首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
epsilon-N-Trimethyllysine L-amino oxidase from Neurospora crassa has been purified to electrophoretic homogeneity. A 1500-fold purification was obtained by centrifugation and successive column chromatography on ion-exchange and gel filtration supports. The enzyme has an estimated molecular weight of 160 000. It transforms epsilon-N-trimethyllysine into alpha-keto, epsilon-N-trimethylhexanoic acid by oxidative deamination. Kinetic studies of this new enzyme are reported and its probable physiological role is discussed.  相似文献   

3.
We previously purified apoxin I, an apoptosis-inducing factor with L-amino acid oxidase (LAO) activity, from Western diamondback rattlesnake venom. To determine the primary structure of apoxin I, we cloned its cDNA. The amino acid sequence showed that apoxin I has an FAD binding domain and shares homology with L-amino acid oxidase (LAO) from Neurospora crassa, human monoamine oxidase B, and mouse interleukin 4-induced F1G1 protein. The full-length apoxin I has an N-terminal signal sequence that is processed in mature apoxin I in venom. When the apoxin I gene was transfected into human 293T cells, the recombinant protein was expressed in the cells, and a significant amount of apoxin I was secreted into the medium. The secreted recombinant apoxin I protein showed LAO and apoptosis-inducing activity, but the recombinant protein in the cells did not, suggesting that maturation and secretion of the apoxin I protein is needed for its activity. Treating the transfected cells with tunicamycin inhibited the secretion and LAO activity of the recombinant apoxin I. In addition, deleting the amino-terminal region flanking the signal sequence, the FAD-binding domain and the carboxy-terminal region abolished the secretion and LAO activity of the recombinant proteins. These results indicate that in order for apoxin I to become active, these regions and posttranslational modification, such as N-glycosylation, are required.  相似文献   

4.
The two closely related fresh water cyanobacteria Synechococcus elongatus PCC 6301 and Synechococcus elongatus PCC 7942 have previously been shown to constitutively express a FAD-containing L-amino acid oxidase with high specificity for basic L-amino acids (L-arginine being the best substrate). In this paper we show that such an enzyme is also present in the fresh water cyanobacterium Synechococcus cedrorum PCC 6908. In addition, an improved evaluation of the nucleotide/amino acid sequence of the L-amino acid oxidase of Synechococcus elongatus PCC 6301 (encoded by the aoxA gene) with respect to the FAD-binding site and a translocation pathway signal sequence will be given. Moreover, the genome sequences of 24 cyanobacteria will be evaluated for the occurrence of an aoxA-similar gene. In the evaluated cyanobacteria 15 genes encoding an L-amino acid oxidase-similar protein will be found.  相似文献   

5.
A Synechococcus PCC7942 mutant in which the psbO gene was inactivated by insertion of a chloramphenicol interposon and which did not contain any detectable manganese stabilizing protein in immunoblot experiments, was constructed. Such a Synechococcus mutant was able to grow under photoautotrophic conditions. Isolated thylakoid membranes from the mutant required addition of CaCl2 and MnCl2 for photosynthetic O2 evolution, and the detectable L-amino acid oxidase activity in the isolated thylakoid membranes from the mutant was approximately four times higher than in wild-type thylakoids. The results are discussed with respect to our model suggesting that the water-oxidizing enzyme may have evolved from a flavoprotein with L-amino acid dehydrogenase/oxidase activity.  相似文献   

6.
Molecular cloning of the L-amino-acid oxidase gene from Neurospora crassa   总被引:3,自引:0,他引:3  
The addition of D-phenylalanine to starved cultures of Neurospora crassa leads to de novo synthesis of L-amino-acid oxidase. Poly(A) RNA from D-phenylalanine-treated mycelium was therefore used to generate a cDNA library which was subsequently screened by hybrid-selected translation. A positive L-amino-acid oxidase clone served as a probe to isolate the complete gene from a genomic library of N. crassa. The nucleotide sequence obtained revealed an open reading frame coding for a protein of 695 amino acids. A comparison of the deduced primary structure with the partial amino-terminal sequence of the isolated enzyme showed that the protein is synthesized as a precursor. The proform exceeds the mature enzyme by 129 amino acids. The presence of a cluster of basic amino acid residues preceding Ala129 in the precursor suggests a post-translational modification brought about by limited proteolysis. N. crassa L-amino-acid oxidase shares a highly conserved region with many well-characterized flavoproteins that is known to constitute part of the flavin-adenine dinucleotide-binding site.  相似文献   

7.
Neurospora crassa mitochondria use a branched electron transport system in which one branch is a conventional cytochrome system and the other is an alternative cyanide-resistant, hydroxamic acid-sensitive oxidase that is induced when the cytochrome system is impaired. We used a monoclonal antibody to the alternative oxidase of the higher plant Sauromatum guttatum to identify a similar set of related polypeptides (Mr, 36,500 and 37,000) that was associated with the alternative oxidase activity of N. crassa mitochondria. These polypeptides were not present constitutively in the mitochondria of a wild-type N. crassa strain, but were produced in high amounts under conditions that induced alternative oxidase activity. Under the same conditions, mutants in the aod-1 gene, with one exception, produced apparently inactive alternative oxidase polypeptides, whereas mutants in the aod-2 gene failed to produce these polypeptides. The latter findings support the hypothesis that aod-1 is a structural gene for the alternative oxidase and that the aod-2 gene encodes a component that is required for induction of alternative oxidase activity. Finally, our results indicate that the alternative oxidase is highly conserved, even between plant and fungal species.  相似文献   

8.
L-Thiomorpholine-3-carboxylic acid (L-TMC) is a cyclized analog of S-(2-chloroethyl)-L-cysteine, which is cytotoxic in vitro and nephrotoxic in vivo. To determine whether L-TMC may play a role in S-(2-chloroethyl)-L-cysteine-induced toxicity, the cytotoxicity of L-TMC was studied in isolated rat kidney cells. L-TMC produced time- and concentration-dependent cytotoxicity. Probenecid, an inhibitor of the renal anion transport system, and L-alpha-hydroxyisocaproic acid, a substrate for L-amino acid oxidase, inhibited L-TMC-induced cytotoxicity. Rat kidney cytosol catalyzed the metabolism of L-TMC to a product absorbing at 300 nm. The increase in absorbance at 300 nm was accompanied by an increase in oxygen consumption and was inhibited by L-alpha-hydroxyisocaproic acid; moreover, the absorbance of the metabolite was quenched by addition of potassium cyanide or sodium borohydride, which indicated the formation of an imine. When L-TMC was incubated with rat kidney cytosol and sodium borodeuteride was added at the end of the incubation period, analysis by gas chromatography/mass spectrometry of the tert-butyldimethylsilyl ester of L-TMC showed the formation of [2H]TMC, indicating the intermediate formation of the imine 5,6-dihydro-2H-1,4-thiazine-3-carboxylic acid; chemically synthesized TMC imine showed similar behavior. The enzyme responsible for the metabolism of L-TMC was purified from rat kidney and was identified as L-amino acid oxidase. These observations indicate a role for L-amino acid oxidase in the bioactivation and cytotoxicity of L-TMC.  相似文献   

9.
We have sought to determine whether aromatic L-amino acid decarboxylase which functions as a neurotransmitter biosynthetic enzyme in neuronal cells can be distinguished from an enzyme with similar activity found in peripheral tissues where no neurotransmitters are synthesized. Aromatic L-amino acid decarboxylase was purified to electrophoretic homogeneity from bovine adrenal medulla, and highly specific antibodies were produced. In addition, a DNA clone complementary to aromatic L-amino acid decarboxylase mRNA was isolated by immunological screening of a lambda gt11 cDNA expression library. We have used these antibodies and cDNA probes for biochemical, immunochemical, and molecular analyses. A single form of aromatic L-amino acid decarboxylase is detected in rat and bovine tissue. Specifically, aromatic L-amino acid decarboxylase protein is biochemically and immunochemically indistinguishable in brain, liver, kidney, and adrenal medulla. Hybridization to aromatic L-amino acid decarboxylase cDNA identifies a single mRNA species of 2.3 kilobase pairs in rat tissue. Furthermore, Southern blot analysis reveals that a single gene codes for aromatic L-amino acid decarboxylase.  相似文献   

10.
11.
We have located and sequenced the gene for cytochrome oxidase subunit III (CoIII) in Neurospora crassa mitochondria. The CoIII gene is located downstream from the small rRNA gene within a cluster of tRNA genes and is coded by the same strand as the tRNA and the rRNA genes. Like the tRNA and the rRNA genes, the CoIII gene is also flanked by the GC-rich palindromic DNA sequences which are highly conserved in N. crassa mitochondria. The CoIII coding sequence predicts a protein 269 amino acids long including 8 tryptophan residues. All 8 tryptophan residues are coded for by UGA. This supports our previous conclusion based on the anticodon sequence of N. crassa mitochondrial tryptophan tRNA and provides evidence for the notion that use of UGA as a codon for tryptophan rather than chain termination may be a feature common to most mitochondrial protein synthesis systems. The close correspondence between the amino acid composition of N. crassa CoIII and that of the protein predicted by the CoIII gene sequence suggests that unlike in mammalian mitochondria, AUA is a codon for isoleucine and not for methionine in N. crassa mitochondria. The N. crassa CoIII sequence shows strong homologies to the corresponding yeast and human proteins (53 and 47%, respectively). The overall hydrophobic character of the protein is consistent with suggestions that most of CoIII is embedded in the mitochondrial inner membrane.  相似文献   

12.
The stereoconfiguration of amino acids, as determined by treatment with L-amino acid oxidase, d-amino acid oxidase and l-glutamate decarboxylase (containing l-aspartate decarboxylase activity), in the peptides from a mycobacillin-synthesizing cell-free system is identical with that of the growing mycobacillin peptide chaid if its synthesis starts from l-proline and is interrupted at various points by amino acid deprivation.  相似文献   

13.
P Marcotte  C Walsh 《Biochemistry》1976,15(14):3070-3076
Proparglyglycine (2-amino-4-pentynoate) and vinylglycine (2-amino-3-butenoate) have been examined as substrates and possible inactivators of two flavo enzymes, D-amino acid oxidase from pig kidney and L-amino acid oxidase from Crotalus adamanteus venom. Vinylglycine is rapidly oxidized by both enzymes but only L-amino acid oxidase is inactivated under assay conditions. The loss of activity probably involves covalent modification of an active site residue rather than the flavin adenine dinucleotide coenzyme and occurs once every 20000 turnovers. We have confirmed the recent observation (Horiike, K, Hishina, Y., Miyake, Y., and Yamano, T. (1975) J, Biochem. (Tokyo), 78, 57) that D-proparglglycine is oxidized with a time-dependent loss of activity by D-amino acid oxidase and have examined some mechanistic aspects of this inactivation, The extent of residual oxidase activity, insensitive to further inactivation, is about 2%, at which point 1.7 labels/subunit have been introduced with propargly[2-14C]glycine as substrate. L-Proparglyclycine is a substrate but not an inactivator of L-amino acid oxidase and the product ahat accumulats in the nonnucleophilic N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid buffer is acetopyruvate. In the presence of butylamine HCl, a species with lambdaman 317 nm (epsilon = 15 000) accumulates that may be a conjugated eneamine adduct. The same species accumulates from D-amino acid oxidase oxidation of D-propargylglycine prior to inactivation; the inactivated apo D-amino acid oxidase has a new peak at 317 nm that is probably a similar eneamine. A likely inactivating species is 2-keto-3,4-pentadienoate arising from facile rearrangement of the expected initial product 2-keto 4 pentynoate. Vinylglycine and proparglyglycine show inactivation specificity, then, for L-and D-amino acid oxidase, respectively.  相似文献   

14.
When the cytochrome-mediated mitochondrial electron transport chain of Neurospora crassa is disrupted, an alternative oxidase encoded by the nuclear aod-1 gene is induced. The alternative oxidase donates electrons directly to oxygen from the ubiquininol pool and is insensitive to chemicals such as antimycin A and KCN that affect the standard electron transport chain. To facilitate isolation of mutants affecting regulation of aod-1, a reporter system containing the region upstream of the aod-1 coding sequence fused to the coding sequence of the N. crassa tyrosinase gene (T) was transformed into a strain carrying a null allele of the endogenous T gene. In the resulting reporter strain, growth in the presence of chloramphenicol, an inhibitor of mitochondrial translation whose action decreases the level of mitochondrial translation products resulting in impaired cytochrome-mediated respiration, caused induction of both alternative oxidase and tyrosinase. Conidia from the reporter strain were mutagenized, plated on medium containing chloramphenicol, and colonies that did not express tyrosinase were identified as potential regulatory mutants. After further characterization, 15 strains were found that were unable to induce both the reporter and the alternative oxidase. Complementation analysis revealed that four novel loci involved in aod-1 regulation had been isolated. The discovery that several genes are required for regulation of aod-1 suggests the existence of a complex pathway for signaling from the mitochondria to the nucleus and/or for expression of the gene.  相似文献   

15.
1. The L-amino acid oxidase of the monocellate cobra (Naja naja kaouthia) venom was purified to electrophoretic homogeneity. The molecular weight of the enzyme was 112,200 as determined by Sephadex G-200 gel filtration chromatography, and 57,400 as determined by SDS-polyacrylamide gel electrophoresis. 2. The enzyme had an isoelectric point of 8.12 and a pH optimum of 8.5. It showed remarkable thermal stability, and, unlike many venom L-amino acid oxidase, was also stable in alkaline medium. The enzyme was partially inactivated by freezing. 3. The enzyme was very active against L-phenylalanine and L-tyrosine, moderately active against L-tryptophan, L-methionine, L-leucine, L-norleucine, L-arginine and L-norvaline. Other L-amino acids were oxidized slowly or not oxidized. 4. Kinetic studies suggest the presence of a side-chain binding site in the enzyme, and that the binding site comprises of at least four hydrophobic subsites.  相似文献   

16.
Tong H  Chen W  Shi W  Qi F  Dong X 《Journal of bacteriology》2008,190(13):4716-4721
We previously demonstrated that Streptococcus oligofermentans suppressed the growth of Streptococcus mutans, the primary cariogenic pathogen, by producing hydrogen peroxide (H(2)O(2)) through lactate oxidase activity. In this study, we found that the lox mutant of S. oligofermentans regained the inhibition while growing on peptone-rich plates. Further studies demonstrated that the H(2)O(2) produced on peptone by S. oligofermentans was mainly derived from seven L-amino acids, i.e., L-aspartic acid, L-tryptophan, L-lysine, L-isoleucine, L-arginine, L-asparagine, and L-glutamine, indicating the possible existence of L-amino acid oxidase (LAAO) that can produce H(2)O(2) from L-amino acids. Through searching the S. oligofermentans genome for open reading frames with a conserved flavin adenine dinucleotide binding motif that exists in the known LAAOs, including those of snake venom, fungi, and bacteria, a putative LAAO gene, assigned as aao(So), was cloned and overexpressed in Escherichia coli. The purified protein, SO-LAAO, showed a molecular mass of 43 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and catalyzed H(2)O(2) formation from the seven L-amino acids determined above, thus confirming its LAAO activity. The SO-LAAO identified in S. oligofermentans differed evidently from the known LAAOs in both substrate profile and sequence, suggesting that it could represent a novel LAAO. An aao(So) mutant of S. oligofermentans did lose H(2)O(2) formation from the seven L-amino acids, further verifying its function as an LAAO. Furthermore, the inhibition by S. oligofermentans of S. mutans in a peptone-rich mixed-species biofilm was greatly reduced for the aao(So) mutant, indicating the gene's importance in interspecies competition.  相似文献   

17.
Achacin, which belongs to the L-amino acid oxidase group, oxidizes free amino acids and produces hydrogen peroxide in cell culture systems. Morphological changes in cells incubated with achacin were similar to those of cells incubated with H(2)O(2). In both cases, the end result was cell death. To examine the mechanism of achacin-associated cytotoxicity, the H(2)O(2) scavenger catalase was added to culture media. Features typical of apoptosis, including morphological changes, DNA fragmentation, and PARP cleavage, were observed when cells were incubated with achacin in the presence of catalase. Moreover, apoptosis was inhibited by Z-VAD-fmk, a broad-spectrum caspase inhibitor. Herein, we present evidence that two pathways are involved in achacin-induced cell death. One is direct generation of H(2)O(2) through the L-amino acid oxidase activity of achacin. The other is the caspase-mediated apoptotic pathway that is induced by depletion of L-amino acids by achacin.  相似文献   

18.
19.
An L-amino acid oxidase was isolated from the venom of the common viper Vipera berus berus by a three-step procedure combining gel filtration, ion exchange and hydrophobic chromatography. The enzyme is a non-covalently bound homodimer with a monomeric molecular mass of 57.7 kDa. The N-terminal amino acid sequence and the internal peptide sequences show close structural homology with other snake venom L-amino acid oxidases. The purified protein catalyzed oxidative desamination of L-amino acids, the most specific substrate is L-Phe. The best substrates among the studied 20 amino acids were: L-Met, L-Leu, L-Phe, L-Ile, L-Arg and L-His. Five amino acids, L-Ser, L-Pro, Gly, L-Thr and L-Cys, were not oxidized. The enzyme inhibited ADP-induced platelet aggregation dose-dependently with an IC50 of 0.07 microM. The effect was neutralized by catalase. V. berus berus LAAO induced apoptosis in cultured HeLa and K562 cells as shown by DNA fragmentation gel pattern. The induction of apoptosis was inhibited by catalase.  相似文献   

20.
We have purified a cytotoxic L-amino acid oxidase (LAO) from Agkistrodon contortrix laticinctus snake venom by means of Superdex-200 gel filtration, followed by phenyl-Sepharose CL-4B chromatography. The purified enzyme (ACL LAO) is a dimer on gel filtration, with a M(r) of 60,000 for the monomer as estimated by SDS-PAGE. LAO activity was tested against 15 amino acids, but only 9 were oxidized by the enzyme, suggesting that it presents some degree of specificity. ACL LAO has apoptosis-inducing activity in an HL-60 cell culture assay. After 24 h treatment with 25 micrograms/ml of ACL LAO, the typical DNA fragmentation pattern of apoptotic cells was observed on agarose gel electrophoresis. NMR analysis showed the presence of a flavin mononucleotide prosthetic group. To solve its 3-D structure, crystals of the purified protein were grown in 0.1 M Tris-HCl, pH 8.5, and 2 M (NH(4))(2)SO(4). Diffraction data collected to 3.5 A showed that the protein crystallized in the tetragonal system, with unit cell a = b = 103.22 A, c = 183.45 A. This is the first report of preliminary crystallization data for a snake venom L-amino acid oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号