentration and the cultivation conditions. The constructed consortium was used to initiate the degradation and mineralization of diuron in soil without natural attenuation potential. This approach led to the unexpected finding that Variovorax sp. strain SRS16 was able to mineralize diuron in a pure culture when it was supplemented with appropriate growth substrates, making this strain the first known bacterium capable of mineralizing diuron and representatives of both the N,N-dimethyl- and N-methoxy-N-methyl-substituted phenylurea herbicides. The ability of the coculture to mineralize microgram-per-liter levels of diuron was compared to the ability of strain SRS16 alone, which revealed the greater extent of mineralization by the two-member consortium (31 to 33% of the added [ring-U-(14)C]diuron was mineralized to (14)CO(2) when 15.5 to 38.9 mug liter(-1) diuron was used). These results suggest that the consortium consisting of strains SRS16 and D47 could be a promising candidate for remediation of soil and water contaminated with diuron and linuron and their shared metabolite 3,4-dichloroaniline.  相似文献   

20.
The use of microorganisms for bioremediation of contaminated soils may be enhanced with an understanding of the pathways involved in their degradation of hazardous compounds. Ralstonia sp. strain RJGII.123 was isolated from soil located at a former coal gasification plant, based on its ability to mineralize carbazole, a three-ring N-heterocyclic pollutant. Experiments were carried out with strain RJGHII.123 and 14C-carbazole (2 mg/L and 500 mg/L) as the sole organic carbon source. At 15 days, 80% of the 2 mg/L carbazole was recovered as CO2, and <1% remained as undegraded carbazole, while 24% of the 500 mg/L carbazole was recovered as CO2 and approximately 70% remained as undegraded carbazole. Several stable intermediates were formed during this time. These intermediates were separated by high performance liquid chromatography (HPLC) and were characterized using high resolution mass spectroscopy (HR-MS) and gas chromatography - mass spectroscopy (GC-MS). At least 10 ring cleavage products of carbazole degradation were identified; four of these were confirmed as anthranilic acid, indole-2-carboxylic acid, indole-3-carboxylic acid, and (1H)-4-quinolinone by comparison with standards. These data indicate that strain RJGII.123 shares aspects of carbazole degradation with previously described Pseudomonas spp., and may be useful in facilitating the bioremediation of NHA from contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号