首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Probing heat-stable water-soluble proteins from barley to malt and beer   总被引:3,自引:0,他引:3  
Proteins determine the quality of barley in malting and brewing end-uses. In this regard, water-soluble barley proteins play a major role in the formation, stability, and texture of head foams. Our objective was to survey the barley seed proteins that could be involved in the foaming properties of beer. Therefore, two-dimensional (2-D) electrophoresis and mass spectrometry were combined to highlight the barley proteins that could resist the heating treatments occurring during malting and brewing processes. As expected, from barley to malt and to beer, most of the heat-stable proteins are disulfide-rich proteins, implicated in the defense of plants against their bio-aggressors, e.g., serpin-like chymotrypsin inhibitors (protein Z), amylase and amylase-protease inhibitors, and lipid transfer proteins (LTP1 and LTP2). For LTP1s, the complex pattern displayed in 2-D electrophoresis could be related to some chemical modifications already described elsewhere, such as acylation or glycation through Maillard reactions, which occur on malting. Our proteomics approach allowed the identification of the numerous proteins present in beer in addition to the major ones already described. The involvement of these proteins in the quality of beer foam can now be evaluated.  相似文献   

2.
Dissection of a malting quality QTL region on chromosome 1 (7H) of barley   总被引:2,自引:1,他引:1  
Malting and brewing are major uses of barley (Hordeum vulgare L.) worldwide, utilizing 30–40% of the crop each year. A set of complex traits determines the quality of malted barley and its subsequent use for beer. Molecular genetics technology has increased our understanding of genetic control of the many malting and brewing quality traits, most of which are quantitatively inherited. The objective of this study was to further dissect and evaluate a known major malting quality quantitative trait locus (QTL) region of about 28 cM on chromosome 1 (7H). Molecular marker-assisted backcrossing was used to develop 39 isolines originating from a Steptoe / Morex cross. Morex, a 6–row malting type, was the donor parent and Steptoe, a 6–row feed type, was the recurrent parent. The isolines and parents were grown in four environments, and the grain was micro-malted and analyzed for malting quality traits. The effect of each Morex chromosome segment in the QTL target region was determined by composite interval mapping (CIM) and confirmed and refined by multiple interval mapping (MIM). One QTL was resolved for malt extract content, and two QTLs each were resolved for -amylase activity, diastatic power, and malt -glucan content. One additional putative malt extract QTL was detected at the plus border of the target region by CIM, but not confirmed by MIM. All QTLs were resolved to intervals of 2.0 to 6.4 cM by CIM, and to intervals of 2.0 cM or less by MIM. These results should facilitate marker-assisted selection in breeding improved malting barley cultivars.  相似文献   

3.
Fusarium infection of barley and malt can cause severe problems in the malting and brewing industry. In addition to being potential mycotoxin producers, Fusarium fungi are known to cause beer gushing (spontaneous overfoaming of beer). Cereal-derived bacteria and yeasts are potential biocontrol agents. In this study, the antifungal potential of selected yeasts (12 strains) derived from the industrial malting ecosystem was studied in vitro with a plate-screening assay. Several ascomycetous yeast strains showed antagonistic activity against field and storage moulds, Pichia anomala being the most effective strain. The effects of P. anomala VTT C-04565 (C565) were examined in laboratory scale malting with naturally contaminated barley exhibiting gushing potential. P. anomala C565 restricted Fusarium growth and hydrophobin production during malting and prevented beer gushing. Grain germination was not disturbed by the presence of yeast. Addition of P. anomala C565 into the steeping seemed to retard wort filtration, but the filtration performance was recovered when yeast culture was combined with Lactobacillus plantarum VTT E-78076. Well-characterized microbial cultures could be used as food-grade biocontrol agents and they offer a natural tool for tailoring of malt properties.  相似文献   

4.
Contaminating fungi, such as Fusarium species, produce metabolites that may interfere with normal barley grain proteolysis pattern and consequently, affect malt and beer quality. Protein compositional changes of an initial mixture of 20 % Fusarium culmorum infected and 80 % noninfected mature barley grains and respective malt are reported here. Proteolytic activity of infected barley grains (IBG) and respective malt, with controls (uninfected grains), were characterized using protease inhibitors from each class of this enzyme, including metallo-, cysteine, serine, and aspartic proteases, as well as uninhibited protease fractions. The proteins were extracted according to the Osborne fractionation and separated by size exclusion chromatography. Additionally, two-dimensional (2D) gel electrophoresis (GE) was used to analyze hydrophobic storage proteins isolated from the control and IBG. Analyses revealed that F. culmorum IBG had a twofold increase of proteolytic activity compared to the control sample, which showed an increase in all protease classes with aspartic proteases dominating. Infected and control malt grains were comparable with cysteine proteases representing almost 50 % of all proteolytic enzymes detected. Protein extractability was 31 % higher in IBG compared to the control barley. The albumin fraction showed that several metabolic proteins decreased and increased at different rates during infection and malting, thus showing a complex F. culmorum infection interdependence. Prolamin storage proteins were more hydrophobic during barley fungal infection. F. culmorum interfered with the grain hydrolytic protein profile, thereby altering the grain's protein content and quality.  相似文献   

5.
Several barley (Hordeum vulgare) cultivars are used in the production of malt for brewing. The malt quality depends on the cultivar, its growth and storage conditions, and the industrial process. To enhance studies on malt quality, we embarked on a proteome analysis approach for barley seeds and malt. The proteome analysis includes two-dimensional (2-D) gel electrophoresis, mass spectrometry, and bioinformatics for identification of selected proteins. This project initially focused on proteins in major spots in the neutral isoelectric point range (pI 4-7) including selected spots that differ between four barley cultivars. The excellent malting barley cultivar Barke was used as reference. Cultivar differences in the 2-D gel spot patterns are observed both at the seed and the malt level. In seed extracts one of the proteins causing variations has been identified as an alpha-amylase/trypsin inhibitor. In malt extracts multiple forms of the alpha-amylase isozyme 2 have been identified in varying cultivar characteristic spot patterns. The present identification of proteins in major spots from 2-D gels includes 27 different proteins from 42 spots from mature seed extract, while only three specific proteins were identified by analysing 13 different spots from the corresponding malt extract. It is suggested that post-translational processing causes the same protein to occur in different spots.  相似文献   

6.
Traits conferring brewing quality are important objectives in malting barley breeding. Beer foam stability is one of the more difficult traits to evaluate due to the requirement for a relatively large amount of grain to be malted and then the experimental costs for subsequent brewing trials. Consequently, foam stability tends to be evaluated with only advanced lines in the final stages of the breeding process. To simplify the evaluation and selection for this trait, efficient DNA makers were developed in this study. Previous studies have suggested that the level of both of the foam-associated proteins Z4 and Z7 were possible factors that influenced beer foam stability. To confirm the relationship between levels of these proteins in beer and foam stability, 24 beer samples prepared from malt made from 10 barley cultivars, were examined. Regression analyses suggested that beer proteins Z4 and Z7 could be positive and negative markers for beer foam stability, respectively. To develop DNA markers associated with contents of proteins Z4 and Z7 in barley grain, nucleotide sequence polymorphisms in barley cultivars in the upstream region of the translation initiation codon, where the promoter region might be located were compared. As a result, 5 and 23 nucleotide sequence polymorphisms were detected in protein Z4 and protein Z7, respectively. By using these polymorphisms, cleaved amplified polymorphic sequence (CAPS) markers were developed. The CAPS markers for proteins Z4 and Z7 were applied to classify the barley grain content of 23 barley cultivars into two protein Z4 (pZ4-H and pZ4-L) and three protein Z7 (the pZ7-H, pZ7-L and pZ7-L2) haplotypes, respectively. Barley cultivars with pZ4-H showed significantly higher levels of protein Z4 in grain, and those with pZ7-L and pZ7-L2 showed significantly lower levels of protein Z7 in grain. Beer foam stability in the cultivars with pZ4-H and pZ7-L was significantly higher than that with pZ4-L and pZ7-H, respectively. Our results indicate that these CAPS markers provide an efficient selection tool for beer foam stability in barley breeding programs.  相似文献   

7.

Objectives

Exogenous phytase improved the activity of hydrolases to decrease the malting time.

Results

Treatment with phytase during barley steeping increased activity of hydrolases (α-/β-amylase, proteinase, β-glucanase and xylanase) in green malt. Maximal activity was observed for α-/β-amylase, β-glucanase and xylanase with 0.8 U phytase/g and proteinase with 1.2 U phytase/g. Phytase promoted acrospire growth of green malt and reduced malting process with 0.8 U phytase/g in 96 h, which is 24 h less than the control. No significant variation of malt quality was found between control malt and malt treated with 0.8 U/g or 1.2 U phytase/g (P > 0.05), which makes application of exogenous phytase during steeping process as a good option for reducing malting time.

Conclusion

Adding phytase during steeping process increases the activity of hydrolases, which reduces malting time without impacting on malt quality.
  相似文献   

8.
Malted barley is a major raw material of beer, as well as distilled spirits and several food products. The production of malt (malting) exploits the biochemical reactions of a natural process, grain germination. In addition to germinating grain, the malting process includes another metabolically active component: a diverse microbial community that includes various types of bacteria and fungi. Therefore, malting can be considered as a complex ecosystem involving two metabolically active groups. Yeasts and yeast-like fungi are an important part of this ecosystem, but previously the significance of yeasts in malting has been largely underestimated. Characterization and identification of yeasts in industrial processes revealed 25 ascomycetous yeasts belonging to 10 genera, and 18 basidiomycetous yeasts belonging to 7 genera. In addition, two ascomycetous yeast-like fungi belonging to the genera Aureobasidium and Exophiala were commonly detected. Yeasts and yeast-like fungi produced extracellular hydrolytic enzymes with a potentially positive contribution to the malt enzyme spectrum. Several ascomycetous yeast strains showed strong antagonistic activity against field and storage moulds, Wickerhamomyces anomalus (synonym Pichia anomala) being the most effective species. Malting studies revealed that W. anomalus VTT C-04565 effectively restricted Fusarium growth and hydrophobin production during malting and prevented beer gushing. In order to broaden the antimicrobial spectrum and to improve malt brewhouse performance, W. anomalus could be combined with other starter cultures such as Lactobacillus plantarum. Well-characterized microbial mixtures consisting of barley and malt-derived microbes open up several possibilities to improve malt properties and to ensure the safety of the malting process.  相似文献   

9.
Australia and Canada are major exporters of malting barley (Hordeum vulgare L.), with Baudin from Australia and AC Metcalfe from Canada being the benchmark varieties for premium malting quality in the past 10 years. We used the barley doubled haploid population derived from a cross of Baudin and AC Metcalfe to map quantitative trait loci (QTLs) for malting quality. The results revealed different genetic architectures controlling malting quality for the two cultivars. Sixteen QTLs were identified and located on chromosomes 1H, 2H, 5H and 7H. The Australian barley Baudin mainly contributed to the malting quality QTL traits of high diastatic power and high β-glucanase on chromosome 1H, while Canadian barley AC Metcalfe mainly contributed to the QTL traits of high hot water extract, high free amino nitrogen, high α-amylase and low malt yield in chromosome 5HL telomere region. This study demonstrated the potential to breed new barley varieties with superior malting quality by integrating genes from Australian and Canadian malting barley varieties. This paper also provides methods to anchor traditional molecular markers without sequence information, such as amplified fragment length polymorphism markers, into the physical map of barley cv. ‘Morex’.  相似文献   

10.
Malting barley is of high economic and scientific importance. Determining barley grains that are suitable for malting involves measuring malting quality, which is an expensive and complex process. In order to decrease the cost of phenotyping and accelerate the process of developing superior malting barley cultivars, markers for marker-assisted breeding are needed. In this study, we identified quantitative trait loci (QTLs) for malting traits in a Stellar/01Ab8219 F6:8 recombinant inbred line population grown at Aberdeen and Tetonia, Idaho, USA in 2009 and 2010. We identified QTLs associated with malt extract (ME), wort protein, soluble/total protein (S/T), diastatic power (DP), alpha-amylase, beta-glucan (BG) and free amino nitrogen (FAN) at a logarithm of odds score ≥2.5 using a high-density genetic map produced by merging Diversity Arrays Technology markers with the current single nucleotide polymorphism map. Novel QTLs were identified for DP and FAN on chromosome 5H, S/T on 6H, and BG and ME on 7H. Dissection of the genetic regions associated with malting traits suggests the involvement of multiple molecular pathways. The resulting molecular markers may prove useful for barley improvement.  相似文献   

11.
Malt derived from barley malting is an essential raw material for beer brewing. In this study, we performed the first dynamic proteome survey during barley malting using a gel‐free proteomics approach. This entailed in‐solution tryptic digestion of precipitated proteins and analysis of peptides by nanoliquid chromatography coupled with tandem mass spectrometry. A total of 1418 proteins were identified from the five malting stages: Steep, 1, 3, 5 days after germination, and end of Kiln. About 900 proteins identified in this analysis were uncharacterized or predicted proteins. Integrating information from Uniprot90, Uniprot50, Pfam, Interpro databases and gene ontologies from EnsemblPlants, 796 of the predicted and uncharacterized proteins were provided functional annotations. Nearly 63% of the identified proteins were present during all the five time points suggesting a coordinated activation of major metabolic pathways during malting. GO enrichment analysis showed over‐representation of proteins associated with translation, carbohydrate metabolism, and stress response. Analysis of variance of the spectral counts of proteins present in all the five malting stages identified 205 proteins with significant differences in their abundance. Proteins associated with carbohydrate metabolism especially enzyme activity regulation provide novel targets for malting barley breeding and for predicting malting quality.  相似文献   

12.
Barley was made into a normal and an over-modified malt, and the loss in starch was 14.6% and 67.7%, respectively. Starch granules, isolated from the barley and malts, were observed by scanning electron and light microscopes. In normal malt, 14% of the large granules were eroded and the small granules remained almost intact. In the case of over-modified malt, 38% of the large granules were eroded, and a marked reduction was found in the population of the small granules. Iodine affinities and blue values of the starches increased as malting proceeded. The malting of barley resulted in an apparent increase in the amylose component of the starch but hardly affected its molecular size distribution when examined by Bio-Gel A-50m column chromatography. The fine structures of the barley and malt amylopectins were compared by Shephadex G-50 and Bio-Gel P-2 column chromatographies after debranching with pullulanase. No change was observed during malting in spite of a significant reduction in the amylopectin component of the starch.  相似文献   

13.
Limit dextrinase (LD) is a unique de-branching enzyme involved in starch mobilization of barley grains during malting, and closely related to malt quality. Genotypic variation of LD activity is controlled by genetic factors and also affected by environmental conditions. Correlation analysis between LD activity and four malt quality parameters showed that LD activity was positively correlated with diastatic power, Kolbach index and the quality of malt extract, while negatively correlated with viscosity. The structure-based association analysis demonstrated that HvLDI, a gene encoding limit dextrinase inhibitor, was a major determinant of LD activity and malt quality. The single nucleotide polymorphisms associated with LD activity could be used in early generation selection for barley breeding.  相似文献   

14.
热稳定蛋白是衡量麦芽品质的重要指标,为探明青稞籽粒和麦芽热稳定蛋白的含量、蛋白质Z的组成特征以及影响条件。本研究以3份青稞和1份对照大麦品种Gairdner为试验材料,对青稞籽粒及其麦芽的热稳定蛋白进行分析与鉴定,研究了不同生态环境下青稞热稳定蛋白质含量和蛋白质Z的组成特征,同时筛选出了优异啤用品质青稞品种(品系)。结果表明,青稞发芽温度为20℃,发芽时间为72 h,培养溶液PH为5时,发芽及焙焦条件下最有利于青稞热稳定蛋白总含量及蛋白质Z的累积。利用该发芽条件筛选种植于西宁、湟源和海晏的青稞资源,发现种植于西宁的青稞种子和发芽后热稳定蛋白质总含量最低,但是焙焦后热稳定蛋白质和蛋白质Z含量最高;同时从150份青稞资源中筛选出热稳定蛋白质含量及蛋白质Z条带清晰、含量高的优异资源15份。本研究结果为酿造青稞品种选育、啤用青稞和麦芽质量评价指标提供理论依据。  相似文献   

15.
在啤酒酿造和储藏过程中,所含脂类物质代谢是影响啤酒风味稳定性和啤酒货架期长短的主要原因。研究表明,大麦脂肪氧化酶1(LOX-1)是导致籽粒中脂类代谢的关键酶,筛选和创制LOX-1活性缺失(null LOX-1)的大麦种质是促进啤酒大麦品质育种的有效途径。为提高检测效率,针对前期鉴定出的中国null LOX-1大麦稀有SNP功能变异,开发出特异性KASP快速诊断标记,并利用该标记对来源于河南和山东两省的633份大麦地方品种进行鉴定评价,共计筛选出8份LOX-1活性缺失新种质,同时明确了该变异的地理分布及其在不同地方品种中的变异频率。本研究不仅为啤酒大麦分子辅助育种提供了优异种质和快速检测手段,也为大麦种质资源遗传完整性保护与利用提供了参考。  相似文献   

16.
Quantitative trait loci (QTLs) associated with grain weight, grain width, kernel hardness and malting quality were mapped in a doubled haploid population derived from two elite Australian malting barley varieties, Navigator and Admiral. A total of 30 QTLs for grain weight, grain width and kernel hardness were identified in three environments, and 63 QTLs were identified for ten malting quality traits in two environments. Three malting quality traits, namely β-amylase, diastatic power and apparent attenuation limit, were mainly controlled by a QTL linked to the Bmy1 gene at the distal end of chromosome 4H encoding a β-amylase enzyme. Six other malting quality traits, namely α-amylase, soluble protein, Kolbach index, free amino-acid nitrogen, wort β-glucan and viscosity, had coincident QTL clustered on chromosomes 1HS, 4HS, 7HS and 7HL, which demonstrated the interdependence of these traits. There was a strong association between these malt quality QTL clusters on chromosomes 1HS and 7HL and the major QTL for kernel hardness, suggesting that the use of this trait to enable early selection for malting quality in breeding programs would be feasible. In contrast, the majority of QTLs for hot-water extract were not coincident with those identified for other malt quality traits, which suggested differences in the mechanism controlling this trait. Novel QTLs have been identified for kernel hardness on chromosomes 2HL and 7HL, hot-water extract on 7HL and wort β-glucan on 6HL, and the resulting markers may be useful for marker-assisted selection in breeding programs.  相似文献   

17.
TJ March  D Richter  T Colby  A Harzen  J Schmidt  K Pillen 《Proteomics》2012,12(18):2843-2851
Malted barley is an important ingredient used in the brewing and distilling industry worldwide. In this study, we used a proteomics approach to investigate the biochemical function of previously identified quantitative trait loci (QTLs) on barley chromosomes 1H and 4H that influence malting quality. Using a subset of barley introgression lines containing wild barley (Hordeum vulgare ssp. spontaneum) alleles at these QTLs, we validated that wild barley alleles at the chromosome 1H QTL reduced overall malting quality, whereas wild barley alleles at the chromosome 4H QTL improved the malting quality parameters α-amylase activity, VZ45, and Kolbach index compared to the control genotype Scarlett. 2DE was used to detect changes in protein expression during the first 72 h of micromalting associated with these QTLs. In total, 16 protein spots showed a significant change in expression between the introgression lines and Scarlett, of which 14 were successfully identified with MS. Notably, the wild barley alleles in the line containing the chromosome 4H QTL showed a sixfold increased expression of a limit dextrinase inhibitor. The possible role of the identified proteins in malting quality is discussed. The knowledge gained will assist ongoing research toward cloning the genes underlying these important QTL.  相似文献   

18.
Malting quality is genetically determined by the complex interaction of numerous traits which are expressed prior to and, in particular, during the malting process. Here, we applied the advanced backcross quantitative trait locus (AB-QTL) strategy (Tanksley and Nelson, Theor Appl Genet 92:191–203, 1996), to detect QTLs for malting quality traits and, in addition, to identify favourable exotic alleles for the improvement of malting quality. For this, the BC2DH population S42 was generated from a cross between the spring barley cultivar Scarlett and the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum). A QTL analysis in S42 for seven malting parameters measured in two different environments yielded 48 QTLs. The exotic genotype improved the trait performance at 18 (37.5%) of 48 QTLs. These favourable exotic alleles were detected, in particular, on the chromosome arms 3HL, 4HS, 4HL and 6HL. The exotic allele on 4HL, for example, improved α-amylase activity by 16.3%, fermentability by 0.8% and reduced raw protein by 2.4%. On chromosome 6HL, the exotic allele increased α-amylase by 16.0%, fermentability by 1.3%, friability by 7.3% and reduced viscosity by 2.9%. Favourable transgressive segregation, i.e. S42 lines exhibiting significantly better performance than the recurrent parent Scarlett, was recorded for four traits. For α-amylase, fermentability, fine-grind extract and VZ45 20, 16, 2 and 26 S42 lines, respectively, surpassed the recurrent parent Scarlett. The present study hence demonstrates that wild barley does harbour valuable alleles, which can enrich the genetic basis of cultivated barley and improve malting quality traits.  相似文献   

19.

Background

In bright beer, haze formation is a serious quality problem, degrading beer quality and reducing its shelf life. The quality of barley (Hordeum vulgare L) malt, as the main raw material for beer brewing, largely affects the colloidal stability of beer.

Results

In this study, the genetic mechanism of the factors affecting beer haze stability in barley was studied. Quantitative trait loci (QTL) analysis of alcohol chill haze (ACH) in beer was carried out using a Franklin/Yerong double haploid (DH) population. One QTL, named as qACH, was detected for ACH, and it was located on the position of about 108 cM in chromosome 4H and can explain about 20 % of the phenotypic variation. Two key haze active proteins, BATI-CMb and BATI-CMd were identified by proteomics analysis. Bioinformatics analysis showed that BATI-CMb and BATI-CMd had the same position as qACH in the chromosome. It may be deduced that BATI-CMb and BATI-CMd are candidate genes for qACH, controlling colloidal stability of beer. Polymorphism comparison between Yerong and Franklin in the nucleotide and amino acid sequence of BATI-CMb and BATI-CMd detected the corresponding gene specific markers, which could be used in marker-assisted selection for malt barley breeding.

Conclusions

We identified a novel QTL, qACH controlling chill haze of beer, and two key haze active proteins, BATI-CMb and BATI-CMd. And further analysis showed that BATI-CMb and BATI-CMd might be the candidate genes associated with beer chill haze.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1683-1) contains supplementary material, which is available to authorized users.  相似文献   

20.
It has been shown that one of alkyl hydroxybenzenes, C7-AHB, can be used in malting for regulating barley growth. Depending on concentration (0.01-1.0%) and duration (10 min to 6 h), treatment of barley with a C7-AHB solution stimulates embryo development (0.01-0.02%) or suppresses the growth of vegetative organs (> 0.5%) and modulates enzyme activities in germinating grains. Stimulation of the activities of the amylolytic and protein-proteinase complexes in barley depending on C7-AHB concentration improves malt quality by increasing both the degree of its saccharification and protein dissolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号