首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Casein kinase 2 catalytic subunit (CK2α) is classified into two subtypes CK2α1 and CK2α2. CK2α1 is a drug discovery target, whereas CK2α2 is an off-target of CK2α1 inhibitors. High amino acid sequence homology between these subtypes hampers efforts to produce ATP competitive inhibitors that are highly selective to CK2α1. Hematein was identified previously as a non-ATP-competitive inhibitor for CK2α1, whereas this compound acts as an ATP competitive CK2α2 inhibitor. Crystal structures of CK2α1 and CK2α2 in complex with hematein revealed distinct binding features that provide structural insights for producing CK2α1-selective inhibitors.  相似文献   

2.
We have recently reported the discovery of pyrrolo[3,2-d]pyrimidine derivatives 1a and 1b as potent triple inhibitors of vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and Tie-2 kinases. To identify compounds having strong inhibitory activity against fibroblast growth factor receptor (FGFR) kinase, further modification was conducted using the co-crystal structure analysis of VEGFR2 and 1b. Among the compounds synthesized, urea derivative 11l having a piperazine moiety on the terminal benzene ring showed strong inhibitory activity against FGFR1 kinase as well as VEGFR2 kinase. A binding model of 11l complexed with VEGFR2 suggested that the piperazine moiety forms additional interactions with Ile1025 and His1026.  相似文献   

3.
Inhibition of glycosidases has great potential in the quest for highly potent and specific drugs to treat diseases such as diabetes, cancer, and viral infections. One of the most effective ways of designing such compounds is by mimicking the transition state. Here we describe the structural, kinetic, and thermodynamic dissection of binding of two glucoimidazole-derived compounds, which are among the most potent glycosidase inhibitors reported to date, with two family 1 beta-glycosidases. Provocatively, while inclusion of the phenethyl moiety improves binding by a factor of 20-80-fold, this does not appear to result from better noncovalent interactions with the enzyme; instead, improved affinity may be derived from significantly better entropic contributions to binding displayed by the phenethyl-substituted imidazole compound.  相似文献   

4.
Features and potentials of ATP-site directed CK2 inhibitors   总被引:3,自引:0,他引:3  
A panel of quite specific, fairly potent and cell-permeable inhibitors of protein kinase CK2 belonging to the classes of condensed polyphenolic compounds, tetrabromobenzimidazole/triazole derivatives and indoloquinazolines have been developed, with K(i) values in the submicromolar range. Nine structures have been solved to date of complexes between the catalytic alpha subunit of CK2 and a number of these compounds, many of which display a remarkable specificity toward CK2 as compared to a panel of >30 kinases tested. The structural basis for such selectivity appears to reside in the shape and size of a hydrophobic pocket adjacent to the ATP binding site where these ATP competitive ligands are entrapped mainly by van der Waals interactions and by an energy contribution derived from the hydrophobic effect. In CK2, this cavity is smaller than in the majority of other protein kinases due to a number of unique bulky apolar residues. Consequently, the replacement of two of these residues (V66 and I174) in human CK2 alpha with alanines gives rise to mutants, which are markedly less susceptible than wild type to these classes of inhibitors. Cell-permeable CK2 inhibitors have been successfully employed, either alone or in combination with CK2 mutants refractory to inhibition, to dissect signalling pathways affected by CK2 and/or to validate the identification of in vivo targets of this pleiotropic kinase. Moreover, the remarkable pro-apoptotic efficacy of these compounds toward cell lines derived from a wide spectrum of tumors, disclose the possibility that in perspective CK2 inhibitors might become leads for the development of anti-cancer drugs.  相似文献   

5.
Protein kinase CK2 is a Ser/Thr kinase, with a constitutive activity, that is considered as a promising target for cancer therapy. The currently available CK2 inhibitors lack the potency and the pharmacological properties necessary to be suitable and successful in clinical settings. We report the development of new potent CK2 inhibitors from salicylaldehyde derivatives identified by automated screening of a proprietary small-molecule library. Docking simulations and analysis of the structure-activity relationship for the hits allowed to determine their binding modes on CK2, and to carry out the optimization of their structures. This strategy led to the discovery of potent CK2 inhibitors with novel structures, one of which was able to inhibit CK2 activity in living cells and promote tumor cell death. The essential features required for potent CK2 inhibitory activity of this class of compounds are discussed.  相似文献   

6.
All known protein kinases share a bilobal kinase domain with well conserved structural elements. Because of significant structural similarities of nucleotide binding pocket, the development of highly selective kinase inhibitors is a very challenging task. Flavonols, naturally occurring plant metabolites, have long been known to inhibit kinases by mimicking the adenine moiety. Interestingly, recent data show that some flavonol glycosides are more selective, although underlying mechanisms were unknown. Crystallographic data from our laboratory revealed that the N-terminal kinase domain of p90 ribosomal S6 kinase, isoform 2, binds three different flavonol rhamnosides in a highly unusual manner, distinct from other kinase inhibitor interactions. The kinase domain undergoes a reorganization of several structural elements in response to the binding of the inhibitors. Specifically, the main β-sheet of the N-lobe undergoes a twisting rotation by ~ 56° around an axis passing through the N- and C-lobes, leading to the restructuring of the canonical ATP-binding pocket into pockets sterically adapted to the inhibitor shape. The flavonol rhamnosides appear to adopt compact, but strained conformations with the rhamnose moiety swept under the B-ring of flavonol, unlike the structure of the free counterparts in solution. These data suggest that the flavonol glycoside scaffold could be used as a template for new inhibitors selective for the RSK family. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   

7.
Successful design of potent and selective protein inhibitors, in terms of structure-based drug design, strongly relies on the correct understanding of the molecular features determining the ligand binding to the target protein. We present a case study of serine protease inhibitors with a bis(phenyl)methane moiety binding into the S3 pocket. These inhibitors bind with remarkable potency to the active site of thrombin, the blood coagulation factor IIa. A combination of X-ray crystallography and isothermal titration calorimetry provides conclusive insights into the driving forces responsible for the surprisingly high potency of these inhibitors. Analysis of six well-resolved crystal structures (resolution 1.58-2.25 Å) along with the thermodynamic data allows an explanation of the tight binding of the bis(phenyl)methane inhibitors. Interestingly, the two phenyl rings contribute to binding affinity for very different reasons — a fact that can only be elucidated by a structure-based approach. The first phenyl moiety occupies the hydrophobic S3 pocket, resulting in a mainly entropic advantage of binding. This observation is based on the displacement of structural water molecules from the S3 pocket that are observed in complexes with inhibitors that do not bind in the S3 pocket. The same classic hydrophobic effect cannot explain the enhanced binding affinity resulting from the attachment of the second, more solvent-exposed phenyl ring. For the bis(phenyl)methane inhibitors, an observed adaptive rotation of a glutamate residue adjacent to the S3 binding pocket attracted our attention. The rotation of this glutamate into salt-bridging distance with a lysine moiety correlates with an enhanced enthalpic contribution to binding for these highly potent thrombin binders. This explanation for the magnitude of the attractive force is confirmed by data retrieved by a Relibase search of several thrombin-inhibitor complexes deposited in the Protein Data Bank exhibiting similar molecular features.Special attention was attributed to putative changes in the protonation states of the interaction partners. For this purpose, two analogous inhibitors differing mainly in their potential to change the protonation state of a hydrogen-bond donor functionality were compared. Buffer dependencies of the binding enthalpy associated with complex formation could be traced by isothermal titration calorimetry, which revealed, along with analysis of the crystal structures (resolution 1.60 and 1.75 Å), that a virtually compensating proton interchange between enzyme, inhibitor and buffer is responsible for the observed buffer-independent thermodynamic signatures.  相似文献   

8.
The structure of a complex between the catalytic subunit of Zea mays CK2 and the nucleotide binding site-directed inhibitor emodin (3-methyl-1,6,8-trihydroxyanthraquinone) was solved at 2.6-A resolution. Emodin enters the nucleotide binding site of the enzyme, filling a hydrophobic pocket between the N-terminal and the C-terminal lobes, in the proximity of the site occupied by the base rings of the natural co-substrates. The interactions between the inhibitor and CK2 alpha are mainly hydrophobic. Although the C-terminal domain of the enzyme is essentially identical to the ATP-bound form, the beta-sheet in the N-terminal domain is altered by the presence of emodin. The structural data presented here highlight the flexibility of the kinase domain structure and provide information for the design of selective ATP competitive inhibitors of protein kinase CK2.  相似文献   

9.
Mitogen-activated protein kinase kinase 7 (MAP2K7) in the c-Jun N-terminal kinase signal cascade is an attractive drug target for a variety of diseases. The selectivity of MAP2K7 inhibitors against off-target kinases is a major barrier in drug development. We report a crystal structure of MAP2K7 complexed with a potent covalent inhibitor bearing an acrylamide moiety as an electrophile, which discloses a structural basis for producing selective and potent MAP2K7 inhibitors.  相似文献   

10.
A novel series of N-pyridyl amides as potent p38α kinase inhibitors is described. Based on the structural similarities between the initial hit and a well-known imidazole pyrimidine series of p38α inhibitors, potencies within the newly discovered series were quickly improved by installation of an (S)-α-methylbenzyl moiety at the 2-position of the pyridine ring. The proposed binding modes of the new series to p38α were evaluated against SAR findings and provided rationale for further development of this series of molecules.  相似文献   

11.
A number of quite specific and fairly potent inhibitors of protein kinase CK2, belonging to the classes of condensed polyphenolic compounds, tetrabromobenzimidazole/triazole derivatives and indoloquinazolines are available to date. The structural basis for their selectivity is provided by a hydrophobic pocket adjacent to the ATP/GTP binding site, which in CK2 is smaller than in the majority of other protein kinases due to the presence of a number of residues whose bulky side chains are generally replaced by smaller ones. Consequently a doubly substituted CK2 mutant V66A,I174A is much less sensitive than CK2 wild type to these classes of inhibitors. The most efficient inhibitors both in terms of potency and selectivity are 4,5,6,7-tetrabromo-1H-benzotriazole, TBB (Ki = 0.4 μM), the TBB derivative 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole, DMAT (Ki = 0.040 μM), the emodin related coumarinic compound 8-hydroxy-4-methyl-9-nitrobenzo[g]chromen-2-one, NBC (Ki = 0.22 μM) and the indoloquinazoline derivative ([5-oxo-5,6-dihydroindolo-(1,2a)quinazolin-7-yl]acetic acid), IQA (Ki = 0.17 μM). These inhibitors are cell permeable as judged from ability to block CK2 in living cells and they have been successfully employed, either alone or in combination with CK2 mutants refractory to inhibition, to dissect signaling pathways affected by CK2 and to identify the endogenous substrates of this pleitropic kinase. By blocking CK2 these inhibitors display a remarkable pro-apoptotic efficacy on a number of tumor derived cell lines, a property which can be exploited in perspective to develop antineoplastic drugs.  相似文献   

12.
Macrocyclic compounds bearing a 2-amino-6-arylpyrimidine moiety were identified as potent heat shock protein 90 (Hsp90) inhibitors by modification of 2-amino-6-aryltriazine derivative (CH5015765). We employed a macrocyclic structure as a skeleton of new inhibitors to mimic the geldanamycin-Hsp90 interactions. Among the identified inhibitors, CH5164840 showed high binding affinity for N-terminal Hsp90α (K(d)=0.52nM) and strong anti-proliferative activity against human cancer cell lines (HCT116 IC(50)=0.15μM, NCI-N87 IC(50)=0.066μM). CH5164840 displayed high oral bioavailability in mice (F=70.8%) and potent antitumor efficacy in a HCT116 human colorectal cancer xenograft model (tumor growth inhibition=83%).  相似文献   

13.
A new class of potent sulfoximine inhibitors for HIV-1 protease has been designed and synthesized. Substitution of the sulfoximine moiety into different parent compounds yields different inhibition effects. While our previously studied sulfoximine-based inhibitors display potency of 2.5 nM (IC(50)) against HIV-1 protease, introduction of the sulfoximine moiety into the asymmetric Indinavir yielded only micromolar inhibition. Docking studies showed structural variations in their modes of binding which explains this unexpected observation. The implication of these observations in the development of other sulfoximine inhibitors is discussed.  相似文献   

14.
Increased activity of protein kinase CK2 is associated with various types of cancer, neurodegenerative diseases, and chronic inflammation. In the search for CK2 inhibitors, attention has expanded toward compounds disturbing the interaction between CK2α and CK2β in addition to established active site-directed approaches. The current article describes the development of a fluorescence anisotropy-based assay that mimics the principle of CK2 subunit interaction by using CK2α1–335 and the fluorescent probe CF-Ahx-Pc as a CK2β analog. In addition, we identified new inhibitors able to displace the fluorescent probe from the subunit interface on CK2α1–335. Both CF-Ahx-Pc and the inhibitors I-Pc and Cl-Pc were derived from the cyclic peptide Pc, a mimetic of the C-terminal CK2α-binding motif of CK2β. The design of the two inhibitors was based on docking studies using the known crystal structure of the Pc/CK2α1–335 complex. The dissociation constants obtained in the fluorescence anisotropy assay for binding of all compounds to human CK2α1–335 were validated by isothermal titration calorimetry. I-Pc was identified as the tightest binding ligand with a KD value of 240 nM and was shown to inhibit the CK2 holoenzyme-dependent phosphorylation of PDX-1, a substrate requiring the presence of CK2β, with an IC50 value of 92 μM.  相似文献   

15.
The design of specific inhibitors against the Hsp90 chaperone and other enzyme relies on the detailed and correct understanding of both the thermodynamics of inhibitor binding and the structural features of the protein-inhibitor complex. Here we present a detailed thermodynamic study of binding of aryl-dihydroxyphenyl-thiadiazole inhibitor series to recombinant human Hsp90 alpha isozyme. The inhibitors are highly potent, with the intrinsic K(d) approximately equal to 1 nM as determined by isothermal titration calorimetry (ITC) and thermal shift assay (TSA). Dissection of protonation contributions yielded the intrinsic thermodynamic parameters of binding, such as enthalpy, entropy, Gibbs free energy, and the heat capacity. The differences in binding thermodynamic parameters between the series of inhibitors revealed contributions of the functional groups, thus providing insight into molecular reasons for improved or diminished binding efficiency. The inhibitor binding to Hsp90 alpha primarily depended on a large favorable enthalpic contribution combined with the smaller favorable entropic contribution, thus suggesting that their binding was both enthalpically and entropically optimized. The enthalpy-entropy compensation phenomenon was highly evident when comparing the inhibitor binding enthalpies and entropies. This study illustrates how detailed thermodynamic analysis helps to understand energetic reasons for the binding efficiency and develop more potent inhibitors that could be applied for therapeutic use as Hsp90 inhibitors.  相似文献   

16.
The p38 MAP kinase plays a crucial role in regulating the production of proinflammatory cytokines, such as tumor necrosis factor and interleukin-1. Blocking this kinase may offer an effective therapy for treating many inflammatory diseases. Here we report a new allosteric binding site for a diaryl urea class of highly potent and selective inhibitors against human p38 MAP kinase. The formation of this binding site requires a large conformational change not observed previously for any of the protein Ser/Thr kinases. This change is in the highly conserved Asp-Phe-Gly motif within the active site of the kinase. Solution studies demonstrate that this class of compounds has slow binding kinetics, consistent with the requirement for conformational change. Improving interactions in this allosteric pocket, as well as establishing binding interactions in the ATP pocket, enhanced the affinity of the inhibitors by 12,000-fold. One of the most potent compounds in this series, BIRB 796, has picomolar affinity for the kinase and low nanomolar inhibitory activity in cell culture.  相似文献   

17.
CK2 is a Ser/Thr protein kinase essential for cell viability. Its activity is anomalously high in several solid (prostate, mammary gland, lung, kidney and head and neck) and haematological tumours (AML, CML and PML), creating conditions favouring the onset of cancer. Cancer cells become addicted to high levels of CK2 activity and therefore this kinase is a remarkable example of "non-oncogene addiction". CK2 is a validated target for cancer therapy with one inhibitor in phase I clinical trials. Several crystal structures of CK2 are available, many in complex with ATP-competitive inhibitors, showing the presence of regions with remarkable flexibility. We present the structural characterisation of these regions by means of seven new crystal structures, in the apo form and in complex with inhibitors. We confirm previous findings about the unique flexibility of the CK2α catalytic subunit in the hinge/αD region, the p-loop and the β4β5 loop, and show here that there is no clear-cut correlation between the conformations of these flexible zones. Our findings challenge some of the current interpretations on the functional role of these regions and dispute the hypothesis that small ligands stabilize an inactive state. The mobility of the hinge/αD region in the human enzyme is unique among protein kinases, and this can be exploited for the development of more selective ATP-competitive inhibitors. The identification of different ligand binding modes to a secondary site can provide hints for the design of non-ATP-competitive inhibitors targeting the interaction between the α catalytic and the β regulatory subunits.  相似文献   

18.
The synthesis, structure–activity relationships (SAR) and structural data of a series of indolin-2-one inhibitors of RET tyrosine kinase are described. These compounds were designed to explore the available space around the indolinone scaffold within RET active site. Several substitutions at different positions were tested and biochemical data were used to draw a molecular model of steric and electrostatic interactions, which can be applied to design more potent and selective RET inhibitors. The crystal structures of RET kinase domain in complex with three inhibitors were solved. All three compounds bound in the ATP pocket and formed two hydrogen bonds with the kinase hinge region. Crystallographic analysis confirmed predictions from molecular modelling and helped refine SAR results. These data provide important information for the development of indolinone inhibitors for the treatment of RET-driven cancers.  相似文献   

19.
Protein kinase CK2 is a multi-subunit complex whose dynamic assembly appears as a crucial point of regulation. The ability to interfere with specific protein-protein interactions has already provided powerful means of influencing the functions of selected proteins within the cell. CK2beta-derived cyclopeptides that target a well-defined hydrophobic pocket on CK2alpha have been previously characterized as potent inhibitors of CK2 subunit assembly [9]. As a first step toward the rational design of low molecular weight CK2 antagonists, we have in the present study screened a collection of podophyllotoxine indolo-analogues to identify chemical inhibitors of the CK2 subunit interaction. We report the identification of a podophyllotoxine indolo-analogue as a chemical ligand that binds to the CK2alpha/CK2beta interface inducing selective disruption of the CK2alpha/CK2beta assembly and concomitant inhibition of CK2alpha activity.  相似文献   

20.
Literature reports that isatin as well as C5- and C6-substituted isatin analogues are reversible inhibitors of human monoamine oxidase (MAO) A and B. In general, C5- and C6-substitution of isatin leads to enhanced binding affinity to both MAO isozymes compared to isatin and in most instances result in selective binding to the MAO-B isoform. Crystallographic and modeling studies suggest that the isatin ring binds to the substrate cavities of MAO-A and -B and is stabilized by hydrogen bond interactions between the NH and the C2 carbonyl oxygen of the dioxoindolyl moiety and water molecules present in the substrate cavities of MAO-A and -B. Based on these observations and the close structural resemblances between isatin and its phthalimide isomer, a series of phthalimide analogues were synthesized and evaluated as MAO inhibitors. While phthalimide and N-aryl-substituted phthalimides were found to be weak MAO inhibitors, phthalimide homologues containing C5 substituents were potent reversible inhibitors of recombinant human MAO-B with IC(50) values ranging from 0.007 to 2.5 μM and moderately potent reversible inhibitors of recombinant human MAO-A with IC(50) values ranging from 0.22 to 9.0 μM. By employing molecular docking the importance of hydrogen bonding between the active sites of MAO-A and -B and the phthalimide inhibitors are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号