首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The alveolar epithelium serves as a barrier between organism and environment and functions as the first line of protection against potential respiratory pathogens. Alveolar type II (TII) cells have traditionally been considered the immune cells of the alveolar epithelium, as they possess immunomodulatory functions; however, the precise role of alveolar type I (TI) cells, which comprise ∼95% of the alveolar epithelial surface area, in lung immunity is not clear. We sought to determine if there was a difference in the response of TI and TII cells to lung injury and if TI cells could actively participate in the alveolar immune response. TI cells isolated via fluorescence activated cell sorting (FACS) from LPS-injured rats demonstrated greater fold-induction of multiple inflammatory mediators than TII cells isolated in the same manner from the same animals. Levels of the cytokines TNF-α, IL-6 and IL-1β from cultured primary rat TI cells after LPS stimulation were significantly increased compared to similarly studied primary rat TII cells. We found that contrary to published reports, cultured TII cells produce relatively small amounts of TNF-α, IL-6 and IL-1β after LPS treatment; the higher levels of cytokine expression from cultured TII cells reported in the literature were likely from macrophage contamination due to traditional non-FACS TII cell isolation methods. Co-culture of TII cells with macrophages prior to LPS stimulation increased TNF-α and IL-6 production to levels reported by other investigators for TII cells, however, co-culture of TI cells and macrophages prior to LPS treatment resulted in marked increases in TNF-α and IL-6 production. Finally, exogenous surfactant blunted the IL-6 response to LPS in cultured TI cells. Taken together, these findings advocate a role for TI cells in the innate immune response and suggest that both TI and TII cells are active players in host defense mechanisms in the lung.  相似文献   

2.
3.
4.
Basal laminae beneath alveolar type I cells are suggested to contain highly sulfated heparan sulfate-containing proteoglycans (PGs), and cultured type II cells accumulate highly sulfated matrices. To characterize the regulation of PG synthesis during the transition from type II cells to type I cells, we examined mRNA expression of N-deacetylase/sulfotransferase (NST) and 3-O-sulfotransferase (3-OST), two enzymes specific for heparan sulfate synthesis. We found that both freshly isolated and cultured type II cells expressed NST and 3-OST as shown by in situ hybridization. Expression of surfactant-associated protein A, B, and C mRNAs, determined by semiquantitative PCR, decreased during culture. Expression of type I cell marker T1alpha mRNA increased except in cells cultured on an Engelbrecht-Holm-Swarm gel. Expression of NST was dependent on cell density and matrix and was intense in conditions where cells spread fully, whereas 3-OST expression was unchanged in the conditions examined. The PG sulfation inhibitor sodium chlorate significantly inhibited cultured type II cell spreading, and this inhibition was reversed by sodium sulfate. These results suggest that highly sulfated PGs modified by NST are necessary for the spreading of cells during transdifferentiation of type II cells to mature type I cells.  相似文献   

5.
The human alveolar type II epithelium-like cell line A549 expresses nitric oxide synthase type 2 (NOS2), but not NOS3, and produces nitric oxide (NO) upon appropriate stimulation. However, relatively little is known regarding the NOS2 and NOS3 expression of type II human alveolar epithelial cells (AEC II) in primary culture. We detected NOS3 mRNA in freshly isolated AEC II and after 24 h of culture. NOS3 mRNA levels were much higher in AEC II cultured for 24 h with or without interferon-gamma, interleukin-1beta, and tumor necrosis factor-alpha, compared with freshly isolated cells. Cytokine stimulation did not change the NOS3 mRNA expression level in AEC II compared with unstimulated cells. NOS3 protein expression was verified by Western blot, and measuring nitrate/nitrite revealed that the protein is active. In contrast, neither NOS2 mRNA nor protein could be detected in freshly isolated, unstimulated or cytokine-stimulated human AEC II in 24- or 72-h primary cultures, whereas A549 cells expressed NOS2 message and protein upon stimulation with proinflammatory cytokines. In situ hybridization confirmed that AEC II express NOS3, but not NOS2 mRNA in vivo. These data demonstrate that there are significant differences between primary AEC II and A549 cells in NOS mRNA expression pattern.  相似文献   

6.
We used the pH-sensitive fluorescent probe 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) to identify Na+/H+ exchange in freshly isolated rat alveolar type II cells and alveolar type II cells in primary culture. The intracellular pH (pHi) of freshly isolated alveolar type II cells was 7.36 +/- 0.05 (n = 3). When freshly isolated alveolar type II cells were acid loaded with nigericin in sodium-free buffer, the pHi dropped to 6.59 +/- 0.04 and remained low in sodium-free buffer. When acid-loaded cells were subsequently incubated with NaCl, pHi increased in a dose-dependent manner. Amiloride (0.1 mM) inhibited the sodium-induced increase in pHi. When the acid-loaded cells were resuspended in an unbuffered choline chloride solution, the cells secreted H+ in a sodium-dependent and amiloride-inhibitable manner. Alveolar type II cell monolayers, which were cultured for 22 h on glass coverslips and then loaded with BCECF, had a resting pHi of 7.48 +/- 0.05 (n = 4). Nigericin acidified these cultured cells in the absence of sodium and NaCl increased the pHi of these acid loaded cells as observed in freshly isolated cells. Secretagogues of pulmonary surfactant, 12-O-tetradecanoylphorbol 13-acetate (TPA) and terbutaline, did not change pHi. Inhibition of the Na+/H+ antiporter by the addition of amiloride to a Na+ containing medium or the substitution of choline for Na+ did not inhibit stimulated phosphatidylcholine secretion. We conclude that pHi regulation in rat alveolar type II cells is in part mediated by an amiloride-sensitive Na+/H+ antiporter, but this system appears not to be involved in TPA- or terbutaline-induced pulmonary surfactant secretion in primary culture.  相似文献   

7.
The pulmonary alveolar epithelium is composed of two morphologically distinct cell types, type I (TI) and type II (TII) cells. Alveolar TII cells synthesize, secrete, and recycle surfactant components; contain ion transporters; and secrete immune effector molecules. In response to alveolar injury, TII cells have the capacity to act as progenitor cells, proliferating and transdifferentiating into TI cells. Although various proteins are associated with TII cells, a plasma membrane marker specific to human TII cells that would be useful for identification in tissue and for isolating this cell type has not been described previously. We devised a strategy to produce a monoclonal antibody (MAb) specific to the apical surface of human TII cells and developed an MAb that appears to be specific for human TII cells. The antibody recognizes a 280- to 300-kDa protein, HTII-280, which has the biochemical characteristics of an integral membrane protein. HTII-280 is detected by week 11 of gestation and is developmentally regulated. HTII-280 is useful for isolating human TII cells with purities and viabilities >95%. HTII-280 is likely to be a useful morphological and biochemical marker of human TII cells that may help to advance our understanding of various lung pathological conditions, including the origin and development of various lung tumors. (J Histochem Cytochem 58:891–901, 2010)  相似文献   

8.
Vitamin E is the primary lipophilic antioxidant in mammals. Lack of vitamin E may lead to an increase of cytotoxic phospholipid-peroxidation products (PL-Ox). However, we could previously show that alimentary vitamin E-depletion in rats did not change the concentrations of dienes, hydroperoxides, and platelet-activating factor-related oxidation products in alveolar type II cells (TII cells). We hypothesized that vitamin E deficiency increases the activity of enzymes involved in the degradation of PL-Ox. Degradation of PL-Ox may be catalyzed by phospholipase A2, PAF-acetylhydrolase, or peroxiredoxins (Prx's). Alimentary vitamin E deficiency in rats increased the expression of Prx-1 at the mRNA and protein levels and the formation of Prx-SO3, but it did not change the expression of Prx-6 or the activity of phospholipase A2 and PAF-acetylhydrolase in TII cells. H2O2-induced oxidative stress in isolated TII cells activated protein kinase Calpha (PKCalpha) and increased the expression of Prx-1 and Prx-6. Inhibition of PKCalpha in isolated TII cells by long-time incubation with PMA inhibited PKCalpha and Prx-1 but not Prx-6. We concluded that the expression of Prx-1 and -6 is selectively regulated in TII cells; PKCalpha regulates the expression of Prx-1 but not Prx-6. Prx-6 expression may be closely linked to lipid peroxidation.  相似文献   

9.
The alveolar surface of the lung is lined by two classes of epithelial cells, type I and type II cells. Type I cells cover more than 97% of the alveolar surface. Although this cell type is felt to be essential for normal gas exchange, neither unique identifying characteristics nor functions have been described for the type I cell. We have produced monoclonal antibodies to (a) component(s) of molecular weight 40,000 and 42,000 of the apical surface of rat alveolar type I cells. The antibodies are specific to the lung in Western blots of organ homogenates. In immunocytochemical studies of frozen lung at the level of both light and electron microscopy, the monoclonal antibodies appear to react specifically with the apical plasma membrane of type I cells. Airway, vascular, interstitial cells, type II cells and macrophages are not immunoreactive. Western blots of isolated type I cells (approx. 70% pure) also demonstrate immunoreactivity at molecular weights of 40,000 and 42,000. When the lung is injured, type I cells may be damaged and sloughed from the alveolar surface. Alveolar repair occurs when the second type of alveolar cell, the type II cell, divides. Cell progeny may retain type II cell morphology or may differentiate into type I cells. Western blots of freshly isolated type II cells (approx. 85% pure) do not display immunoreactivity with our monoclonal antibodies. However, type II cells maintained in culture acquire immunoreactivity to monoclonal antibodies, demonstrating that type II cells in vitro have the capacity to develop a characteristic associated with type I cells in situ. The availability of markers for a specific membrane component of type I cells should facilitate the study of many questions on alveolar functions, development and response to injury.  相似文献   

10.
Adipocyte differentiation-related protein (ADrP) is an intrinsic lipid storage droplet protein that is highly expressed in lung. ADrP localizes to lipid storage droplets within lipofibroblasts, pulmonary cells characterized by high triacylglycerol, which is a precursor for surfactant phospholipid synthesis by alveolar type II epithelial (EPII) cells. The developmental pattern of ADrP mRNA and protein expression in lung tissue parallels triacylglycerol accumulation in rat lung. ADrP mRNA levels are relatively high in isolated lipofibroblasts, accounting for the high ADrP expression in lung. Isolated EPII cells, which do not store neutral lipids but derive them from lipofibroblasts, have low levels of ADrP mRNA expression. ADrP is found around lipid droplets in cultured lipofibroblasts, but not in EPII cells isolated from developing rat lung. After coculture with lipofibroblasts, EPII cells acquired ADrP, which associates with lipid droplets. Furthermore, (3)H-labeled triolein in isolated ADrP-coated lipid droplets is a tenfold better substrate for surfactant phospholipid synthesis by cultured EPII cells than (3)H-labeled synthetic triolein alone. Antibodies to ADrP block transfer of neutral lipid. These data suggest a role for ADrP in this novel mechanism for the transfer of lipid between lipofibroblasts and EPII cells.  相似文献   

11.
Class II molecules on rat alveolar type II epithelial cells   总被引:2,自引:0,他引:2  
Class II (Ia) molecules of the major histocompatibility complex are important in the presentation of antigen to T cells and in the regulation of the immune response. Recent studies have suggested that many epithelial cell types can express class II molecules. We examined rat alveolar type II epithelial cells, a cell which can synthesize and secrete pulmonary surface-active material, for the expression of class II antigens. Using an indirect immunofluorescent technique with a mouse anti-rat class II monoclonal antibody (OX-4), the majority of type II cells isolated from pathogen-free Sprague-Dawley rats expressed Ia antigens as determined by fluorescent microscopy and cell sorter analysis. In culture, the Ia expression was lost from type II cells. The addition of recombinant interferon-gamma to cultures of type II cells induced the expression of class II antigens. These findings suggest that class II antigen expression on type II cells may have relevance to immune responses occurring in the lung.  相似文献   

12.

Background

Type II alveolar epithelial cells (AECII) are well known for their role in the innate immune system. More recently, it was proposed that they could play a role in the antigen presentation to T lymphocytes but contradictory results have been published both concerning their surface expressed molecules and the T lymphocyte responses in mixed lymphocyte cultures. The use of either AECII cell line or fresh cells could explain the observed discrepancies. Thus, this study aimed at defining the most relevant model of accessory antigen presenting cells by carefully comparing the two models for their expression of surface molecules necessary for efficient antigen presentation.

Methods

We have compared by flow cytometry the surface expression of the major markers involved in the immunological synapse on the A549 cell line, the most popular model of type II alveolar epithelial cells, and freshly isolated cells. HLA-DR, CD80, CD86, ICOS-L, CD54, CD58 surface expression were studied in resting conditions as well as after IFN-γ/TNF-α treatment, two inflammatory cytokines, known to modulate some of these markers.

Results

The major difference found between the two cells types was the very low surface expression of HLA-DR on the A549 cell line compared to its constitutive expression on freshly isolated AECII. The surface expression of co-stimulatory molecules from the B7 family was very low for the CD86 (B7-2) and ICOS-L (B7-H2) and absent for CD80 (B7-1) on both freshly isolated cells and A549 cell line. Neither IFN-γ nor TNF-α could increase the expression of these classical co-stimulatory molecules. However CD54 (ICAM-1) and CD58 (LFA-3) adhesion molecules, known to be implicated in B7 independent co-stimulatory signals, were well expressed on the two cell types.

Conclusions

Constitutive expression of MHC class I and II molecules as well as alternative co-stimulatory molecules by freshly isolated AECII render these cells a good model to study antigen presentation.  相似文献   

13.
In order to assess the usefulness of A549, L-2, and AK-D cell lines as model systems for alveolar type II cells, we compared their phospholipid composition to that of fibroblasts grown under similar conditions. The percentage of disaturated phosphatidylcholine and phosphatidylglycerol, key phospholipids of purified surface-active material, was the same in epithelial cells and fibroblasts. When A549 cells were maintained in serum-free media for two days, ultrastructural examination showed an increase in cytoplasmic lamellar inclusions but there was no change in the percentage of disaturated phosphatidylcholine or phosphatidylglycerol. Because the lipid content of these cultured cells was very different from that of freshly isolated rat type II cells, we conclude that their suitability as model cell systems for type II cells is questionable.  相似文献   

14.
15.
16.
17.
Curcumin blocks activation of pancreatic stellate cells   总被引:9,自引:0,他引:9  
Activated pancreatic stellate cells (PSCs) play a pivotal role in the pathogenesis of pancreatic fibrosis and inflammation. Inhibition of activation and cell functions of PSCs is a potential target for the treatment of pancreatic fibrosis and inflammation. The polyphenol compound curcumin is the yellow pigment in curry, and has anti-inflammatory and anti-fibrotic properties. We here evaluated the effects of curcumin on the activation and cell functions of PSCs. PSCs were isolated from rat pancreas tissue and used in their culture-activated, myofibroblast-like phenotype unless otherwise stated. The effects of curcumin on proliferation, alpha-smooth muscle actin gene expression, monocyte chemoattractant protein (MCP)-1 production, and collagen expression were examined. The effect of curcumin on the activation of freshly isolated cells in culture was also assessed. Curcumin inhibited platelet-derived growth factor (PDGF)-induced proliferation, alpha-smooth muscle actin gene expression, interleukin-1beta- and tumor necrosis factor (TNF)-alpha-induced MCP-1 production, type I collagen production, and expression of type I and type III collagen genes. Curcumin inhibited PDGF-BB-induced cyclin D1 expression and activation of extracellular signal-regulated kinase (ERK). Curcumin inhibited interleukin-1beta- and TNF-alpha-induced activation of activator protein-1 (AP-1) and mitogen-activated protein (MAP) kinases (ERK, c-Jun N-terminal kinase (JNK), and p38 MAP kinase), but not of nuclear factor-kappaB (NF-kappaB). In addition, curcumin inhibited transformation of freshly isolated cells to myofibroblast-like phenotype. In conclusion, curcumin inhibited key cell functions and activation of PSCs.  相似文献   

18.
人体肝癌细胞急性低氧及低氧习服差异表达基因分析   总被引:9,自引:0,他引:9  
Wang JH  Shan YJ  Cong YW  Wu LJ  Yuan XL  Zhao ZH  Wang SQ  Chen JP 《生理学报》2003,55(3):324-330
本文分析了人体肝癌细胞(HepG2)急性低氧处理以及低氧习服处理后基因表达谱的改变。急性低氧处理为细胞在1%氧气中培养48h,低氧习服处理为细胞在1%氧气中培养24h,常氧培养24h,以此作为一个周期,重复6个周期。联合应用抑制消减杂交技术和cDNA芯片技术,筛选HepG2细胞经急性低氧处理与正常培养细胞相比差异表达的基因,以及经低氧习服处理细胞与正常培养细胞相比差异表达的基因。结果显示,HepG2细胞经急性低氧处理与在常氧条件下培养相比,差异表达的基因有37个,表达水平全部表现为下调,其中包括参与细胞周期、细胞应激、细胞信号转导、细胞骨架形成、转录相关蛋白及细胞代谢相关蛋白的基因,1个未知基因序列、4个EST序列、5个线粒体蛋白基因,另外有功能不明的蛋白质基因12个。低氧习服处理的细胞与常氧条件下培养的细胞相比,差异表达的基因有6个,其中包括两个线粒体蛋白基因、金属蛋白酶1基因、转铁蛋白基因、Thymosin .beta-4和TPT1基因。其中线粒体蛋白ND4、转铁蛋白、Thymosin.beta-4和TPT1基因的表达呈上调,线粒体NDl及金属蛋白酶1基因的表达水平呈下调。经低氧习服处理后,细胞低氧耐受力提高,低氧习服处理细胞基因的表达与急性低氧处理细胞和正常培养细胞的基因表达不同,这种变化可能与低氧习服细胞低氧耐受力的增强有关。  相似文献   

19.
Hemoglobin is the main oxygen carrying heme protein in erythrocytes. In an effort to study the differential gene expression of alveolar epithelial type I and type II cells using DNA microarray technique, we found that the mRNAs of hemoglobin alpha- and beta-chains were expressed in type II cells, but not in type I cells. The microarray data were confirmed by RT-PCR. The mRNA expression of both chains decreased when type II cells trans-differentiated into type I-like cells. Immunocyto/histochemistry revealed that hemoglobin protein was specifically localized in type II cells of a lung cell mixture and rat lung tissue. The endogenous synthesis of hemoglobin in alveolar epithelial cells suggests that hemoglobin may have unidentified functions other than oxygen transport in the lung.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号