首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uptake of circulating low density lipoproteins (LDL) is mediated by LDL receptor (LDLR) through clathrin-dependent endocytosis. At the early stage of this process, adaptor proteins ARH and Dab2 specifically bind the endocytic signal motif in LDLR and recruit clathrin/AP2 to initiate internalization. On the other hand, intestinal cholesterol is absorbed by Niemann-Pick C1-Like 1 (NPC1L1) through clathrin-dependent endocytosis. Another adaptor protein, Numb recognizes the endocytic motif in NPC1L1 C terminus and couples NPC1L1 to endocytic machinery. The ARH, Dab2, and Numb proteins contain a homogeneous phosphotyrosine binding (PTB) domain that directly binds endocytic motifs. Because ARH, Dab2, and Numb are all PTB domain family members, the emerging mystery is whether these adaptors act complementally in LDLR and NPC1L1 endocytosis. Here, we found that ARH and Dab2 did not bind NPC1L1 and were not required for NPC1L1 internalization. Similarly, Numb lacked the ability to interact with the LDLR C terminus and was dispensable for LDL uptake. Only the Numb isoforms with shorter PTB domain could facilitate NPC1L1 endocytosis. Besides the reported function in intestinal cholesterol absorption, Numb also mediated cholesterol reabsorption from bile in liver. We further identified a Numb variant with G595D substitution in humans of low blood LDL-cholesterol. The G595D substitution impaired NPC1L1 internalization and cholesterol reabsorption, due to attenuating affinity of Numb to clathrin/AP2. These results demonstrate that Numb specifically regulates NPC1L1-mediated cholesterol absorption both in human intestine and liver, distinct from ARH and Dab2, which selectively participate in LDLR-mediated LDL uptake.  相似文献   

2.
A thalassemic beta-globin gene cloned from a haplotype I chromosome contains a T to G transversion at position 116 of IVS1 which results in the generation of an abnormal alternative acceptor splice site. Transient expression studies revealed a 4-fold decrease in the amount of RNA produced with greater than 99% of it being abnormally spliced despite preservation of the normal acceptor splice site at position 130. These results suggest that the mutation at IVS1 position 116 results in beta zero thalassemia. A closely related mutation at position 110 of IVS1 also generates a novel acceptor site and results in a similar decrease in total mRNA produced, but approximately 20% of the mRNA produced is normally spliced and thus the phenotype is that of beta + thalassemia. These observations suggest that short range position effects may play a dramatic role in the choice of potential splice acceptor sites. We demonstrate the presence of abnormally spliced mRNA in reticulocytes of affected individuals and show the mutation at IVS1 position 116 segregating from the mutation at IVS1 position 110 in a three generation pedigree. The mutation results in the creation of a MaeI restriction site, as do a number of other thalassemic mutations, and we demonstrate some difficulties that may arise in the differential diagnosis of these mutations.  相似文献   

3.
4.
The autosomal recessive hypercholesterolemia (ARH) protein plays a critical role in regulating plasma low density lipoprotein (LDL) levels. Inherited defects in ARH lead to a hypercholesterolemia that closely phenocopies that caused by a defective LDL receptor. The elevated serum LDL-cholesterol levels typical of ARH patients and the pronounced accumulation of the LDL receptor at the cell surface of hepatocytes in ARH-null mice argue that ARH operates by promoting the internalization of the LDL receptor within clathrin-coated vesicles. ARH contains an amino-terminal phosphotyrosine-binding domain that associates physically with the LDL receptor internalization sequence and with phosphoinositides. The carboxyl-terminal half of ARH contains a clathrin-binding sequence and a separate AP-2 adaptor binding region providing a plausible mechanism for how ARH can act as an endocytic adaptor or CLASP (clathrin-associated sorting protein) to couple LDL receptors with the clathrin machinery. Because the interaction with AP-2 is highly selective for the independently folded appendage domain of the beta2 subunit, we have characterized the ARH beta2 appendage-binding sequence in detail. Unlike the known alpha appendage-binding motifs, ARH requires an extensive sequence tract to bind the beta appendage with comparably high affinity. A minimal 16-residue sequence functions autonomously and depends upon ARH residues Asp253, Phe259, Leu262, and Arg266. We suggested that biased beta subunit engagement by ARH and the only other beta2 appendage selective adaptor, beta-arrestin, promotes efficient incorporation of this mechanistically distinct subset of CLASPs into clathrin-coated buds.  相似文献   

5.
Familial dysautonomia (FD) is a severe hereditary sensory and autonomic neuropathy, and all patients with FD have a splice mutation in the IKBKAP gene. The FD splice mutation results in variable, tissue-specific skipping of exon 20 in IKBKAP mRNA, which leads to reduced IKAP protein levels. The development of therapies for FD will require suitable mouse models for preclinical studies. In this study, we report the generation and characterization of a mouse model carrying the complete human IKBKAP locus with the FD IVS20+6T-->C splice mutation. We show that the mutant IKBKAP transgene is misspliced in this model in a tissue-specific manner that replicates the pattern seen in FD patient tissues. Creation of this humanized mouse is the first step toward development of a complex phenotypic model of FD. These transgenic mice are an ideal model system for testing the effectiveness of therapeutic agents that target the missplicing defect. Last, these mice will permit direct studies of tissue-specific splicing and the identification of regulatory factors that play a role in complex gene expression.  相似文献   

6.
Molecular mechanisms of autosomal recessive hypercholesterolemia   总被引:6,自引:0,他引:6  
PURPOSE OF REVIEW: Autosomal recessive hypercholesterolemia (ARH) is a rare Mendelian dyslipidemia characterized by markedly elevated plasma LDL levels, xanthomatosis, and premature coronary artery disease. LDL receptor function is normal, or only moderately impaired in fibroblasts from ARH patients, but their cultured lymphocytes show increased cell-surface LDL binding, and impaired LDL degradation, consistent with a defect in LDL receptor internalization. Recently, the disorder was shown to be caused by mutations in a phosphotyrosine binding domain protein, ARH, which is required for internalization of low density lipoproteins in the liver. This review summarizes the findings of new investigations into the pathophysiology and molecular genetics of ARH. RECENT FINDINGS: All mutations that have been characterized to date preclude the synthesis of a full-length protein. GST-pulldown experiments indicate that the phosphotyrosine binding domain of ARH interacts with the internalization sequence (NPVY) in the cytoplasmic tail of LDLR, and that conserved motifs in the C-terminal portion of the protein bind to clathrin and to the beta2-adaptin subunit of AP-2. SUMMARY: The available data suggest that ARH functions as an adaptor protein that couples LDLR to the endocytic machinery.  相似文献   

7.
The retromer protein complex assists in recycling selected integral membrane proteins from endosomes to the trans Golgi network. One protein subcomplex (Vps35p, Vps26p and Vps29p) combines with a second (Vps17p and Vps5p) to form a coat involved in sorting and budding of endosomal vesicles. Yeast Vps35p (yVps35) exhibits similarity to human Vps35 (hVps35), especially in a completely conserved PRLYL motif contained within an amino-terminal domain. Companion studies indicate that an R(98)W mutation in yVps35 causes defective retromer assembly in Saccharomyces cerevisiae. Herein, we find that the expression of hVps35 in yeast confers dominant-negative vacuolar proenzyme secretion and defective secretory proprotein processing. The mutant phenotype appears to be driven by hVps35 competing with endogenous yVps35, becoming incorporated into defective retromer complexes and causing proteasomal degradation of endogenous Vps26 and Vps29. Increased expression of yVps35 displaces some hVps35 to a 100 000 x g supernatant and suppresses the dominant-negative phenotype. Remarkably, mutation of the conserved R(107)W of hVps35 displaces some of the protein to the 100 000 x g supernatant, slows protein turnover and restores stability of Vps26p and Vps29p and completely abrogates dominant-negative trafficking behavior. We show that hVps35 coprecipitates Vps26, whereas the R(107)W mutant does not. In pancreatic beta cells, the R(107)W mutant shifts hVps35 from peripheral endosomes to a juxtanuclear compartment, affecting both mannose phosphate receptors and insulin. These data underscore importance of the Vps35 PRLYL motif in retromer subcomplex interactions and function.  相似文献   

8.
A novel X-linked mental retardation (XLMR) syndrome was recently identified, resulting from creatine deficiency in the brain caused by mutations in the creatine transporter gene, SLC6A8. We have studied the prevalence of SLC6A8 mutations in a panel of 290 patients with nonsyndromic XLMR archived by the European XLMR Consortium. The full-length open reading frame and splice sites of the SLC6A8 gene were investigated by DNA sequence analysis. Six pathogenic mutations, of which five were novel, were identified in a total of 288 patients with XLMR, showing a prevalence of at least 2.1% (6/288). The novel pathogenic mutations are a nonsense mutation (p.Y317X) and four missense mutations. Three missense mutations (p.G87R, p.P390L, and p.P554L) were concluded to be pathogenic on the basis of conservation, segregation, chemical properties of the residues involved, as well as the absence of these and any other missense mutation in 276 controls. For the p.C337W mutation, additional material was available to biochemically prove (i.e., by increased urinary creatine : creatinine ratio) pathogenicity. In addition, we found nine novel polymorphisms (IVS1+26G-->A, IVS7+37G-->A, IVS7+87A-->G, IVS7-35G-->A, IVS12-3C-->T, IVS2+88G-->C, IVS9-36G-->A, IVS12-82G-->C, and p.Y498) that were present in the XLMR panel and/or in the control panel. Two missense variants (p.V629I and p.M560V) that were not highly conserved and were not associated with increased creatine : creatinine ratio, one translational silent variant (p.L472), and 10 intervening sequence variants or untranslated region variants (IVS6+9C-->T, IVS7-151_152delGA, IVS7-99C-->A, IVS8-35G-->A, IVS8+28C-->T, IVS10-18C-->T, IVS11+21G-->A, IVS12+15C-->T, *207G-->C, IVS12+32C-->A) were found only in the XLMR panel but should be considered as unclassified variants or as a polymorphism (p.M560V). Our data indicate that the frequency of SLC6A8 mutations in the XLMR population is close to that of CGG expansions in FMR1, the gene responsible for fragile-X syndrome.  相似文献   

9.
Disease causing aberrations in both tuberous sclerosis predisposing genes, TSC1 and TSC2, comprise nearly every type of alteration with a predominance of small truncating mutations distributed over both genes. We performed an RNA based screening of the entire coding regions of both TSC genes applying the protein truncation test (PTT) and identified a high proportion of unusual splicing abnormalities affecting the TSC2 gene. Two cases exhibited different splice acceptor mutations in intron 9 (IVS9-15G-->A and IVS9-3C-->G) both accompanied by exon 10 skipping and simultaneous usage of a cryptic splice acceptor in exon 10. Another splice acceptor mutation (IVS38-18A-->G) destroyed the putative polypyrimidine structure in intron 38 and resulted in simultaneous intron retention and usage of a downstream cryptic splice acceptor in exon 39. Another patient bore a C-->T transition in intron 8 (IVS8+281C-->T) activating a splice donor site and resulting in the inclusion of a newly recognised exon in the mRNA followed by a premature stop. These splice variants deduced from experimental results are additionally supported by RNA secondary structure analysis based on free energy minimisation. Three of the reported splicing anomalies are due to sequence changes remote from exon/intron boundaries, described for the first time in TSC. These findings highlight the significance of investigating intronic changes and their consequences on the mRNA level as disease causing mutations in TSC.  相似文献   

10.
Inherited mutation of a purine salvage enzyme, hypoxanthine guanine phosphoribosyltransferase (HPRT), gives rise to Lesch-Nyhan Syndrome (LNS) or HPRT-related gout. Here, we report five novel independent mutations in the coding region of the HPRT gene from five unrelated male patients manifesting different clinical phenotypes associated with LNS: exon 2: c.133A > G, p.45R > G; c.35A > C, p.12D > A; c.88delG; exon 7: c.530A > T, p.177D > V; and c.318 + 1G > C: IVS3 + 1G > C splice site mutation.  相似文献   

11.
Expression of a beta thalassemia gene with abnormal splicing.   总被引:3,自引:1,他引:2  
Expression of a cloned human beta thalassemia gene with a single base change at position 5 of IVS 1 has been analyzed 48 hours after transfer of the gene into HeLa cells (transient expression). Little or no normal beta globin mRNA accumulates in the presence of the abnormal beta gene in contrast to significantly more normal beta mRNA produced with other mutations at this same position. By contrast, large amounts of an abnormal beta globin mRNA are present; this is due to the use of a cryptic 5' splice site in exon 1 rather than the normal 5' splice site of IVS 1. The results indicate the variability of the effect on RNA splicing of different single base defects within IVS.  相似文献   

12.
13.
This study aimed to assess mutations in GJB2 gene (connexin 26), as well as A1555G mitochondrial mutation in both the patients with profound genetic nonsyndromic hearing loss and healthy controls. Ninety-five patients with profound hearing loss (>90 dB) and 67 healthy controls were included. All patients had genetic nonsyndromic hearing loss. Molecular analyses were performed for connexin 26 (35delG, M34T, L90P, R184P, delE120, 167delT, 235delC and IVS1+1 A-->G) mutations, and for mitochondrial A1555G mutation. Twenty-two connexin 26 mutations were found in 14.7% of the patients, which were 35delG, R184P, del120E and IVS1+1 A-->G. Mitochondrial A1555G mutation was not encountered. The most common GJB2 gene mutation was 35delG, which was followed by del120E, IVS1+1 A-->G and R184P, and 14.3% of the patients segregated with DFNB1. In consanguineous marriages, the most common mutation was 35delG. The carrier frequency for 35delG mutation was 1.4% in the controls. 35delG and del120E populations, seems the most common connexin 26 mutations that cause genetic nonsyndromic hearing loss in this country. Nonsyndromic hearing loss mostly shows DFNB1 form of segregation.  相似文献   

14.
The T-->G mutation at nucleotide 705 in the second intron of the beta-globin gene creates an aberrant 5' splice site and activates a 3' cryptic splice site upstream from the mutation. As a result, the IVS2-705 pre-mRNA is spliced via the aberrant splice sites leading to a deficiency of beta-globin mRNA and protein and to the genetic blood disorder thalassemia. We have shown previously that in cell culture models of thalassemia, aberrant splicing of beta-thalassemic IVS2-705 pre-mRNA was permanently corrected by a modified murine U7 snRNA that incorporated sequences antisense to the splice sites activated by the mutation. To explore the possibility of using other snRNAs as vectors for antisense sequences, U1 snRNA was modified in a similar manner. Replacement of the U1 9-nucleotide 5' splice site recognition sequence with nucleotides complementary to the aberrant 5' splice site failed to correct splicing of IVS2-705 pre-mRNA. In contrast, U1 snRNA targeted to the cryptic 3' splice site was effective. A hybrid with a modified U7 snRNA gene under the control of the U1 promoter and terminator sequences resulted in the highest levels of correction (up to 70%) in transiently and stably transfected target cells.  相似文献   

15.
Congenital afibrinogenemia is a rare autosomal recessive coagulation disorder characterised by hemorrhagic manifestations of variable entity and by severe plasma fibrinogen deficiency. Among the 31 afibrinogenemia-causing mutations so far reported, only 2 are missense mutations and both are located in the fibrinogen Bbeta-chain gene. Direct sequencing of the fibrinogen gene cluster in two afibrinogenemic Iranian siblings revealed a novel homozygous T>G transversion in exon 8 (nucleotide position 8025) of the fibrinogen Bbeta-chain gene. The resulting W437G missense mutation involves a highly conserved amino acid residue, located in the C-terminal globular D domain. The role of the W437G amino acid substitution on fibrinogen synthesis, folding, and secretion was assessed by in vitro expression experiments in COS-1 cells, followed by qualitative and quantitative analyses of intracellular and secreted mutant fibrinogen. Results of both pulse-chase experiments and enzyme-linked immunosorbent assays demonstrated intracellular retention of the mutant W437G fibrinogen and marked reduction of its secretion. These data, besides elucidating the pathogenetic role of the W437G mutation in afibrinogenemia, underline the importance of the Bbeta-chain D domain in fibrinogen folding and secretion.  相似文献   

16.
Leukocyte adhesion deficiency is a disorder with mutations of the gene for the beta subunit, a component common to three adhesion molecules; LFA-1, Mac-1 and p150,95. The molecular basis of the disorder was studied in two patients with its severe form. In the first patient, the mutant gene expressed an aberrant mRNA, 1.2 kb longer than usual, resulting from a G to A substitution at the splice donor site of a 1.2 kb intron. Several aberrantly spliced messages, arising from splicing at cryptic donor sites, were also identified. The beta subunit proteins deduced from the mRNA sequences lacked half the carboxyl terminal portion. In the second patient, the mutation was a G to A transition at nucleotide 454, which resulted in an Asp128 to Asn substitution of the beta subunit. The 128th Asp residue is located in a region crucial for the association with alpha subunits and strictly conserved among the integrin beta subunits so far analyzed.  相似文献   

17.
Splice site mutations in the COL1A2 gene of type I collagen can give rise to forms of Ehlers-Danlos syndrome (EDS) because of partial or complete skipping of exon 6, as well as to mild, moderate, or lethal forms of osteogenesis imperfecta as a consequence of skipping of other exons. We identified three unrelated individuals with a rare recessively inherited form of EDS (characterized by joint hypermobility, skin hyperextensibility, and cardiac valvular defects); in two of them, COL1A2 messenger RNA (mRNA) instability results from compound heterozygosity for splice site mutations in the COL1A2 gene, and, in the third, it results from homozygosity for a nonsense codon. The splice site mutations led to use of cryptic splice donor sites, creation of a downstream premature termination codon, and extremely unstable mRNA. In the wild-type allele, the two introns (IVS11 and IVS24) in which these mutations occurred were usually spliced slowly in relation to their respective immediate upstream introns. In the mutant alleles, the upstream intron was removed, so that exon skipping could not occur. In the context of the mutation in IVS24, computer-generated folding of a short stretch of mRNA surrounding the mutation site demonstrated realignment of the relationships between the donor and acceptor sites that could facilitate use of a cryptic donor site. These findings suggest that the order of intron removal is an important variable in prediction of mutation outcome at splice sites and that folding of the nascent mRNA could be one element that contributes to determination of order of splicing. The complete absence of pro alpha 2(I) chains has the surprising effect of producing cardiac valvular disease without bone involvement.  相似文献   

18.
Inherited mutation of a purine salvage enzyme, hypoxanthine guanine phosphoribosyltransferase (HPRT), gives rise to Lesch-Nyhan Syndrome (LNS) or HPRT-related gout. Here, we report five novel independent mutations in the coding region of the HPRT gene from five unrelated male patients manifesting different clinical phenotypes associated with LNS: exon 2: c.133A > G, p.45R > G; c.35A > C, p.12D > A; c.88delG; exon 7: c.530A > T, p.177D > V; and c.318 + 1G > C: IVS3 + 1G > C splice site mutation.  相似文献   

19.
Ligation of the alpha(6)beta(4) integrin induces tyrosine phosphorylation of the beta(4) cytoplasmic domain, followed by recruitment of the adaptor protein Shc and activation of mitogen-activated protein kinase cascades. We have used Far Western analysis and phosphopeptide competition assays to map the sites in the cytoplasmic domain of beta(4) that are required for interaction with Shc. Our results indicate that, upon phosphorylation, Tyr(1440), or secondarily Tyr(1422), interacts with the SH2 domain of Shc, whereas Tyr(1526), or secondarily Tyr(1642), interacts with its phosphotyrosine binding (PTB) domain. An inactivating mutation in the PTB domain of Shc, but not one in its SH2 domain, suppresses the activation of Shc by alpha(6)beta(4). In addition, mutation of beta(4) Tyr(1526), which binds to the PTB domain of Shc, but not of Tyr(1422) and Tyr(1440), which interact with its SH2 domain, abolishes the activation of ERK by alpha(6)beta(4). Phenylalanine substitution of the beta(4) tyrosines able to interact with the SH2 or PTB domain of Shc does not affect incorporation of alpha(6)beta(4) in the hemidesmosomes of 804G cells. Exposure to the tyrosine phosphatase inhibitor orthovanadate increases tyrosine phosphorylation of beta4 and disrupts the hemidesmosomes of 804G cells expressing recombinant wild type beta(4). This treatment, however, exerts a decreasing degree of inhibition on the hemidesmosomes of cells expressing versions of beta(4) containing phenylalanine substitutions at Tyr(1422) and Tyr(1440), at Tyr(1526) and Tyr(1642), or at all four tyrosine phosphorylation sites. These results suggest that beta(4) Tyr(1526) interacts in a phosphorylation-dependent manner with the PTB domain of Shc. This event is required for subsequent tyrosine phosphorylation of Shc and signaling to ERK but not formation of hemidesmosomes.  相似文献   

20.
Genetic deficiency of the glycogen-debranching enzyme (debrancher) causes glycogen storage disease type III (GSD III), which is divided into two subtypes: IIIa and IIIb. In GSD IIIb, glycogen accumulates only in the liver, whereas both liver and muscles are involved in GSD IIIa. The molecular basis for the differences between the two subtypes has not been fully elucidated. Recently, mutations in exon 3 of the debrancher gene were reported to be specifically associated with GSD IIIb. However, we describe a homozygous GSD IIIb patient without mutations in exon 3. Analysis of the patient’s debrancher cDNA revealed an 11-bp insertion in the normal sequence. An A to G transition at position –12 upstream of the 3′ splice site of intron 32 (IVS 32 A–12→G) was identified in the patient’s debrancher gene. No mutations were found in exon 3. Mutational analysis of the family showed the patient to be homozygous for this novel mutation as well as three polymorphic markers. Furthermore, the mother was heterozygous and the parents were first cousins. The acceptor splice site mutation created a new 3′ splice site and resulted in insertion of an 11-bp intron sequence between exon 32 and exon 33 in the patient’s debrancher mRNA. The predicted mutant enzyme was truncated by 112 amino acids as a result of premature termination. These findings suggested that a novel IVS 32 A–12→G mutation caused GSD IIIb in this patient. Received: 1 August 1997 / Accepted: 22 September 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号