首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Lee CJ  Yoon YD 《Mutation research》2005,578(1-2):247-255
Prepubertal mice were whole-body irradiated with a mean lethal dose (LD50) of gamma-radiation using a 60Co source with a total dose of 7.2 Gy and a dose rate of 12.0 cGy/min. At day 0 before the irradiation and at day 1, 2, and 3 after the irradiation, the ovaries were collected and the morphological changes were assessed. The ratios (%) of atretic or polymorphonuclear leukocytes (neutrophil)-infiltrated follicles in the largest cross sections were calculated. In the early atretic follicle of the control mouse ovary, both apoptotic and mitotic cells were observed and occasionally neutrophils were infiltrated into the follicle cavity. However, in the atretic follicles 2 days post-irradiation, numerous cell fragments, apoptotic cells and bodies, and especially, a number of neutrophils were observed. In the non-irradiated control, the ratios of atretic follicles were 58.0+/-8.6 and 27.3+/-11.2 (mean+/-S.E.M.) in antral and preantral follicles, respectively. The ratios of the number of antral and preantral follicles with one or more neutrophils to the total number of atretic follicles were 29.3+/-12.0. At 2 days post-irradiation, the ratios of atretic follicles were increased to 94.0+/-3.4 and 86.9+/-7.6 in antral and preantral follicles, respectively. The ratios of neutrophil-containing follicles among the atretic one were increased to 65.9+/-11.5 and 57.8+/-15.4 at 2 and 3 days after the irradiation, respectively. Taken together, the present results show that gamma-radiation induces apoptotic and inflammatory degeneration of mouse ovarian follicles. Besides, neutrophils may be involved in the acute atretic degeneration in gamma-irradiated mouse ovarian follicles.  相似文献   

2.
Developmental competence of oocytes is compromised if they originate from atretic follicles. Apoptosis is the underlying process of atresia. Apoptotic changes in follicular cells are thought to influence the outcome of IVF. The aim of this study was to investigate apoptosis in different compartments of single bovine follicles (follicular wall, granulosa and cumulus cells (CC)) in relation to COC morphology, and to determine whether the addition, in vitro, of exogenous follicular cells from atretic follicles to maturing cumulus oocyte complexes (COCs) influenced the development of oocytes.Antral follicles were dissected from bovine ovaries and opened to obtain COCs and free floating granulosa cells (GC). The COCs were classified according to morphology. Apoptosis was determined in cumulus and granulosa cells and in homogenates of the remaining follicular wall.For every morphological class of COCs, a large variability of apoptotic expression was found in all follicle compartments. Follicular wall apoptosis was not correlated to COC morphology or to the percentage of apoptotic granulosa or cumulus cells. In grade 1 (best morphology) COCs, the degree of apoptosis in granulosa cells was comparable to cumulus cell apoptosis (P<0.01). The overall expression of apoptosis in granulosa cells of follicles containing grade 3 COCs (median+/-median absolute deviation: 37.8+/-13.8%) was significantly higher (P<0.05) than in follicles with grade 1 (22.7+/-10.4%) or grade 2 COCs (20.0+/-17.0%). About 48.3% of grade 3 COCs possessed strongly apoptotic cumulus cells compared to 27.8 and 28.2% of grade 1 or grade 2 COCs, respectively. Nonapoptotic cumulus complexes were observed in grades 1 and 2 COCs only.Adding exogenous follicular cells from atretic follicles to bovine COCs (grades 1 and 2) during in vitro maturation (IVM) had no impact on fertilization, blastocyst formation or hatching after IVF. This is of particular practical relevance to embryo production after ovum pick up (OPU), as during this process, good quality COCs are cultured together with simultaneously collected slightly atretic COCs.  相似文献   

3.
Atretic follicles regularly occur in the ovary of the house fly, Musca domestica. The frequency of ovarian follicular atresia and the proportion of atretic follicles per ovary are related to the stage of oögenesis and to the age of the females. Only vitellogenic follicles may become atretic. The atresia may occur at any stage of vitellogenesis, though most follicles become atretic in mid-vitellogenesis. Atretic follicles are completely resorbed within 24–36 hr. The follicle cells may play a synthesizing role during growth and disintegrating one during follicle resorption. The induction of glycogen synthesis by the cessation of RNA and protein synthesis and by vitellogenesis in normal follicles is discussed. The same processes occur prematurely in the atretic follicle which can be thus distinguished by a high content of glycogen.  相似文献   

4.
We wished to compare cumulus oocyte complex (COC) recovery and follicle development after single and repeated ultrasound-guided transvaginal follicle aspiration (aspiration). Aspirations were performed in Holstein-Friesian heifers every once weekly (every 7 d; n = 12) or twice weekly (every 3 or 4 d; n = 6) starting on Days 3 or 4 of the estrous cycle (estrus = Day 0) and continuing for 4 wk. During each session, all visible follicles > 2 mm were aspirated using an 7.5 MHz transducer to guide an 18 ga x 60 cm single lumen needle and applying 50 mm Hg vacuum which generated 25 mL/min. The COC's harvested from each follicle were counted and classified into 4 categories. Post-aspiration follicle wave emergence was traced by daily ultrasound examinations. A total of 1410 follicles were aspirated during 96 sessions, yielding 632 (45%)oocytes. There was no difference in average COC/follicle recovered between the single vs the repeated aspiration treatment. However, ovaries of heifers subjected to two aspirations per week yielded more follicles (17.2 +/- 5.7 vs 12.4 +/- 6.1; P < 0.01) and COC's (7.7 +/- 4.5 vs 5.4 +/- 3.7; P < 0.01) per session than those subjected to a single aspiration. Ovaries of heifers subjected to twice weekly aspirations at 4-d intervals resulted in a higher recovery rate (51.1 vs 38.6%), yielded more COC's (9.3 +/- 4.7 vs 6.2 +/- 3.8) and a higher number of viable COC's recovered per session (7.6 +/- 3.8 vs 5.2 +/- 3.3) than those aspirated every 3 d, all P < 0.01. Aspiration-induced follicle waves were indicated by an increased number of follicle > or = 4 mm seen within 2 d of the procedure. We conclude that follicle aspiration appears to induce and synchronize follicle waves, and when it is done twice a week it is associated with higher number of harvestable follicles and more oocytes recovered than when done once a week. These results can be attributed to the aspiration of a newly recruited pull of follicles 3 or 4 d after the first aspiration and before the establishment of follicular dominance and regression of subordinate follicles.  相似文献   

5.
The objective was to assess effects of long-term treatment with recombinant bovine somatotropin (bST) and estradiol-17beta (E2) on the number of follicles that ovulated in response to FSH. Non-lactating Holstein and Jersey cows (Trial 1, n=27) and Angus cows and heifers (Trial 2, n=35) received two ear implants of E2 and biweekly injections of bST in a 2 x 2 arrangement of treatments. Estradiol implants were removed 74.6 +/- 1.1 d after insertion and 18.1 +/- 0.9 d after the last biweekly injection of bST. Cows were stimulated with FSH-P beginning 2 d after removal of E2 implants, and PGF2alpha (PGF) was given on the third day of FSH treatment. Ovaries were collected to determine the number of CL at 1 to 2 wk after treatment with PGF. In Trial 2 only, cattle were inseminated at estrus and embryos were collected 6 to 8 d later. Implants of E2 increased (P < 0.01) serum E2 8-fold initially and E2 was still elevated 5-fold at removal of implants. Injections of bST increased (P < 0.01) serum growth hormone (GH) 15-fold and insulin-like growth factor-I (IGF-I) 3-fold. In Trial 1, number of CL was increased by the combination of bST+E2 (P < 0.01). In Trial 2, E2 increased the number of CL (P < 0.05), and bST increased the number of total ova and transferable embryos (P < 0.01). We conclude that long-term treatment with bST and E2 may interact to enhance follicular development and ovulatory response to FSH.  相似文献   

6.
The purposes of this study were to estimate the population of caprine preantral follicles, and to evaluate quantitatively and qualitatively the efficiency of a specific mechanical method for the isolation of preantral follicles from mixed breed goats at different reproductive stages. On average, 37,646+/-4277 preantral follicles were present in goat ovaries, and 13,631+/-2399 preantral follicles were obtained after isolation. The number of preantral follicles isolated or in situ was not significantly affected by the reproductive stage. The mean recovery rate per ovary ([number of isolated follicles/number of in situ follicles] x 100) of isolated follicles was 36.2%. The distribution of follicles in situ was 67.8% primordial, 25.8% primary and 6.4% secondary; the respective distribution after isolation was 93.8%, 5.2% and 1.0%. In this study, many polyovular follicles were also observed, mainly in prepubertal goat ovaries. Histological analysis showed that few preantral follicles were atretic in situ (4.83%+/-0.35) or after the isolation procedure (4.67%+/-0.65) in the three reproductive stages. The percentage of atretic follicles was not affected either by the mechanical method or by the reproductive stage. It is concluded that a large number of preantral follicles can be successfully isolated mechanically, with a high recovery rate and a low rate of follicular atresia, irrespective of the reproductive stage of the caprine female.  相似文献   

7.
To examine endocrine and biochemical differences between dominant and subordinate follicles and how the dominant follicle affects the hypothalamic-pituitary-ovarian axis in Holstein cows, the ovary bearing the dominant follicle was unilaterally removed on Day 5 (n = 8), 8 (n = 8), or 12 (n = 8) of synchronized estrous cycles. Follicular development was followed daily by ultrasonography from the day of detected estrus (Day 0) until 5 days after ovariectomy. Aromatase activity and steroid concentrations in first-wave dominant and subordinate follicles were measured. Intact dominant and subordinate follicles were cultured in 4 ml Minimum Essential Medium supplemented with 100 microCi 3H-leucine to evaluate de novo protein synthesis. Five days after unilateral ovariectomy, cows were resynchronized and the experiment was repeated. Follicular growth was characterized by the development of single large dominant follicles, which was associated with suppression of other follicles. Concentrations of estradiol-17 beta (E2) in follicular fluid and aromatase activity of follicular walls were higher in dominant follicles (438.9 +/- 45.5 ng/ml; 875.4 +/- 68.2 pg E2/follicle) compared to subordinate follicles (40.6 +/- 69.4 ng/ml; 99.4 +/- 104.2 pg E2/follicle). Aromatase activity in first-wave dominant follicles was higher at Days 5 (1147.1 +/- 118.1 pg E2/follicle) and 8 (1028.2 +/- 118.1 pg E2/follicle) compared to Day 12 (450.7 +/- 118.1 pg E2/follicle). Concentrations of E2 and androstenedione in first-wave dominant follicles were higher at Day 5 (983.2 +/- 78.2 and 89.5 +/- 15.7 ng/ml) compared to Days 8 (225.1 +/- 78.6 and 5.9 +/- 14.8 ng/ml) and 12 (108.5 +/- 78.6 and 13.0 +/- 14.8 ng/ml). Concentrations of progesterone in subordinate follicles increased linearly between Days 5 and 12 of the estrous cycle. Plasma concentrations of FSH increased from 17.9 +/- 1.4 to 32.5 +/- 1.4 ng/ml between 0 and 32 h following unilateral removal of the ovary with the first-wave dominant follicle. Increases in plasma FSH were associated with increased numbers of class 1 (3-4 mm) follicles in cows that were ovariectomized at Day 5 or 8 of the cycle. Unilateral ovariectomy had no effects on plasma concentrations of LH when a CL was present on the remaining ovary. First-wave dominant follicles incorporated more 3H-leucine into macromolecules and secreted high (90,000-120,000) and low (20,000-23,000) molecular weight proteins that were not as evident for subordinate follicles at Days 8 and 12.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The follicle destiny towards ovulation or atresia is multi-factorial in nature and involves outcries, paracrine and endocrine factors that promote cell proliferation and survival (development) or unchain apoptosis as part of the atresia process. In several types of cells, sphingosine-1-phospate (S1P) promotes cellular proliferation and survival, whereas ceramide (CER) triggers cell death, and the S1P/CER ratio may determine the fate of the cell. The aim of present study was to quantify S1P and CER concentrations and their ratio in bovine antral follicles of 8 to 17 mm classified as healthy and atretic antral follicles. Follicles were dissected from cow ovaries collected from a local abattoir. The theca cell layer, the granulosa cells and follicular fluid were separated, and 17β-estradiol (E2) and progesterone (P4) concentrations were measured in the follicular fluid by radioimmunoassay. Based on the E2/P4 ratio, the follicles were classified as healthy (2.2±0.3) or atretic (0.2±0.3). In both follicular compartments (granulosa and theca cell layer), sphingolipids were extracted and S1P and CER concentrations were quantified by HPLC (XTerra RP18; 5 µm, 3.0×150 mm column). Results showed that in both follicular compartments, S1P concentrations were higher in healthy antral follicles than in atretic antral follicles (P<0.05). The concentration of CER in the granulosa cells was higher in atretic antral follicles than in healthy antral follicles, but no differences were observed in the theca cell layer. The S1P/CER ratio in both follicular compartments was also higher in healthy antral follicles. Interestingly, in these follicles, there was a 45-fold greater concentration of S1P than CER in the granulosa cells (P<0.05), whereas in the theca cell layer, S1P had only a 14-fold greater concentration than CER when compared with atretic antral follicles. These results suggest that S1P plays a role in follicle health, increasing cellular proliferation and survival. In contrast, reduction of S1P and the S1P/CER in the antral follicle could trigger cellular death and atresia.  相似文献   

9.
Histological indices of atresia for bovine follicles greater than or equal to 5 mm in diameter were compared with potential non-histological indices of atresia such as opaqueness of the exposed surface of non-excised follicles, concentrations of steroids in follicular fluid (FF) and specific binding of gonadotropins by granulosal cells. Each non-excised follicle was classified as clear (n=86), intermediate (n=79), or opaque (n=115), on the basis of the appearance of its exposed surface. A section of tissue from each follicle was evaluated histologically for atresia and assigned to one of the following categories: non-atretic, intermediately atretic, strongly atretic, or luteinized-atretic. Concentrations of estradiol (E), progesterone (P), and testosterone (T) and capacity of granulosal cells to bind radioactive ovine follicle-stimulating hormone (oFSH) and human chorionic gonadotropin (hCG) were determined for each follicle. Overall incidence of atresia was similar for clear (n=66%), intermediate (60%), and opaque (72%) follicles. Opaque follicles, however, were more likely to be strongly atretic (42%) than were clear (21%) or intermediate (23%) follicles. Non-atretic and intermediately atretic follicles had similar concentrations of E, P, and T and similar capacities to bind gonadotropins. Strongly atretic and luteinized-atretic follicles contained a higher concentration of P, lower E, and a reduced capacity of granulosal cells to bind oFSH than non-atretic and intermediately atretic follicles. A ratio of P:E in FF greater than or equal to 10 usually (greater than 90%) indicated that a follicle was atretic. However, lesser ratios of P:E did not accurately indicate whether follicles were atretic.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
This study was designed to determine the effect of the presence of a dominant follicle at the beginning of FSH stimulation on the morphological appearance and functional capacity of recruited follicles during FSH stimulation in cattle. Synchronized nonlactating dairy cows were assigned to 1 of 2 groups and treated with FSH in the presence (n = 5) or absence (n = 6) of a dominant follicle between Days 7 and 12 of the estrous cycle (Day 0 = estrus) to stimulate follicular growth. Dominant follicles were identified by daily ultrasonographic observations, beginning on Day 3 of the estrous cycle. Dominant follicle had an ultrasonographic diameter > or = 10 mm and were in a growing phase, or maintaining a constant diameter (> or = 10 mm) for less than 4 d. Ovaries were collected at slaughter on the morning of the third day following initiation of the FSH stimulation. All follicles > 2 mm were dissected, classified according to diameter (Class 1: 2 to 4.4 mm; Class 2: 4.5 to 7.9 mm; Class 3: > 8 mm), and incubated individually for 90 min in medium M-199 (37 degrees C, 5% CO2). Following incubation, integrity of each follicle was evaluated histologically to assess the level of atresia and biochemically to determine the in vitro release of estradiol (E2) and androstenedione in culture media. On Day 3 of the FSH treatment, mean number of follicles in each class was similar (P > 0.1) between the 2 groups. The percentage of atretic follicles in Classes 1 and 3 on Day 3 of the FSH stimulation did not differ (P > 0.1) between the 2 groups. However, the percentage of atretic follicles in Class 2 was higher (P < 0.005) in cows treated with FSH in presence than in absence of a dominant follicle (60.8 vs 38.2%). The release of E2 in culture media by small Class 1 atretic or healthy follicles, by Class 2 atretic and by Class 3 healthy follicles was not affected (P > 0.1) by the ovarian status. However (P < 0.001), the release of E2 in culture media of Class 2 healthy and Class 3 atretic follicles was less for follicles harvested from cows bearing than from those not bearing a dominant follicle. Within each follicular class, concentrations of androstenedione in the culture media did not differ between the 2 groups (P > 0.1). These results suggest that the presence of a dominant follicle at the beginning of FSH stimulation alters the population of follicles recruited FSH stimulation. This may be associated with the reported decrease of the superovulatory response in cows superovulated in presence of a dominant follicle.  相似文献   

11.
Preantral follicles of cyclic hamsters were isolated on proestrus, estrus and diestrus I, incubated for 3 h in 1 ml TC-199 containing 1 microgram ovine luteinizing hormone (LH) (NIH-S22), and the concentrations of progesterone (P), androstenedione (A) and estradiol (E2) determined by radioimmunoassay. At 0900-1000 h on proestrus (pre-LH surge) preantral follicles produced 2.4 +/- 0.3 ng A/follicle per 3 h, less than 100 pg E2/follicle and less than 250 pg P/follicle. At the peak of the LH surge (1500-1600 h) preantral follicles produced 1.8 +/- 0.2 ng P and 1.9 +/- 0.1 A and less than 100 pg E2/follicle. After the LH surge (1900-2000 h proestrus and 0900-1000 h estrus) preantral follicles were unable to produce A and E2 but produced 4.0 +/- 1.0 and 5.0 +/- 1.1 ng P/follicle, respectively. By 1500-1600 h estrus, the follicles produced 8.1 +/- 3.1 ng P/follicle but synthesized A (1.6 +/- 0.2 ng/follicle) and E2 (362 +/- 98 pg/follicle). On diestrus 1 (0900-1000 h), the large preantral-early antral follicles produced 1.9 +/- 0.3 ng A, 2.4 +/- 0.4 ng E2 and 0.7 +/- 0.2 ng P/follicle. Thus, there was a shift in steroidogenesis by preantral follicles from A to P coincident with the LH surge; then, a shift from P to A to E2 after the LH surge. The LH/follicle-stimulating hormone (FSH) surges were blocked by administration of 6.5 mg phenobarbital (PB)/100 g BW at 1300 h proestrus. On Day 1 of delay (0900-1000 h) these follicles produced large quantities of A (2.2 +/- 0.2 ng/follicle) and small amounts of E2 (273 +/- 27 pg/follicle) but not P (less than 250 pg/follicle).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The objective of this study was to evaluate the effect of bovine somatotropin (bST) on ovarian follicular population in buffalo heifers and its influence on oocyte quality, recovery rates and in vitro embryo production. We tested the hypothesis that bST treatment in buffalo females submitted to an ovum pick-up (OPU) program would improve the number of follicles recruited, oocyte quality and in vitro embryo production. A total of 10 heifers were assigned into two treatment groups: group bST (n=5; receiving 500 mg of bST in regular intervals) and control group (n=5; without additional treatment). Both groups were subjected to OPU sessions twice a week (every 3 or 4 days), for a total of 10 sessions per female, although due to procedural problems, only the first five OPU sessions produced embryos. The number of follicles and the diameters were recorded at all OPU sessions. The harvested oocytes were counted and classified according to their quality as either A, B, C, D or E, with A and B considered good quality. Cleavage and blastocyst production rates were evaluated 2 and 7 days after in vitro fertilization, respectively. The bST treatment increased the total number of antral follicles (>3mm in diameter; 12.2 compared with 8.7; p<0.05) and of small antral follicles (<5mm; 9.1 compared with 6.5; p<0.05) per OPU session. The bST also tended to increase the number of oocytes recovered per session (5.2 compared with 4.1; p=0.07), and enhanced the percentage of good quality oocytes (48.8% compared with 40.6%; p=0.07). bST showed no effect on cleavage and blastocyst production rates (p>0.05). The significant effects of performing repeated OPU sessions were decreasing the follicular population (p<0.001) as well as the number of follicles aspirated (p<0.001), and oocytes recovered (p<0.02). In conclusion, bST treatment improves the follicular population, demonstrating its possible application in buffalo donors submitted to OPU programs.  相似文献   

13.
14.
Two experiments were conducted to determine the relationship between histological signs of atresia, gonadotropin binding, and steroids in fluid of medium-sized bovine follicles during postpartum anestrus. In Experiment I, ovaries of 21 cows were removed on Days 7, 14, 28, 42, or 56 after parturition. In Experiment II, ovaries of 29 cows were removed between Days 20 and 30 postpartum after 48 or 96 h of either saline (0.9% NaCl, 5 ml) or luteinizing hormone-releasing hormone (LHRH; 500 ng/5 ml saline) injections given every 2 h via jugular cannulas. Two to 10 follicles, 4.0-7.9 mm in diameter, were removed per pair of ovaries. Follicles were classified as normal, intermediate, atretic, or luteinized-atretic, depending on their micromorphology. In both Experiments I and II, follicles classified as normal had 50-80% lower (p less than 0.05) concentrations of progesterone and 2- to 7-fold greater (p less than 0.05) concentrations of estradiol than atretic follicles. However, concentrations of androstenedione and gonadotropin-binding sites were similar in normal and atretic follicles. Atretic follicles had degenerative granulosa with several pyknotic nuclei, thick theca, and little distinction between theca and granulosa. Intermediate follicles showed slight signs of degeneration and had 2- to 3-fold greater (p less than 0.05) concentrations of progesterone than normal follicles. Concentrations of estradiol did not differ (p greater than 0.10) between normal and intermediate follicles. Equal proportions of normal and atretic medium-sized follicles were located on the ovaries bearing the corpus albicans from pregnancy (CAP).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Hinrichs K 《Theriogenology》1991,36(2):157-168
Oocytes were collected by aspiration of follicles from horse ovaries obtained at surgery or post-mortem. The oocytes were classified according to morphology of the ooplasm and cumulus. The size of the corresponding follicles was measured, and sections of the follicles were fixed and examined histologically to determine the stage of viability or atresia. In Part 1, 11 pairs of ovaries were examined and all follicles were sectioned; in Part 2, 9 pairs of ovaries were examined and only those follicles from which oocytes were recovered were sectioned. The number of follicles examined per pair of ovaries in Part 1 (average +/- SD) was 12.9 +/- 4.1. The proportion of follicles that were viable increased with increasing follicular size (P < 0.01); the percentage of viable follicles was 21, 42 and 83% for follicles < 10 mm, 10 to 19 mm, and >/= 20 mm in diameter, respectively. The overall oocyte recovery rate on aspiration of follicles was 46%. There was no significant difference in the oocyte recovery rate between viable and atretic follicles. A significantly higher proportion of oocytes recovered from viable follicles had granular ooplasm (64 vs 39%; (P < 0.05); whereas significantly more oocytes from atretic follicles had a misshapen or dense ooplasm (23 vs 6%; P < 0.05), or an expanded or pyknotic cumulus (24 vs 6%; P < 0.05). The most common cumulus morphology (63% of oocytes from viable follicles and 48% of oocytes from atretic follicles) was presence of only the corona radiata. Only 11% of oocytes from viable follicles and 9% of oocytes from atretic follicles had a complete cumulus present.  相似文献   

16.
The objective of this study was to determine the effects of supplemental bovine somatotropin (bST) and limit feeding on follicular growth and oocyte competence in yearling beef heifers. Sixteen growing heifers (424+/-4 kg) were randomly assigned to 1 of 4 treatments in a 2 x 2 factorial arrangement, with main effects of bST (0 or 33 microg/kg BW/d) and feeding regimen (ad libitum or 0.75 ad libitum intake). Animals were treated for 100 d prior to follicular aspiration, and treatments continued for the 42-d period that follicles were aspirated. Follicles were observed ultrasonically then aspirated, and recovered oocytes were matured, fertilized and developed in vitro. The number of follicles observed ultrasonically was greater with bST treatment (P<0.01) but was unchanged by plane of nutrition. The number and quality of recovered oocytes were similar among treatments, as was the number of oocytes resulting in blastocyst formation.  相似文献   

17.
A two-follicle model was used to study the nature of selection of the dominant follicle in mares by ablating neither or one of the two follicles on the day the larger follicle reached >/= 20 mm (Day 0). The larger follicle became the dominant follicle in all mares in which both follicles (n = 8) or only the larger follicle (n = 10) was retained. When only the smaller follicle (n = 9) was retained, it became dominant and ovulated in six mares and became atretic in three mares; the difference in diameter between the two follicles on Day 0 was less (p < 0.01) in mares in which the retained smaller follicle grew and ovulated (2.2 +/- 0.6 mm) than in the mares in which the follicle became atretic (5.9 +/- 1.2 mm). A decline (p < 0. 0001) in FSH concentrations occurred over Days -4 (8.4 +/- 0.7 ng/ml) to 0 (5.9 +/- 0.3 ng/ml), averaged over all groups, and the decline continued for several more days in the groups with both follicles or with only the larger follicle retained. In the group with only the smaller follicle retained, compared to the group with both follicles retained, FSH concentrations and diameter of the smaller follicle increased between Days 0 and 1 (significant interaction for each end point). After Day 1, FSH concentrations continued to increase when the smaller retained follicle became atretic; concentrations decreased when the smaller retained follicle became dominant. An increase (p < 0.0001) in LH concentrations occurred over Days -4 (12.2 +/- 1.1 pg/ml) to 0 (21.1 +/- 2.0 pg/ml), averaged over the three groups. In 23 of 27 mares, a transient peak in LH concentrations occurred within 2 days of Day 0. In the groups with both follicles or with only the larger follicle retained, an increase (p < 0.0001) in systemic estradiol concentrations occurred between Day 0 (5.3 +/- 0.6 pg/ml) and Day 2 (7.5 +/- 0.4 pg/ml). When only the smaller follicle was retained, estradiol did not begin to increase until Day 2, and it increased only when the retained follicle grew and became dominant. The beginning of an increase in estradiol and continued decrease in FSH at the expected beginning of deviation were attributable to the future dominant follicle; there was no indication that the smaller follicle was involved.  相似文献   

18.
Characteristics of the follicle population and oocyte developmental competence at selected stages of follicular development were studied in cows with the aim to increase embryo production derived from oocytes collected by transvaginal aspiration. In Experiment 1, the growth phase before dominant follicle selection and the low dominant phase during dominant follicle regression were compared. Twenty-four cyclic Holstein cows, 4 to 6 yr of age, were divided into 2 groups. Animals were synchronized using two injections of prostaglandin F2alpha at 11 d intervals, and onset of estrus was determined (Day 0). Using ultrasonography, all follicles were counted and classified. Oocytes were aspirated once on Days I through 3 (Group 1, n=5) or Days 15 and 16 (Group 2, n=3) of the estrus cycle. The experiment was carried out in 3 replicates. In Experiment 2, the growth phase of the first follicular wave before dominant follicle selection was characterized in detail. Twelve cows of the same breed and age were divided into 3 groups. Their first estrus was synchronized as in Experiment 1, and each following estrus was induced using one injection of prostaglandin F2alpha administered 4 to 6 d after each aspiration performed. The ovaries were examined, and oocytes were collected repeatedly (total of 5 times per cow) on Days 1 (Group 3, n=4), 2 (Group 4, n=4) or 3 (Group 5, n=4) after estrus at 10 d intervals during a 40 d period. Viable oocytes were matured, fertilized and cultured using the standard methods. In Experiment 1, the mean numbers (+/-SD) of all follicles and of recovered and viable oocytes per donor were higher in Group 1 than in Group 2, but only the mean numbers (+/-SD) of larger follicles and recovered oocytes were statistically significant (8.0 +/- 0.6 and 6.2 +/- 0.6.vs. 3.3 +/- 0.5 and 2.8 +/- 0.2; P< 0.05). In Experiment 2, the percentage of larger follicles out of all visible follicles and the mean numbers (+/-SD) of larger follicles per donor were significantly higher (P<0.05) in Groups 4 (75.7 and 9.1 +/- 2.7) and 5 (66.3 and 8.5 +/- 2.9) when compared to Group 3 (27.9 and 3.8 +/- 0.8). The development rate of fertilized oocytes was significantly higher (P<0.05) in Groups 4 (27.8) and 5 (27.5) than in Group 3 (12.8). It can be concluded that it is possible to improve the efficiency of transvaginal aspiration and in vitro embryo production by utilization of the growth phase of the first follicular wave before dominant follicle selection.  相似文献   

19.
Experiments were conducted to elucidate the mechanisms of active immunization against inhibin on ovarian follicular development and selection in guinea pigs. Estrous cycle was synchronized in experimental guinea pigs by implanting progesterone containing tubes. Antibodies that bound 125I-labeled bovine inhibin were produced by all guinea pigs receiving the inhibin vaccine (recombinant ovine alpha-subunit in oil emulsion) without any effects on duration of the estrous cycle. Active immunization against inhibin increased the plasma concentrations of progesterone during the luteal phase and the plasma concentrations of estradiol but failed to increase the plasma concentration of follicle-stimulating hormone (FSH) during preovulatory period. The treatment also increased the number of corpora lutea (from 1.3+/-0.3 to 7.0+/-1.6 per each ovary), and preovulatory sized follicles (from 1.8+/-0.6 to 7.0+/-1.6 per each ovary), and follicles stained positively for inhibin alpha-subunit (from 2.3+/-0.5 to 6.3+/-1.3 per each ovary) significantly. The results indicate that active immunization against inhibin enhances ovulation rate by affecting the follicle selection and only dominant follicle can be stained for inhibin alpha-subunit in guinea pigs. This study is firstly to provide direct evidence that inhibins play important role in follicle selections in guinea pigs.  相似文献   

20.
The granulosa cell produces a protein inhibitor of aromatase activity (follicle-regulatory protein: FRP), which recently was purified to homogeneity. To determine the possible involvement of FRP in follicular maturation, we examined the size distribution of follicles and their morphological patterns as well as serum steroid levels after the systemic administration of FRP and/or gonadotropin to guinea pigs, which have 5-6 days between luteolysis and ovulation in a 16-day cycle. FRP was partially purified from porcine follicular fluid by ammonium sulfate precipitation (0-35%), Dye Matrex Orange A Chromatography, dialysis, and lyophylization. To investigate the effect of pregnant mare's serum (PMS) during the periovulatory period in follicular development, adult guinea pigs underwent unilateral ovariectomy on Days 10, 12, and 14 of the estrous cycle (N = 6 each). Guinea pigs were injected twice daily with vehicle or PMS (5 IU) and 2 days thereafter the remaining ovaries were removed. Another group of guinea pigs received, in addition, intraperitoneal injections of FRP (1 mg) each morning from Day 8 of estrus until they were killed. The resected ovaries were fixed, embedded in paraffin, serially sectioned (7 micron), and stained with Azan for comparative study via light microscopy. All follicles greater than 400 micron were classified by size, and the atretic pattern was determined by mural granulosa cell pyknosis and antral sloughing. The distribution of follicular size was not affected by hemicastration at Day 10, although the percentage of total atretic follicles decreased. In the PMS-treated group, there was a significant decrease in the number of viable follicles (700-899 micron) after hemicastration. Also pronounced in follicles of this size was the lack of mid-atretic follicles. After injections of FRP for 3 or 5 days, the overall number of follicles was almost doubled as compared to the number found in the normal ovary. Additionally, there was a significant increase in the percentage of follicles that were recently atretic, although the total percentage of atretic follicles was unchanged. After hemicastration at Day 10 followed by FRP treatment for 2 days, the total percentage of atretic follicles in the remaining ovary decreased to 18% compared with 35% in the normal ovary, 46% in the hemicastrated plus PMS-treated group, and 38% in the hemicastrated and PMS- and FRP-treated group (all p less than 0.01). Treating the hemicastrated animal with PMS increased the percentage of atretic follicles in all groups.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号