首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of some gangliosides on active uptake of nonmetabolizable alpha-aminoisobutyric acid (AIB) and Na+, K+-ATPase and Ca2+, Mg2+-ATPase activities in superior cervical ganglia (SCG) and nodose ganglia (NG) excised from adult rats were examined during aerobic incubation at 37 degrees C for 2 h. In NG, amino acid uptake was greatly accelerated with the addition of galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylgluc osyl ceramide (GM1) (85%) and also with N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosyl ceramide (GM2) or [N-acetylneuraminyl]-galactosyl-N-acetylgalactosaminyl-[N-acetyl- neuraminyl]-galactosylglucosyl ceramide (GD1a) (43% each) compared with a nonaddition control at a 5 nM concentration. Under identical conditions, Na+, K+-ATPase activity was strongly stimulated with GM1 (180%) and GD1a (93%), whereas Ca2+, Mg2+-ATPase activity showed no change. In SCG, on the other hand, AIB uptake was apparently inhibited (-27%) by addition of GM1, with a slight decrease in Na+, K+-ATPase but no change in Ca2+, Mg2+-ATPase activity in the tissue. Both asialo-GM1, in which N-acetylneuraminic acid is deficient, and Forssman glycolipid, which is not present in nervous tissue, failed to produce any significant increase in both SCG and NG not only in amino acid uptake, but also in Na+, K+-ATPase activity. A kinetic study of active AIB uptake showed that GM1 ganglioside produced an increase in Km with no change in Vmax in SCG, whereas it caused a decrease in Km with a slight increase in Vmax in NG. Treatment of NG and SCG with neuraminidase from Vibrio cholerae, an enzyme that split off sialic acid from polysialoganglioside, leaving GM1 intact, caused little inhibition of the amino acid uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Levels of cyclic nucleotides and ornithine decarboxylase (ODC) activity were examined following the application of various kinds of stimuli to superior cervical sympathetic ganglia (SCG), nodose ganglia, and vagus nerve fibers excised from the rat. The level of cyclic GMP in the SCG rose rapidly to about 4.5- to 7.5-fold the unstimulated control with 10 min of incubation after applications of preganglionic electrical stimulation (10 Hz), acetylcholine (ACh; 1 mM), or high extracellular K+ ( [K+]0, 70 mM). The cyclic GMP level in nodose ganglia was increased less than in the SCG by either ACh or high [K+]0 but was not affected by ACh in vagus fibers. Cyclic AMP in the SCG was also increased about 4- to 5.5-fold over the control within 10 min with the addition of ACh, norepinephrine (NE; 0.05 mM), or high [K+]0. Although NE caused a small increase in cyclic AMP, neither ACh nor high [K+]0 produced any appreciable change in nodose ganglia or vagus fibers. The ODC activity in the SCG was increased by preganglionic stimulation of 3- to 4-hr duration but not by a shorter period. A similar change in ODC activity was caused by the addition of oxotremorine (1 mM), isoproterenol (0.1 mM), NE, cyclic AMP (1 mM), or dibutyryl cyclic GMP (1 mM). The effect was exaggerated by the further addition of 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor. The increase in ODC activity caused by ACh was abolished by a muscarinic cholinergic antagonist, atropine (0.01 mM), and following axotomy for a week, but not by a nicotinic antagonist or by denervation in the SCG. A similar increase in ganglionic ODC activity by NE was inhibited by an adrenergic blocker, propranolol (0.01 mM), and following axtotomy for a week, but not by denervation. Cholinergic or adrenergic stimulation did not cause an increase in ODC activity in nodose ganglia or vagus fibers. These results suggest that the stimulation-induced increase in ODC activity occurs in postganglionic neurons rather than in satellite glial cells and is mediated by muscarinic cholinergic or adrenergic receptors. The process appears to involve cyclic nucleotide-mediated protein biosynthesis in the SCG.  相似文献   

3.
The activity of transglutaminase (TG) was examined in the rat superior cervical ganglion (SCG) during development and after postganglionic nerve crush. During postnatal development the enzyme activity is increased by sevenfold in parallel to protein content of the ganglion and reaches adult levels by day 35 after birth. The endogenous activity (enzyme activity assayed in the absence of the exogenous substrate) during development is transiently elevated with a peak at day 21 postnatal. In the adult ganglion the enzyme specific activity is evenly distributed in all subcellular compartments, but most of it is contained in the cytosol. Within the first hour after axotomy TG activity is rapidly and transiently elevated. The peak value, 80% above control levels, is attained by 30 min postoperative. At this time the activity is increased in all subcellular fractions, but the endogenous activity is selectively increased in the fraction containing nuclei. The enhanced TG activity after axotomy can be prevented by topical treatments with verapamil, an inhibitor of voltage-dependent calcium fluxes across excitable membranes, or with the calcium chelator EGTA. The results show that intracellular TG activity is present in the SCG and that it increases with postnatal growth of the ganglion. After axotomy the enzyme activity is rapidly and transiently increased in the ganglion and this elevation critically depends on calcium fluxes.  相似文献   

4.
Contents of the three forms (alpha alpha, alpha gamma, and gamma gamma) of enolase isozymes and S-100 protein in superior cervical sympathetic ganglia (SCG) excised from rats were determined by the sensitive method of enzyme immunoassay, after application of various forms of stimulation, during incubation for 3 h at 37 degrees C in vitro. The amounts of the three forms of enolase isozymes and of S-100 protein in the SCG were not altered by preganglionic or postganglionic stimulation (10 Hz) or by the addition of acetylcholine (1 mM) or a high concentration of K+ (70 mM) to the incubation medium. Norepinephrine (NE; 50 microM), as well as isoproterenol (200 microM) or 3,4-dihydroxy phenylethylamine (dopamine; 200 microM), increased the ganglionic alpha alpha and alpha gamma enolase content to 1.5 to 2.0 times the control level, whereas NE tended to slightly decrease the gamma gamma enolase content. The increase in the alpha isozymes did not appear until after 2 to 3 h of incubation with this agent as a result of an increase in protein synthesis. Propranolol, an adrenergic antagonist, partly inhibited the NE-induced increase in both alpha alpha and alpha gamma enolases. NE and its agonists also considerably increased the S-100 protein level in the SCG; however, the effect developed within half an hour of incubation as a result of the conversion of the bound S-100 protein to the water-soluble form, and did not greatly increase thereafter. Cyclic AMP (1 mM) produced the same kind of increase in the ganglionic S-100 protein content as NE did.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Abstract: Experiments were designed to test the hypothesis that ganglionic butyrylcholinesterase (BuChE) is derived from acetylcholinesterase (AChE). At 5 to 8 days following preganglionic denervation of the right superior cervical ganglion (SCG), cats were given sarin, 2.0 μmol/kg, i.v. At intervals of 1 h and 1, 2, 3, 6, 11, and 22 days later, they were killed, and the AChE and BuChE contents of both SCG and both stellate ganglia (StG) were assayed. The regeneration of AChE in the normal ganglia occurred in two phases: an initial rapid phase, to 25-40% of control activity in 1 day, and a slow phase, to approximately 70% of control activity in 22 days. BuChE reached approximately 85% of control activity in normal SCG and StG at 22 days. In the denervated SCG, AChE activity reached a maximum of approximately 17% of normal at 1 day, the value prior to the administration of sarin, and did not increase appreciably above this subsequently. BuChE activity in the denervated SCG reached approximately 50% of normal ganglia at 22 days. At each interval, its activity approached 55% of that of the contralateral normal SCG, the value found in the denervated SCG prior to the administration of sarin. Hence, the regeneration of BuChE appears to be independent of the presence of AChE in the neuropil. The origin of ganglionic BuChE remains obscure.  相似文献   

6.
Adenylate Cyclase Activity in the Superior Cervical Ganglion of the Rat   总被引:2,自引:2,他引:0  
Abstract: Adenylate cyclase activity in cell-free homogenates of the rat superior cervical ganglion (SCG) was assayed under a variety of experimental conditions. Adenylate cyclase activity was decreased by approximately one-half when 1 m M EGTA was included in the homogenization buffer and assay mixture, indicating the presence of a Ca2+-sensitive adenylate cyclase in the ganglion. In the presence of EGTA, basal adenylate cyclase activity in homogenates of the SCG was 12.9 ± 0.6 pmol cyclic AMP/ganglion/10 min. Enzyme activity was stimulated three- to fourfold by 10 m M NaF or 10 m M MnCl2, Both GTP and its nonhydrolyzable analog guanylylimidodiphosphate (GppNHp) stimulated adenylate cyclase in a concentration-dependent manner over the range of 0.1–10.0 μ M . Stimulation by GppNHp was five to six times greater than that produced by GTP at all concentrations tested. Decentralization of the ganglion had no effect on basal or stimulated adenylate cyclase activity. Receptor-linked stimulation of adenylate cyclase was not obtained with any of the following: isoproterenol, epi-nephrine, histamine, dopamine, prostaglandin E2, or va-soactive intestinal peptide. Thus the receptor-linked regulation of adenylate cyclase activity appears to be lost in homogenates of the ganglion.  相似文献   

7.
Both dimethylphenylpiperazinium (DMPP), a nicotinic agonist, and bethanechol, a muscarinic agonist, increase 3,4-dihydroxyphenylalanine (DOPA) synthesis in the superior cervical ganglion of the rat. DMPP causes approximately a fivefold increase in DOPA accumulation in intact ganglia whereas bethanechol causes about a two-fold increase in DOPA accumulation. These effects are additive with each other and with the increase in DOPA accumulation produced by 8-bromo cyclic AMP. The action of DMPP is dependent on extracellular Ca2+ while the actions of bethanechol and 8-bromo cyclic AMP are not dependent on extracellular Ca2+. Cholinergic agonists and cyclic nucleotides produce a stable activation of tyrosine hydroxylase (TH) in the ganglion. The activation of TH by nicotinic and muscarinic agonists can be detected after 5 min of incubation of the ganglia with these agents. The nicotinic response disappears after 30 min of incubation, whereas the muscarinic response persists for at least 30 min. The Ca2+ dependence of the TH activation produced by these agents is similar to the Ca2+ dependence of their effects on DOPA accumulation in intact ganglia. These data are consistent with the hypothesis that nicotinic agonists, muscarinic agonists, and cyclic AMP analogues increase TH activity by three distinct mechanisms. The activation of TH presumably underlies the increase in DOPA synthesis produced by these agents.  相似文献   

8.
Glucocorticoid regulation of the adrenergic enzyme, phenylethanolamine N-methyltransferase (PNMT) was studied in organ cultures of the superior cervical ganglion (SCG) from newborn rats. Although PNMT catalytic activity was present in control ganglia, enzyme levels were too low to allow visualization of PNMT immunofluorescent cells. Addition of dexamethasone (DEX) or corticosterone to the medium resulted in a large increase in PNMT activity and bright PNMT immunoreactive (PNMT-IR) staining in cells resembling small, intensely fluorescent (SIF) cells. Addition of non-glucocorticoid steroids was ineffective. Exposure to a brief, 2-hr pulse of DEX (10(-6) M) in vitro elicited the same increase in PNMT as continual exposure to DEX. Studies using metabolic inhibitors demonstrated that the steroid-dependent increase in PNMT activity required both protein and RNA synthesis. Furthermore, the increase was inhibited by cytochalasin B and by the glucocorticoid receptor antagonists, DEX 21-mesylate and cortisol 21-mesylate. These observations suggest that glucocorticoids increase PNMT protein in SIF cells by interacting with specific steroid receptors that undergo translocation to the nucleus.  相似文献   

9.
Active uptake of a labelled nonmetabolizable amino acid, alpha-aminoisobutyric acid (AIB), into isolated superior cervical sympathetic ganglia (SCG) excised from adult rats was considerably stimulated by the addition of either norepinephrine (NE, 50 microM) or 3,4-dihydroxyphenylethylamine (dopamine, DA, 100 microM) to the medium during aerobic incubation for 2 h at 37 degrees C. The NE-induced increase in AIB uptake was significantly antagonized by the addition of an alpha 1-adrenoceptor antagonist (prazosin, 10 microM) in SCG axotomized 1 week prior to the examination, in which most of the ganglionic neurons had degenerated and reactive proliferation of the satellite glial components was in progress. The addition of neither acetylcholine (ACh, 1 mM) plus eserine (0.1 mM) nor cyclic nucleotides (1 mM) changed the AIB uptake by the SCG. In the axotomized SCG, the NE-evoked increase in AIB uptake was much more pronounced than that of intact or denervated SCG. A kinetic study of the active AIB uptake in the SCG showed that NE produced a decrease of the Km value and an increase in the Vmax, especially in the axotomized SCG. Ganglionic Na+, K+-ATPase activity was greatly stimulated in the presence of NE, but not by ACh. These results strongly suggest that the NE-induced enhancement of active AIB uptake in the isolated SCG is occurring in glial cells rather than in neuronal cells, with a possible alteration of membrane properties for amino acid uptake and with an apparent regulation by the stimulated transport enzyme Na+, K+-ATPase.  相似文献   

10.
When the homogenate of rabbit superior cervical ganglia (SCG) was incubated in the presence of [gamma-32P]ATP and Mg2+, two specific proteins were strongly labeled. Their apparent molecular weights were 90,000 and 54,000, respectively. The phosphorylation of the latter was significantly stimulated by 10-50 nM cyclic GMP but to a lesser extent by cyclic AMP, whereas that of the former was not stimulated significantly by either of the cyclic nucleotides. The purified protein kinase inhibitor from rabbit skeletal muscle did not inhibit the phosphorylation. These results indicated that the observed phosphorylation of 54K protein was dependent on cyclic GMP but not on cyclic AMP. When intact SCG was incubated in the presence of 32Pi, phosphorylation of 90K protein was stimulated by cyclic GMP, dibutyryl cyclic GMP, and 8-bromo-cyclic GMP (10 microM), whereas phosphorylation of 54K protein was not significantly stimulated by any of these substances. The present demonstration of endogenous cyclic GMP-dependent protein kinase activity and its endogenous substrate proteins raises a possibility that the physiological actions of cyclic GMP in SCG are mediated by the phosphorylation of these proteins.  相似文献   

11.
The total activities of monoamine oxidase (MAO) and the ratio of type B/type A activities were determined in mouse neuroblastoma N1E-115 cells, and in NX31T and NG108-15 hybrid cells derived from mouse neuroblastoma X rat sympathetic ganglion hybrid or mouse neuroblastoma X rat glioma hybrid cells. N1E-115 and NX31T cells possessed type A activities exclusively, although NG108-15 cells showed both type A (65-90%) and type B (10-35%) MAO activities. The activity of type A MAO in NX31T and N1E-115 cells was relatively constant during culturing periods in the presence or absence of dibutyryl cyclic AMP (Bt2cAMP), whereas total MAO activity and the ratio of type B MAO/type A MAO in NG108-15 cells increased as a function of culture periods. Prostaglandin E1 (PGE1) and theophylline, the best known combination to increase intracellular cyclic AMP content of NG108-15 cells, caused similar increases of MAO and of the type B/type A ratio in NG108-15 cells. The results suggest that MAO activity and expression of MAO B activity are regulated in NG108-15 cells in a cyclic AMP-dependent manner.  相似文献   

12.
A synthetic peptide corresponding to the C-terminus of the alpha 3 subunit of the rat neuronal nicotinic acetylcholine receptor (nAChR) was used to generate a rabbit polyclonal alpha 3 antibody. The specificity of this antibody was characterized by immunoblotting, immunohistochemical and immunoprecipitation techniques. Using this antibody, the relative densities of the alpha 3 subunit were quantitatively determined in different brain regions and in superior cervical ganglion (SCG). Among these regions, SCG, interpeduncular nucleus (IPN) and pineal gland showed the highest levels of alpha 3 protein expression. Habenula and superior colliculi had intermediate levels of expression. Low levels were found in cerebral cortex, hippocampus and cerebellum. The ontogenic profile of the alpha 3 subunit in the SCG was also determined. The alpha 3 protein level is low at postnatal day (P 1), but increases rapidly during the first seven postnatal days. This level then plateaus and remains stable through postnatal day 35. These findings suggest that neuronal nAChRs containing the alpha 3 subunit participate in important roles in specific regions of the rat brain and the SCG.  相似文献   

13.
The activation of lymphocytes has been used to study the regulation of mammalian gene expression. Concanavalin A (Con A) added to mouse spleen lymphocytes in serum-free medium leads to an increase in the rate of DNA synthesis as great as 1000 fold, commencing 20 hr after its addition. Prior to 20 hr, the rate of purine synthesis increases 10–100 fold as measured by accumulation of the purine intermediate, formyl glycineamide ribonucleotide (FGAR). Addition of dibutyryl cyclic GMP to the lymphocyte suspensions results in a 10 fold increase in the rate of DNA synthesis in the absence of Con A and enhances both purine synthesis and DNA synthesis in its presence. The activity of phosphoribosyl pyrophosphate synthetase (PRPP synthetase), an enzyme central to purine and pyrimidine biosynthesis, is increased 2–10 fold during the activation. The increase begins to appear 8 hr after Con A addition and requires concomitant protein synthesis. The induced PRPP synthetase activity is stimulated by the presence of cyclic GMP in the enzyme assay. Addition of dibutyryl cyclic AMP to Con A-stimulated lymphocytes inhibits FGAR production, the stimulation of DNA synthesis, and the appearance of cyclic GMP-sensitive PRPP synthetase. These studies suggest that cyclic nucleotides play a significant role in the molecular mechanism of lymphocyte activation, the regulation of purine biosynthesis, and of eucaryotic genetic expression.  相似文献   

14.
The neuroblastoma x glioma NG108-15 hybrid cell line, a widely used model for the study of neuronal differentiation, contains a variety of gangliosides including GM1 and its sialosylated derivative, GD1a. To investigate the role of these a-series gangliotetraose gangliosides in neuritogenesis, we have obtained a mutated subclone of NG108-15 that is deficient in that family of gangliosides. NG108-15 cells were grown in the presence of cholera toxin, which killed the large majority of cells, and from the cholera-resistant survivors we isolated a clone, NG-CR72, that lacks GM1 and GD1a in the plasma and nuclear membranes. GM2 concentration was significantly higher in the plasma membrane. Enzyme assay indicated deficiency of UDP-Gal:GM2 galactosyltransferase (GM1 synthase), which was confirmed by incorporation studies with [3H]sphingosine. These cells resembled wild-type NG108-15 in extending dendritic processes in response to dendritogenic agents (retinoic acid, dibutyryl cAMP) but responded aberrantly to axonogenic stimuli (KCl, ionomycin) by extending unstable neurites that showed the cytoskeletal staining characteristic of dendrites. Moreover, mutant cells treated with the Ca2+ elevating axonogenic agents underwent apoptosis over time, attributed to dysfunction of Ca2+ regulatory mechanisms normally mediated by GM1. Such agents caused dramatic and sustained elevation of intracellular Ca2+ in mutant cells, in contrast to modest and temporary elevation in wild-type cells. Exogenous GM1, inserted into the plasma membrane, had no discernable protective effect on NG-CR72 cells whereas LIGA-20, a membrane-permeant derivative of GM1 that entered both plasma and nuclear membranes, blocked apoptosis, permitted extension of stable neurites, and attenuated the abnormal elevation of intracellular Ca2+.  相似文献   

15.
The activities of choline kinase (CK) and choline acetyltransferase (ChAT) were examined in vitro in superior cervical sympathetic ganglia (SCG) excised from rats following aerobic incubation for 1 h in a medium containing various choline concentrations, with and without application of a high KCl level (70 mM). Ganglionic CK activity was strongly inhibited (by approximately 75%) at low extracellular choline concentrations (1-5 microM) but rose as the choline concentration was raised to 10-50 microM in the incubation medium, then fell and rose again with further increases in choline concentration. A similar but moderate accelerative effect on ganglionic CK activity was also observed after addition of acetylcholine (ACh; 1 mM) without eserine. Whereas specific CK activity did not change significantly in axotomized SCG, in which the ratio of glial cells to neurons is greatly increased for a week after the operation., it was remarkably increased after denervation, in which the preganglionic cholinergic nerve terminals had degenerated. When either a high KCl level or hemicholinium-3 (HC-3; 50 microM) was added to the medium in the presence or absence of choline, ganglionic CK activity was markedly inhibited. On the other hand, ChAT activity in the SCG remained at a significantly high level during incubation with low choline concentrations (1-10 microM), but the enhanced enzyme activity became inhibited as the extracellular choline concentration was raised to 50-100 microM in the medium. Addition of HC-3 to the medium did not alter ganglionic ChAT activity at low choline concentrations. However, application of quinacrine (10 microM) considerably reduced ganglionic CK activity and also suppressed ChAT activity induced by high KCl levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The functional state of sympathetic ganglia in spontaneously hypertensive rats (SHR) was compared with that of ganglia in normotensive Wistar Kyoto rats (WKY) by examining catecholamine synthetic activity by light microscopic autoradiography 3H-L-dihydroxyphenyl alanine (3H-DOPA). The number of silver grains over the perikarya of ganglion cells in the superior cervical (SCG) and stellate ganglia (SG) of newborn, 10-day-old and 30-day-old animals was counted on photographic enlargements. There were significantly more silver grains over ganglion cells in SHR compared with those in age-matched WKY at almost all incorporation times at all ages examined in SCG, at all incorporation times in newborn rats, and at incorporation times of 15 and 60 min in SG of 10-day-old rats. The increased incorporation of the label by both sympathetic ganglia was more marked in newborn than in 30-day-old animals. These results indicate that catecholamine synthetic activity in these ganglion cells is increased in SHR from the newborn stage, suggesting that a congenital hyperfunction of sympathetic ganglia occurs in SHR.  相似文献   

17.
Previous reports indicated the presence of both gangliosides and sialidase in the nuclear envelope (NE) of primary neurons and the NG108-15 neural cell line. GM1, one of the major gangliosides of this membrane, was shown to be tightly associated with a sodium-calcium exchanger in the inner membrane of the NE and to potentiate exchanger activity. GD1a was the other major ganglioside detected in the NE and, like GM1, occurs in both inner and outer membranes. A subsequent report indicated the presence of sialidase activity in the NE without specification as to which of the two membranes express it. The present study was undertaken to determine the nature and locus of this activity within the NE of two cell lines: NG108-15 and SH-SY5Y. Western blot analysis of the separated membranes revealed occurrence of Neu3 in the inner membrane and Neu1 in the outer membrane of the NE. Moreover, sialidase activity at both sites was shown capable of catalyzing conversion of endogenous GD1a to GM1.  相似文献   

18.
To compare the functional state of the superior cervical (SCG) and stellate sympathetic ganglia (SG) of spontaneously hypertensive rats (SHR) with those of age-matched normotensive Wistar Kyoto rats (WKY), ganglion cell volume and area occupied by ganglion cells relative to each whole ganglionic area were morphometrically examined using the Texture Analyse System (TAS) in rats at 0, 10 and 30 days of age. The weight of each ganglion relative to animal weight was also measured. The ganglion cell volume and the relative area of ganglionic cells in both ganglia of SHR were significantly larger (P<0.05) than those of age-matched WKY at ages 0 and 10 days after birth. The relative ganglionic weights of SHR were significantly larger (P<0.01) compared with those of WKY at all ages examined, except for SG at 0 days after birth. These results show that the relative volume of sympathetic ganglion cells is greater in both SCG and SG of SHR than that of WKY, suggesting that hyperfunction of sympathetic ganglia occurs at the prehypertensive stage as a primary factor in the development of hypertension in SHR.  相似文献   

19.
gamma-Aminobutyric acid (GABA) was applied to the superior cervical ganglion (SCG) of CFY rats in vitro and in vivo, with or without implantation of a hypoglossal nerve, to evaluate the effects of these experimental interventions on the acetylcholine (ACh) system, which mainly serves the synaptic transmission of the preganglionic input. Long-lasting GABA microinfusion into the SCG in vivo apparently resulted in a "functional denervation." This treatment reduced the acetylcholinesterase (AChE; EC 3.1.1.7) activity by 30% (p less than 0.01) and transiently increased the number of nicotinic acetylcholine receptors, but had no significant effect on the choline acetyltransferase (acetyl-coenzyme A:choline-O-acetyltransferase; EC 2.3.1.6) activity, the ACh level, or the number of muscarinic acetylcholine receptors. The relative amounts of the different molecular forms of AChE did not change under these conditions. In vivo GABA application to the SCG with a hypoglossal nerve implanted in the presence of intact preganglionic afferent synapses exerted a significant modulatory effect on the AChE activity and its molecular forms. The "hyperinnervation" of the ganglia led to increases in the AChE activity (to 142.5%, p less than 0.01) and the 16S molecular form (to 200%, p less than 0.01). It is concluded that in vivo GABA microinfusion and GABA treatment in the presence of additional cholinergic synapses has a modulatory effect on the elements of the ACh system in the SCG of CFY rats.  相似文献   

20.
Treatment of NG108-15 cells in culture with the opiate peptide [D-Ala2,D-Leu5]enkephalin produces maximal inhibition of cyclic AMP synthesis in less than 15 min. The activity of [GM3]:N-acetylgalactosaminyltransferase is similarly inhibited, but maximal inhibition is not observed for at least 30 min following the addition of [D-Ala2,D-Leu5]enkephalin. Conversely, the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine rapidly potentiates the intracellular accumulation of cyclic AMP and, in a more gradual fashion, increases [GM3]:N-acetylgalactosaminyltransferase activity. The reductions in the activity of [GM3]:N-acetylgalactosaminyltransferase that occur following treatment of NG108-15 cells with indomethacin argues for a direct role of cyclic AMP in the observed changed in [GM3]:N-acetylgalactosaminyltransferase activity. By adding low concentrations of cyclic AMP (but not cyclic GMP) to microsomes derived from neonatal rat brain, we were able to demonstrate a dose-dependent phosphorylation of membrane protein and subsequent doubling of [GM3]:N-acetylgalactosaminyltransferase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号