首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Complete nucleotide sequences which code for the capsid protein VP1 of two foot-and-mouth disease virus serotypes, O1Campos/Brazil/58 and C3Indaial/Brazil/71, have been determined. Ten available VP1 sequences (three serotype O, three serotype C, and four serotype A) were aligned and compared. Our evidence suggests that O1BFS/Britain/68 and O1K/Germany/66 are closely related to O1Campos/Brazil/58. Significant variations were observed between the nucleotide sequences of C3Indaial determined by two different laboratories. These differences are probably the result of virus adaptation and propagation in different laboratories. In one of the isolates (C3Biogen), a 13-base-pair stem and 13-base-pair loop structure is located in the 134-158 amino acid variable region. Isolates of different serotypes differ at two highly variable regions, amino acid positions 42-60 and 134-158, but isolates of the same serotype show major differences only in the variable region between amino acids 134 and 158. Since the remaining amino acid sequence of VP1 is highly conserved, we conclude that the 134-158 amino acid variable region is involved in subtype specificity, whereas both variable regions contribute to serotype differences.  相似文献   

2.
Five poliovirus recombinants containing sequences corresponding to foot-and-mouth disease virus (FMDV) antigenic sites were constructed. Viable virus was recovered from four of these plasmids, in which the VP1 beta B-beta C loop (antigenic site 1) of poliovirus type 1 Sabin had been replaced with sequences derived from the VP1 beta G-beta H loop (antigenic site 1) of FMDV O1 Kaufbeuren (O1K), chimera O1.1 (residues 141 to 154), chimera O1.2 (residues 147 to 156), and chimera O1.3 (residues 140 to 160) or from the beta B-beta C loop of VP1 (antigenic site 3) in chimera O3.1 (residues 40 to 49). One chimera (O1.3) was neutralized by FMDV-specific polyclonal serum and monoclonal antibodies directed against antigenic site 1 of FMDV. Chimeras O1.3 and O3.1 induced site-specific FMDV-neutralizing antibodies in guinea pigs. Chimera O1.3 was capable of inducing a protective response against FMDV challenge in some guinea pigs.  相似文献   

3.
The nucleotide sequences of the VP1-coding regions of several isolates of serotype C3 foot-and-mouth disease virus (FMDV) were determined. The deduced amino acid sequences were compared with those of serotype C1 FMDV. The results provide evidence for two different lineages of FMDV C3 and document the potential for both long-term conservation and rapid evolution of FMDV.  相似文献   

4.
主要探讨了T细胞免疫原TI对口蹄疫疫苗的免疫增强作用。设计并原核表达产生了一种包含口蹄疫病毒VP1,VP4,3A和3D蛋白上多个T细胞表位与两个通用T细胞表位的T细胞免疫原,命名为TI;同时表达了O和Asia 1两个型口蹄疫病毒 VP1 蛋白的串联编码基因,表达产物命名为OA-VP1。将上述T细胞免疫原分别与OA-VP1和口蹄疫灭活疫苗按不同剂量组合免疫小鼠,于免疫后不同时间测定各组小鼠的体液与细胞免疫应答情况。采用微量中和试验检测小鼠O型和Asia1型中和抗体,采用流式细胞检测技术和测定γ-干扰素的水平来分析不同免疫组小鼠细胞免疫的水平。结果显示,与灭活疫苗或OA-VP1单独免疫组相比,添加TI抗原后灭活疫苗 (P<0.01) 和OA-VP1免疫组(P<0.05)小鼠均能产生高水平的特异性中和抗体;且CD4+ T细胞数量显著增多,IFN-γ产生水平显著升高 (P<0.01)。说明TI抗原具有很好的诱导特异性体液与细胞免疫应答的作用,是一种很好的免疫增效剂,可作为口蹄疫蛋白亚单位疫苗和灭活疫苗中的一种有效成分,以提高疫苗的免疫效果。  相似文献   

5.
Cloned cDNA molecules from three serotypes of FMDV have been sequenced around the VP1-coding region. The predicted amino acid sequences for VP1 were compared with the published sequences and variable regions identified. The amino acid sequences were also analysed for hydrophilic regions. Two of the variable regions, numbered 129-160 and 193-204 overlapped hydrophilic regions, and were therefore identified as potentially immunogenic. These regions overlap regions shown by others to be immunogenic.  相似文献   

6.
M Xue  H Wang  W Li  G Zhou  Y Tu  L Yu 《Virology journal》2012,9(1):191
ABSTRACT: BACKGROUND: Foot-and-mouth disease virus (FMDV) exhibits a high degree of antigenic variability. Studies of the antigenic diversity and determination of amino acid changes involved in this diversity are important to the design of broadly protective new vaccines. Although extensive studies have been carried out to explore the molecular basis of the antigenic variation of serotype O and serotype A FMDV, there are few reports on Asia1 serotype FMDV. METHODS: Two serotype Asia1 viruses, Asia1/YS/CHA/05 and Asia1/1/YZ/CHA/06, which show differential reactivity to the neutralizing monoclonal antibody (nMAb) 1B4, were subjected to sequence comparison. Then a reverse genetics system was used to generate mutant versions of Asia1/YS/CHA/05 followed by comparative analysis of the antigenicity, growth property and pathogenicity in the suckling mice. RESULTS: Three amino acid differences were observed when the structural protein coding sequences of Asia1/1/YZ/CHA/06 were compared to that of Asia1/YS/CHA/05. Site-directed mutagenesis and Immunofluorescence analysis showed that the amino acid substitution in the B-C loop of the VP2 protein at position 72 is responsible for the antigenic difference between the two Asia1 FMDV strains. Furthermore, alignment of the amino acid sequences of VP2 proteins from serotype Asia1 FMDV strains deposited in GenBank revealed that most of the serotype Asia1 FMDV strains contain an Asn residue at position 72 of VP2. Therefore, we constructed a mutant virus carrying an Asp-to-Asn substitution at position 72 and named it rD72N. Our analysis shows that the Asp-to-Asn substitution inhibited the ability of the rD72N virus to react with the MAb 1B4 in immunofluorescence and neutralization assays. In addition, this substitution decreased the growth rate of the virus in BHK-21 cells and decreased the virulence of the virus in suckling mice compared with the Asia1/YS/CHA/05 parental strain. CONCLUSIONS: These results suggest that variations in domains other than the hyper variable VP1 G-H loop (amino acid 140 to 160) are relevant to the antigenic diversity of FMDV. In addition, amino acid substitutions in the VP2 influenced replicative ability and virulence of the virus. Thus, special consideration should be given to the VP2 protein in research on structure-function relationships and in the development of an FMDV vaccine.  相似文献   

7.
8.
Foot-and-mouth disease (FMD) is a highly contagiousdisease of cloven-hoofed animals such as cattle and pig.The disease causes explosive epidemics and heavyeconomic losses in the agriculture worldwide [1]. FMDvirus (FMDV) shows a high genetic and antigenicvariability, and has seven serotypes: O, A, C, AsiaI, SAT1,SAT2 and SAT3 [2]. The FMDV control is mainly imple-mented using chemically inactivated virus vaccines, whichmay contain residual living virus and pose a risk of virusreleas…  相似文献   

9.
Foot-and-mouth disease virus (FMDV) manifests an extreme sensitivity to acid, which is thought to be important for entry of the RNA genome into the cell. We have compared the low-pH-induced disassembly in vitro of virions and natural empty capsids of three subtypes of serotype A FMDV by enzyme-linked immunosorbent assay and sucrose gradient sedimentation analysis. For all three subtypes (A22 Iraq 24/64, A10(61), and A24 Cruzeiro), the empty capsid was more stable by 0.5 pH unit on average than the corresponding virion. Unexpectedly, in the natural empty capsids used in this study, the precursor capsid protein VP0 was found largely to be cleaved into VP2 and VP4. For picornaviruses the processing of VP0 is closely associated with encapsidation of viral RNA, which is considered likely to play a catalytic role in the cleavage. Investigation of the cleavage of VP0 in natural empty capsids failed to implicate the viral RNA. However, it remains possible that these particles arise from abortive attempts to encapsidate RNA. Empty capsids expressed from a vaccinia virus recombinant showed essentially the same acid lability as natural empty capsids, despite differing considerably in the extent of VP0 processing, with the synthetic particles containing almost exclusively uncleaved VP0. These results indicate that it is the viral RNA that modulates acid lability in FMDV. In all cases the capsids dissociate at low pH directly into pentameric subunits. Comparison of the three viruses indicates that FMDV A22 Iraq is about 0.5 pH unit more sensitive to low pH than types A10(61) and A24 Cruzeiro. Sequence analysis of the three subtypes identified several differences at the interface between pentamers and highlighted a His-alpha-helix dipole interaction which spans the pentamer interface and appears likely to influence the acid lability of the virus.  相似文献   

10.
In this study, the coding region of type O FMDV capsid protein VP1 and a series of codon optimized DNA sequences coding for VP1 amino acid residues 141–160 (epitope1), tandem repeat 200–213 (epitope2 (+2)) and the combination of two epitopes (epitope1–2) was genetically cloned into the prokaryotic expression vector pPROExHTb and pGEX4T-1, respectively. VP1 and the fused epitopes GST-E1, GST-E2 (+2) and GST-E1-2 were successfully solubly expressed in the cytoplasm of Escherichia coli and Western blot analysis demonstrated they retained antigenicity. Indirect VP1-ELISA and epitope ELISAs were subsequently developed to screen a panel of 80 field pig sera using LPB-ELISA as a standard test. For VP1-ELISA and all the epitope ELISAs, there were clear distinctions between the FMDV-positive and the FMDV-negative samples. Cross-reactions with pig sera positive to the viruses of swine vesicular disease virus that produce clinically indistinguishable syndromes in pigs or guinea pig antisera to FMDV strains of type A, C and Asia1 did not occur. The relative sensitivity and specificity for the GST-E1 ELISA, GST-E2 (+2), GST-E1-2 ELISA and VP1-ELISA in comparison with LPB-ELISA were 93.3% and 85.0%, 95.0% and 90%, 100% and 81.8%, 96.6% and 80.9% respectively. This study shows the potential use of the aforementioned epitopes as alternatives to the complex antigens used in current detection for antibody to FMDV structural proteins.  相似文献   

11.
A segment of 1160 nucleotides of the FMDV genome has been sequenced using three overlapping fragments of cloned cDNA from FMDV strain O1K. This sequence contains the coding sequence for the viral capsid protein VP1 as shown by its homology to known and newly determined amino acid sequences from this man antigenic polypeptide of the FMDV virion. The structural gene for VP1 comprises 639 nucleotides which specify a sequence of 213 amino acids for the VP1 protein. The coding sequence is not flanked by start and stop codons which is consistent with the mode of biosynthesis of VP1 by post-translational processing of a polyprotein precursor.  相似文献   

12.
For effective control of foot-and-mouth disease (FMD), the development of rapid diagnostic systems and vaccines are required against its etiological agent, FMD virus (FMDV). To accomplish this, efficient large-scale expression of the FMDV VP1 protein, with high solubility, needs to be optimized. We attempted to produce high levels of a serotype O FMDV VP1 epitope in Escherichia coli. We identified the subtype-independent serotype O FMDV VP1 epitope sequence and used it to construct a glutathione S-transferase (GST) fusion protein. For efficient production of the FMDV VP1 epitope fused to GST (VP1e–GST), four E. coli strains and three temperatures were examined. The conditions yielding the greatest level of VP1e–GST with highest solubility were achieved with E. coli BL21(DE3) at 25 °C. For high-level production, fed-batch cultures were conducted in 5-l bioreactors. When cells were induced at a high density and complex feeding solutions were supplied, approximately 11 g of VP1e–GST was obtained from a 2.9-l culture. Following purification, the VP1 epitope was used to immunize rabbits, and we confirmed that it induced an immune response.  相似文献   

13.
E Beck  S Forss  K Strebel  R Cattaneo    G Feil 《Nucleic acids research》1983,11(22):7873-7885
A cDNA clone of Foot and Mouth Diseases Virus (FMDV), strain C1, has been sequenced. The limits of the structural genes were defined by comparison with the available protein data. We identified two potential translation initiation sites for the viral polyprotein separated by 84 nucleotides. We suggest that these two initiation sites could be used to express two proteins differing only at the N-terminal, P16 and P20a. This model is supported by the fact that antiserum against a bacterially synthesized polypeptide corresponding to the anterior region of the polyprotein precipitates specifically both P16 and P20a. Comparison of the C1 sequence with two other serotypes, O1K and A10 revealed variability in the major immunogenic structural protein, VP1, and also in two other capsid proteins, VP2 and VP3. P16/P20a, VP4, and the N-terminal part of the precursor of the nonstructural genes, P52, are rather conserved between the different FMDV strains.  相似文献   

14.
Functional reproduction of discontinuous antigenic site D of foot-and-mouth disease virus (FMDV) has been achieved by means of synthetic peptide constructions that integrate into a single molecule each of the three protein loops that define the antigenic site. The site D mimics are designed on the basis of the X-ray structure of FMDV type C-S8c1 with the aid of molecular dynamics, so that the five residues assumed to be involved in antigenic recognition are located on the same face of the molecule, exposed to solvent and defining a set of native-like distances and angles. The designed site D mimics are disulphide-linked heterodimers that consist of a larger unit containing VP2(71-84), followed by a polyproline module and by VP3(52-62), and a smaller unit corresponding to VP1(188-194). Guinea pig antisera to the peptides recognize the viral particle and compete with site D-specific monoclonal antibodies, while inoculation with a simple (non-covalently bound) admixture of the three VP1-VP3 sequences yields no detectable virus-specific serum conversion. Similar results have been reproduced in two cattle. Antisera to the peptides are also moderately neutralizing of FMDV in cell culture and partially protective of guinea pigs against challenge with the virus. These results demonstrate functional mimicry of the discontinuous site D by the peptides, which are therefore obvious candidates for a multicomponent peptide-based vaccine against FMDV.  相似文献   

15.
The nucleotide sequence of the VP1 coding region of foot-and-mouth disease virus (FMDV) strain HKN/2002, isolated from a disease outbreak occurring in Hong Kong in February 2002, was determined and compared with the sequences of other FMDVs. The VP1 coding region was 639 nucleotides in length and encoded a protein of 213 amino acid residues. Comparison of the VP1 nucleotide sequence with those of other isolates indicated that HKN/2002 belonged to serotype O. A VP1-based sequence similarity tree of several South-east Asian FMDV-O isolates showed that HKN/2002 was most closely related to FMDV isolates found in Hong Kong from 1991 to 1999 and Taiwan in 1997. Comparison of the amino acid sequence of the major immunogenic region of HKN/2002 with that of the serotype O vaccine strain, O1/Manisa/Turkey/69, reveals significant similarity, indicating that current serotype O vaccines may offer some degree of protection against HKN/2002.  相似文献   

16.
Empty capsids of foot-and-mouth disease virus (FMDV) type A22 Iraq 24/64, whose structure has been solved by X-ray crystallography, are unusual for picornaviruses since they contain VP2 and VP4, the cleavage products of the protein precursor VP0. Both the N terminus of VP1 and the C terminus of VP4, which pack together close to the icosahedral threefold symmetry axis where three pentamers associate, are more disordered in the empty capsid than they are in the RNA-containing virus. The ordering of these termini in the presence of RNA strengthens interactions within a single protomer and between protomers belonging to different pentamers. The disorder in the FMDV empty capsid forms a subset of that seen in the poliovirus empty capsid, which has VP0 intact. Thus, VP0 cleavage confers stability on the picornavirus capsid over and above that attributable to RNA encapsidation. In both FMDV and poliovirus empty capsids, the internal disordering uncovers a conserved histidine which has been proposed to be involved in the cleavage of VP0. A comparison of the putative active sites in FMDV and poliovirus suggests a structural explanation for the sequence specificity of the cleavage reaction.  相似文献   

17.
This report describes the use of Bayesian methods to analyze polyprotein coding region sequences (n = 217) obtained from GenBank to define the genome-wide phylogeny of foot and mouth disease virus (FMDV). The results strongly supported the monophyly of five FMDV serotypes, O, A, Asia 1, C, and SAT 3, while sequences for the two remaining FMDV serotypes, SAT 1 and SAT 2 did not separate into entirely distinct clades. The phylogenomic tree revealed three sister-group relationships, serotype O + Asia 1, A + C, and SAT 1 + 3 + 2, with a new branching pattern: {[(O, Asia 1), (A, C)], (SAT 1, 2, 3)}. Within each serotype, there was no apparent periodic, geographic, or host species influence on the evolution of global FMDVs. Analysis of the polyprotein coding region of these sequences provided evidence for the influence of purifying selection on the evolution of FMDV. Using a Bayesian coalescent approach, the evolutionary rate of FMDV isolates that circulated during the years 1932-2007 was estimated to be 1.46 × 10(-3) substitutions/site/year, and the most recent common ancestor of the virus existed approximately 481 years ago. Bayesian skyline plot revealed a population expansion in the early 20(th) century that was followed by a rapid decline in population size from the late 20(th) century to the present day. These findings provide new insights into the mechanisms that impact on the evolution of this important livestock pathogen.  相似文献   

18.
Bluetongue virus (BTV) is a member of Orbivirus genus in family Reoviridae. The virus genome is composed of 10 double-stranded RNA segments. The RNA segment L2 encodes an outer capsid viral protein VP2, which is the main determinant of neutralization and serotype-specific immune response. BTV serotype 1 (BTV-1) specific novel primer pair was designed using VP2 gene sequences available in GenBank to amplify 1240-1844 bp region because two hypervariable and three conserved regions have been reported within these 604 nucleotides. This primer pair successfully amplified cell culture adapted six Indian isolates of BTV-1 from different geographical regions of the country. The 604 bp PCR product of VP2 gene of all six BTV-1 yielded two fragments of 273 and 331 bp when digested with Taq1 restriction enzyme. This indicated that there is only one TaqI site at 1513 bp (within 1240-1844 bp region) of VP2 gene of BTV-1 Indian isolates. The in silico restriction analysis revealed that in BTV-1 South African isolate (BTV-1SA) there is no TaqI site while in BTV-1 Australian isolates (BTV-1AUS), there are two TaqI sites (at 1513 and 1567 bp) within 1240-1844 bp region of VP2 gene. The earlier reported VP2 gene based primer pair for BTV-1 was used in the present study to amplify 2242-2933 bp region of six BTV-1 Indian isolates as three conserved regions have been reported within these 691 nucleotides. The digestion of 691 bp PCR products with XmnI yielded three fragments of 364, 173 and 154 bp with all the six Indian isolates of BTV-1 suggesting that there are two XmnI sites within 2242-2933 bp region of VP2 gene. A single XmnI site was observed in silico in BTV-1AUS and BTV-1SA isolates at different positions within this region. The in vitro and in silico restriction profile analyses of partial VP2 gene sequences using TaqI and XmnI restriction enzymes indicated a close relationship of Indian isolates of BTV-1 with BTV-1AUS isolates but not with BTV-1SA isolate.  相似文献   

19.

Background

Foot-and-Mouth Disease (FMD) causes significant economic losses in Turkish livestock. We have analysed the genetic diversity of the 1D sequences, encoding the hypervariable surface protein VP1, of Turkish isolates of serotype A and O collected from 1998 to 2004 in order to obtain epidemiological and immunological information.

Results

The 1D coding region of 33 serotype O and 20 serotype A isolates, obtained from outbreaks of FMD between 1998 and 2004, was sequenced. For serotype A, we confirmed the occurrence of the two subtypes IRN99 and IRN96. These subtypes are most divergent within the region encoding the immuno-dominant GH-loop. Also a close relationship to Foot-and-Mouth Disease virus (FMDV) serotype A isolates obtained from outbreaks in Iraq and Iran were detected and a clustering of isolates collected during the same period of time were found. The analysis of the deduced amino-acid sequences of these subtypes revealed evidence of positive selection in one site and one deletion, both within the GH-loop region. By inferring the ancestral history of the positively selected codon, two potential precursors were found. Furthermore, the structural alignment of IRN99 and IRN96 revealed differences between the tertiary structures of these subtypes. The similarity plot of the serotype O isolates suggested a more homogeneous group than the serotype A isolates. However, phylogenetic analysis revealed two major groups, each further divided in subgroups, of which some only consisted of Turkish isolates. Positively selected sites and structural differences of the Turkish isolates analysed, were not found.

Conclusion

The sequence and structural analysis of the IRN99 strains is indicative of positive selection suggesting an immunological advantage compared to IRN96. However, results of antigenic comparison reported elsewhere do not substantiate such a conclusion. There is evidence that IRN99 was introduced to Turkey, in all probability from Iran. Since, a member of the IRN96 lineage was included as a component of the FMDV vaccine produced since 2000, the outbreaks caused by IRN96 strains in 2004 could be due to incomplete vaccine coverage. The Turkish type O strains, all with a VP1 structure similar to the O1/Manisa/69 vaccine, appear in several sublineages. Whether these sublineages reflect multiple samplings from a limited number of outbreaks, or if they reflect cross-boundary introductions is not clear.  相似文献   

20.
The nucleotide sequence of the region including the viral replicase gene, the carboxy terminus of protein P18, and the 3'-extracistronic region of foot-and-mouth disease virus (FMDV) type C1-Santa Pau (C-S8) has been determined from previously cloned cDNA fragments [Villanueva et al., Gene 23 (1983) 185-194]. The comparison with the corresponding gene segments of FMDV of serotypes A or O shows base substitutions in 7.2-8.6% of residues in the replicase gene with no insertions or deletions. This is about fourfold lower variation than found for the region encoding capsid protein VP1 of the corresponding viruses. Intermediate variability (substitution at 16.1-23.6% positions) exists in the 3'-extracistronic region, including point mutations, insertions and deletions. The predicted amino acid sequence of the replicase gene indicates that 75.5-82.6% of mutations are silent and that 93.4% of amino acids are conserved in the four FMDV replicases. The frequency of certain types of silent mutations and of rare codon usage is significantly lower for the replicase gene than for the protein VP1 coding region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号