首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
As inflammation plays a critical role in the development and progression of cancer, therapeutic targeting of cytokine pathways involved in both tumorigenesis and dictating response to clinical treatments are of significant interest. Recent evidence has highlighted the importance of the pro-inflammatory cytokine interleukin-1 (IL-1) as a key mediator of tumor growth, metastatic disease spread, immunosuppression, and drug resistance in cancer. IL-1 promotes tumorigenesis through diverse mechanisms, including the activation of oncogenic signaling pathways directly in tumor cells and via orchestrating crosstalk between the cellular constituents of the tumor microenvironment (TME), thereby driving cancer growth. This review will provide an overview of IL-1 signaling and physiology and summarize the disparate mechanisms involving IL-1 in tumorigenesis and cancer progression. Additionally, clinical studies targeting IL-1 signaling in the management of solid organ tumors will be summarized herein.  相似文献   

2.
microRNA是一类由内源基因编码的长度约为18-25个核苷酸的非编码单链RNA分子,可以与靶基因mRNA的3'非编码区结合,通过降解靶m RNA或(和)抑制靶m RNA转录后翻译调节靶蛋白的生成,从而发挥其生物学作用。目前,在人体基因组内发现的microRNA已经超过2500多个,可能调节着人类1/3的基因,在维持正常干细胞功能、调控细胞增殖分化及恶性肿瘤发生过程中均起重要作用。既往的研究表明microRNA与基因之间相互调控的失衡导致肿瘤的发生。从分子水平上研究microRNA与肿瘤发生的关系,检测microRNA与肿瘤相关基因表达情况的改变,分析肿瘤组织和血清中microRNA表达量与肿瘤分型的关系,将有利于肿瘤的病因学研究,早期发现和肿瘤治疗及预后判断。本文主要就microRNA在肿瘤发生发展和诊断中作用的研究进展进行了综述。  相似文献   

3.
4.
5.
Growing evidence suggests that myeloid-derived suppressor cells (MDSCs), which have been named "immature myeloid cells" or "myeloid suppressor cells" (MSCs), play a critical role during the progression of cancer in tumor-bearing mice and cancer patients. As their name implies, these cells are derived from bone marrow and have a tremendous potential to suppress immune responses. Recent studies indicated that these cells also have a crucial role in tumor progression. MDSCs can directly incorporate into tumor endothelium.They secret many pro-angiogenic factors as well. In addition, they play an essential role in cancer invasion and metastasis through inducing the production of matrix metalloproteinases (MMPs), chemoattractants and creating a pre-metastatic environment. Increasing evidence supports the idea that cancer stem cells (CSCs) are responsible for tumorigenesis, resistance to therapies, invasion and metastasis.Here, we hypothesize that CSCs may "hijack" MDSCs for use as alternative niche cells, leading to the maintenance of stemness and enhanced chemo- and radio-therapy resistance. The countermeasure that directly targets to MDSCs may be useful for against angiogenesis and preventing cancer from invasion and metastasis. Therefore, the study of MDSCs is important to understand tumor progression and to enhance the therapeutic efficacy against cancer.  相似文献   

6.
《Epigenetics》2013,8(7):888-891
Dietary compounds have been observed to have a great potential to regulate the epigenome, which is disrupted and reprogrammed during carcinogenesis. Because of their close association with cancer development, DNA methylation patterns have been used as a crucial marker for the study of cancer-related epigenetics. There is immense evidence indicating that dietary components play a critical role in cancer development. Genistein, one of the soy-derived bioactive isoflavones, affects tumorigenesis through epigenetic regulations. By modulating chromatin configuration and DNA methylation, genistein activates tumor suppressor genes and affects cancer cell survival. Here, we summarize and discuss both in vitro and in vivo studies in the field that investigate the effect of genistein on histone modifications and DNA methylation. The promising role of genistein in cancer prevention and therapeutic applications will be discussed from an epigenetic point of view.  相似文献   

7.
In the last few years it was found that beside genetic aberrations, epigenetic changes also play an important role in tumorigenesis. Acetylation and deacetylation of histones have been found to contribute to a significant extent to epigenetic regulation of gene expression. Analyses of various tumor models and patient samples revealed that the enzyme class of histone deacetylases is associated with many types of cancer and that, for example, over-expression of these enzymes leads to a disturbed balance between acetylation and deacetylation of histones, resulting in differences in the gene expression patterns between normal and cancer cells. Consequently, this class of enzymes has been considered as a potential target for cancer therapy. Numerous inhibitors have been identified and several are in clinical development. Although, with SAHA, one inhibitor has been approved by the FDA for a tumor indication, many open questions remain regarding the mode of action of these inhibitors. In this review, various aspects of preclinical and clinical research of the HDAC inhibitor MS-275 are described, to provide insight into the development of such a compound.  相似文献   

8.
Breast cancer is a heterogeneous disease and genetic factors play an important role in its genesis. Although mutations in tumor suppressors and oncogenes encoded by the nuclear genome are known to play a critical role in breast tumorigenesis, the contribution of the mitochondrial genome to this process is unclear. Like the nuclear genome, the mitochondrial genome also encodes proteins critical for mitochondrion functions such as oxidative phosphorylation (OXPHOS), which is known to be defective in cancer including breast cancer. Mitochondrial DNA (mtDNA) is more susceptible to mutations due to limited repair mechanisms compared to nuclear DNA (nDNA). Thus changes in mitochondrial genes could also contribute to the development of breast cancer. In this review we discuss mtDNA mutations that affect OXPHOS. Continuous acquisition of mtDNA mutations and selection of advantageous mutations ultimately leads to generation of cells that propagate uncontrollably to form tumors. Since irreversible damage to OXPHOS leads to a shift in energy metabolism towards enhanced aerobic glycolysis in most cancers, mutations in mtDNA represent an early event during breast tumorigenesis, and thus may serve as potential biomarkers for early detection and prognosis of breast cancer. Because mtDNA mutations lead to defective OXPHOS, development of agents that target OXPHOS will provide specificity for preventative and therapeutic agents against breast cancer with minimal toxicity.  相似文献   

9.
10.
Tumor-derived microvesicles are rich in metastasis-related proteases and play a role in the interactions between tumor cells and tumor microenvironment in tumor metastasis. Because shed microvesicles may remain in the extracellular environment around tumor cells, the microvesicle membrane protein may be the potential target for cancer therapy. Here we report that chromosome segregation 1–like (CSE1L) protein is a microvesicle membrane protein and is a potential target for cancer therapy. v-H-Ras expression induced extracellular signal–regulated kinase (ERK)-dependent CSE1L phosphorylation and microvesicle biogenesis in various cancer cells. CSE1L overexpression also triggered microvesicle generation, and CSE1L knockdown diminished v-H-Ras–induced microvesicle generation, matrix metalloproteinase (MMP)-2 and MMP-9 secretion and metastasis of B16F10 melanoma cells. CSE1L was preferentially accumulated in microvesicles and was located in the microvesicle membrane. Furthermore, anti-CSE1L antibody–conjugated quantum dots could target tumors in animal models. Our findings highlight a novel role of Ras-ERK signaling in tumor progression and suggest that CSE1L may be involved in the “early” and “late” metastasis of tumor cells in tumorigenesis. Furthermore, the novel microvesicle membrane protein, CSE1L, may have clinical utility in cancer diagnosis and targeted cancer therapy.  相似文献   

11.
12.
CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCR and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy.  相似文献   

13.
14.
15.
Chronic inflammation often precedes or accompanies a substantial number of cancers. Indeed, anti-inflammatory therapies have shown efficacy in cancer prevention and treatment. The exact mechanisms that turn a wound healing process into a cancer precursor are topics of intense research. A pathogenic link has been identified between inflammatory mediators, inflammation related gene polymorphisms and carcinogenesis. Animal models of cancer have been instrumental in demonstrating the diversity of mechanisms through which every tumor compartment and tumor stage may be affected by the underlying inflammatory process. In this review, we focus on the interaction between chronic inflammation, tumor stem cells and the tumor microenvironment. We summarize the proposed mechanisms that lead to the recruitment of bone marrow derived cells and explore the genetic and epigenetic alterations that may occur in inflammation associated cancers.  相似文献   

16.
蒋倩  罗招阳  张志伟  陶菲 《现代生物医学进展》2013,13(14):2783-2785,2689
自噬是一个高度发达而且十分保守的生物学分解代谢过程。自噬与肿瘤的关系十分密切,在肿瘤发生发展的过程中,自噬活性的改变却是一把双刃剑。自噬,它既能够使肿瘤细胞耐受不同的应激条件而使其获得更好的生存,也可以通过各种信号途径减轻许多不良应激条件下的细胞损伤,如慢性炎症、慢性细胞死亡及基因组损伤等,从而而减少肿瘤的发生。再者,一方面,某些肿瘤的发生和发展过程中也同样依赖于自噬,并且肿瘤细胞可以利用自噬来对抗抗癌药物的一定的细胞毒性。而另一方面,有些癌症却需要利用自噬的作用来杀死肿瘤细胞。虽然自噬与肿瘤的关系是十分复杂的,也存在不少的分歧,但总的来说自噬在癌症中的作用是至关重要的。结合近年来国内外研究的发展,我们这篇综述重点讨论的是自噬在癌症中的作用,并且探讨其潜在的作用机制,以及目前自噬在癌症治疗中的应用。  相似文献   

17.
Although chemokines are well established to function in immunity and endothelial cell activation and proliferation, a rapidly growing literature suggests that CXC Chemokine receptors CXCR3, CXCR4 and CXCR7 are critical in the development and progression of solid tumors. The effect of these chemokine receptors in tumorigenesis is mediated via interactions with shared ligands I-TAC (CXCL11) and SDF-1 (CXCL12). Over the last decade, CXCR4 has been extensively reported to be overexpressed in most human solid tumors and has earned considerable attention toward elucidating its role in cancer metastasis. To enrich the existing armamentarium of anti-cancerous agents, many inhibitors of CXCL12–CXCR4 axis have emerged as additional or alternative agents for neo-adjuvant treatments and even many of them are in preclinical and clinical stages of their development. However, the discovery of CXCR7 as another receptor for CXCL12 with rather high binding affinity and recent reports about its involvement in cancer progression, has questioned the potential of “selective blockade” of CXCR4 as cancer chemotherapeutics. Interestingly, CXCR7 can also bind another chemokine CXCL11, which is an established ligand for CXCR3. Recent reports have documented that CXCR3 and their ligands are overexpressed in different solid tumors and regulate tumor growth and metastasis. Therefore, it is important to consider the interactions and crosstalk between these three chemokine receptors and their ligand mediated signaling cascades for the development of effective anti-cancer therapies. Emerging evidence also indicates that these receptors are differentially expressed in tumor endothelial cells as well as in cancer stem cells, suggesting their direct role in regulating tumor angiogenesis and metastasis. In this review, we will focus on the signals mediated by this receptor trio via their shared ligands and their role in tumor growth and progression.  相似文献   

18.
恶性肿瘤的靶向治疗已经成为现阶段肿瘤治疗的热点。随着人们对癌基因认知的加深,借助合成致死的方法靶向治疗肿瘤已成为针对肿瘤特异性治疗的新策略。p53基因突变在肿瘤的形成和发展过程中具有重要作用。因此,了解肿瘤中与突变型p53基因有合成致死关系的靶基因的作用方式,有助于指导由突变型p53基因诱发肿瘤的个性化治疗。与突变型p53基因具有合成致死关系的靶基因可分为细胞周期调控基因和细胞非周期调控基因,文章综述了这两类靶基因与突变型p53基因如何构成合成致死作用以及此作用的现实意义。  相似文献   

19.
MiR-132抑制肿瘤转移   总被引:2,自引:0,他引:2       下载免费PDF全文
肿瘤转移是造成癌症难以根治的重要原因之一.近年来越来越多的研究发现,miRNA在肿瘤转移过程中发挥了直接或间接的作用.本研究的目标是找到一种特异性的肿瘤转移相关miRNA,能够作为抑制肿瘤转移的潜在靶标.miR-132是一类与炎症、血管生长、中枢神经系统相关的miRNA,至今还没有研究证明其与肿瘤转移相关.为了验证miR-132与肿瘤迁移的相关性,本研究将miR-132转染入高迁移乳腺癌细胞系MDA-MB-231细胞中,检测细胞迁移率的变化.实验发现miR-132能够抑制MDA-MB-231细胞的迁移.为了进一步揭示miR-132抑制细胞迁移的可能机制,本研究通过生物信息学手段寻找并鉴定了3种可能与肿瘤转移相关的miR-132的靶基因,它们分别是CHIP(STUB1)、G3BP1、G3BP2.分别比对MCF7与MDA-MB-231细胞,及转染miR-132和对照组MDA-MB-231细胞中以上3种基因的表达差异,我们发现G3BP1、G3BP2可能参与miR-132对肿瘤转移的调控.本研究首次报道miR-132与肿瘤转移的关系,并揭示了miR-132调节肿瘤转移的可能机制,说明了miR-132具有作为特异性抑制肿瘤转移靶标的潜力,为抑制肿瘤转移提供一个新的靶点.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号