首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protease of murine leukemia virus (MLV) was cloned into pMal-c2 vector, expressed in fusion with maltose-binding protein (MBP), and purified to homogeneity after Factor Xa cleavage of the chimeric protein. Substantial degradation of the fusion protein was observed during expression, which severely diminished the yield. The degree of degradation of the fusion protein was even more pronounced when a single-chain form of the MLV protease was cloned after the gene coding for MBP. To increase the yield, a hexahistidine tag with an additional Factor Xa cleavage site was cloned after the protease and nickel chelate affinity chromatography was used as the first purification step. The modified procedure resulted in substantially higher yield as compared to the original procedure. The degradation of hexahistidine-tagged active site mutant MLV protease was very low and comparable to that obtained with hexahistidine-tagged MBP, but purified MLV protease alone was not able to degrade purified MBP, suggesting that during expression the active MLV protease may activate bacterial proteases which appear to be responsible for the degradation of the fusion proteins.  相似文献   

2.
Strategies for the expression of precursors of eukaryotic secreted proteins as part of fused proteins in Escherichia coli have been explored. A fusion protein with beta-galactosidase at the N-terminal end and honeybee prepromelittin at the C-terminal end (beta-gal-pM) was expressed in low amounts as a cleaved polypeptide, from which the promelittin portion had been removed. Inclusion in the induction culture of 10 mM MgCl2 or 8.3% (v/v) ethanol, inhibitors of signal peptidase, gave rise to the full-length beta-gal-pM fusion protein. The results suggest that a soluble recombinant fusion protein with a signal peptide in an internal location 660 residues from the N-terminus is recognized by the E. coli translocation apparatus in the inner membrane and by leader peptidase. High-level production (about 45% of total cellular proteins) of prepromelittin was achieved when it was part of a fusion protein at the C-terminus of a truncated insoluble polypeptide from bacteriophage gene 10. This fusion protein separated into inclusion bodies in an aggregated form. In contrast, attempts to express prepromelittin by itself or at the N-terminal end of a fusion with mouse dihydrofolate reductase (pM-DHFR) proved unsuccessful.  相似文献   

3.
Six mutations in malE, the structural gene for the periplasmic maltose-binding protein (MBP) from Escherichia coli, prevent growth on maltose as a carbon source, as well as release of the mutant proteins by the cold osmotic-shock procedure. These mutations correspond to insertion of an oligonucleotide linker, concomitant with a deletion. One of the mutations (malE127) affects the N-terminal extension (the signal peptide), whereas the five others lie within the mature protein. As expected, the export of protein MalE127 is blocked at an early stage. This protein is neither processed to maturity nor sensitive to proteinase K in spheroplasts. In contrast, in the five other mutants, the signal peptide is cleaved and the protein is accessible to proteinase K added to spheroplasts. This indicates that the five mutant proteins are, at least in part, exported through the inner membrane. We propose that the corresponding mutations define two regions of the mature protein (between residues 18 and 42 and between residues 280 and 306), which are important for release of the protein from the inner membrane into the periplasm. We discuss the results in terms of possible conformational changes at this late step of export to the periplasm.  相似文献   

4.
We have employed the technique of gene fusion to fuse the LacZ gene encoding the cytoplasmic enzyme beta-galactosidase with the malE gene encoding the periplasmic maltose binding protein (MBP). Strains were obtained which synthesize malE-lacZ hybrid proteins of various sizes. These proteins have, at their amino terminus, a portion of the MBP and at their carboxyl terminus, enzymatically active beta-galactosidase. When the hybrid protein includes only a small, amino-terminal portion of the MBP, the hybrid protein residues in the cytoplasm. When the hybrid protein contains enough of the MBP to include an intact MBP signal sequence, a significant portion of the hybrid protein is found in the cytoplasmic membrane, suggesting that secretion of the hybrid protein has been initiated. However, in no case is the hybrid protein secreted into the periplasm, even when the hybrid protein includes almost the entire MBP. In the latter case, the synthesis and attempted export of the hybrid protein interferes with the export of at least certain normal envelope proteins, which accumulate in the cell in their precursor forms, and the cell dies. These results suggest that a number of envelope proteins may be exported at a common site, and that there are only a limited number of such sites. Also, these results indicate that it is not sufficient to simply attach an amino-terminal signal sequence to a polypeptide to assure its export.  相似文献   

5.
A hybrid between the maltose-binding protein (MalE) of Escherichia coli and the gene 5 protein (G5P) of phage M13 was constructed at the genetic level. MalE is a monomeric and periplasmic protein while G5P is dimeric and cytoplasmic. The hybrid (MalE-G5P) was synthesized in large amounts from a multicopy plasmid and efficiently exported into the periplasmic space of E. coli. The export was dependent on the integrity of the signal peptide. MalE-G5P was purified from a periplasmic extract by affinity chromatography on cross-linked amylose, with a yield larger than 50,000 molecules/E. coli cell. The hybrid specifically bound denatured but not double-stranded DNA cellulose, as native G5P. Sedimentation velocity and gel-filtration experiments showed that MalE-G5P exists as a dimer. Thus, it was possible to efficiently translocate through the membrane a normally cytoplasmic and dimeric protein, by fusion to MalE. Moreover, the passenger protein kept its activity, specificity and quaternary structure in the purified hybrid. MalE-G5P will enable the study of mutant G5P that no longer binds single-stranded DNA and therefore cannot be purified by DNA-cellulose chromatography.  相似文献   

6.
The interaction of the radioactively labeled purified maltose-binding protein of Escherichia coli with membrane vesicles was studied. The maltose-binding protein bound specifically to the vesicles, in the presence of maltose, on few sites. Under conditions in which a potential was imposed across the membrane, the specific binding was (i) increased, (ii) dependent on maltose, and (iii) abolished in a mutant defective in the tar gene product, one of the methyl-accepting chemotaxis proteins. At least 1,300 binding sites were present in the membrane fraction of logarithmically growing cells.  相似文献   

7.
8.
Recombinant fusion proteins containing human atrial natriuretic factor, ANF(1-28) joined to chloramphenicol acetyltransferase (CAT) via cleavable linker sequences have been produced in Escherichia coli. The linker sequences were designed to allow the release of authentic ANF(1-28) following proteolytic cleavage by enterokinase or thrombin, or chemical cleavage with 2-(2-nitrophenylsulphenyl)-3-methyl-3'-bromoindolenine. Proteins, containing ANF(1-28) fused to the carboxyl-terminal region of CAT (using the ScaI restriction site in the cat gene), were largely soluble in E. coli and were obtained in higher yield than analogues containing ANF(1-28) linked to shorter CAT sequences. The longer derivatives also retained CAT activity allowing subsequent purification by affinity chromatography.  相似文献   

9.
Less than 20% of the Escherichia coli maltose-binding protein (MBP) synthesized in Bacillus subtilis is exported. However, a portion of the secreted MBP was processed cotranslationally. Coexpression of SecB, a secretion-related chaperone of E. coli, stimulated posttranslational export of MBP in B. subtilis but inhibited its cotranslational processing. Export of a SecB-independent MBP-ribose-binding protein hybrid precursor was not enhanced by SecB. A slowly folding MBP derivative (MBP-Y283D) was more efficiently secreted than wild-type MBP, suggesting that the antifolding activity of SecB promotes posttranslational secretion of MBP in B. subtilis.  相似文献   

10.
Ribosome inactivating proteins are glycosidases synthesized by many plants and have been hypothesized to serve in defence against pathogens. These enzymes catalytically remove a conserved purine from the sarcin/ricin loop of the large ribosomal RNA, which has been shown in vitro to limit protein synthesis. The resulting toxicity suggests that plants may possess a mechanism to protect their ribosomes from depurination during the synthesis of these enzymes. For example, pokeweed antiviral protein (PAP) is cotranslationally inserted into the lumen of the endoplasmic reticulum and travels via the endomembrane system to be stored in the cell wall. However, some PAP may retrotranslocate across the endoplasmic reticulum membrane to be released back into the cytosol, thereby exposing ribosomes to depurination. In this work, we isolated and characterized a complexed form of the enzyme that exhibits substantially reduced activity. We showed that this complex is a homodimer of PAP and that dimerization involves a peptide that contains a conserved aromatic amino acid, tyrosine 123, located in the active site of the enzyme. Bimolecular fluorescence complementation demonstrated that the homodimer may form in vivo and that dimerization is prevented by the substitution of tyrosine 123 for alanine. The homodimer is a minor form of PAP, observed only in the cytosol of cells and not in the apoplast. Taken together, these data support a novel mechanism for the limitation of depurination of autologous ribosomes by molecules of the protein that escape transport to the cell wall by the endomembrane system.  相似文献   

11.
A secretionary intermediate of the Escherichia coli maltose-binding protein accumulated in the inner membrane when the membrane electrochemical potential was reduced and the cytosolic ATP concentration was normal. The intermediate was mature in size, but maintained a conformation similar to the cytosolic precursor form, and not the mature periplasmic protein, as measured by differences in susceptibility to proteinase K in vitro. The intermediate was located on the periplasmic side of the inner membrane. Restoration of the membrane electrochemical potential resulted in the movement of the intermediate from the inner membrane to the periplasm. In other experiments in which the ATP concentration was reduced by 96% and the electrochemical potential remained normal, no intermediate accumulated. Thus, the final step in the export of maltose-binding protein requires the electrochemical potential of the inner membrane and does not require ATP.  相似文献   

12.
Tyrosine hydroxylase is the rate-limiting step in the synthesis of dopamine and is tightly regulated. Previous studies have shown it to be covalently modified and potently inhibited by 3,4-dihydroxyphenylacetaldehyde (DOPAL), an endogenous neurotoxin via dopamine catabolism which is relevant to Parkinson's disease. In order to elucidate the mechanism of enzyme inhibition, a source of pure, active tyrosine hydroxylase was necessary. The cloning and novel purification of human recombinant TH from Escherichia coli is described here. This procedure led to the recovery of ~23 mg of pure, active and stable enzyme exhibiting a specific activity of ~17 nmol/min/mg. The enzyme produced with this procedure can be used to delineate the tyrosine hydroxylase inhibition by DOPAL and its relationship to Parkinson's disease. This procedure improves upon previous methods because the fusion protein gives rise to high expression and convenient affinity-capture, and the cleaved and highly purified hTH makes the product useful for a wider variety of applications.  相似文献   

13.
The winter flounder (Pseudopleuronectes americanus) antimicrobial peptide pleurocidin was produced in Escherichia coli using a synthetic gene constructed by PCR. The gene expresses pleurocidin from pET21a fused to the C-terminus of an insoluble carrier peptide. Once expressed, the fusion peptide formed inclusion bodies in the cytoplasm that were collected, solubilized in guanidine-HCl, and chemically cleaved using hydroxylamine at a unique asparaginyl-glycyl dipeptide. This released recombinant pleurocidin (r-pleurocidin), which was purified using ultrafiltration followed by reverse phase chromatography. The r-pleurocidin peptide resolved as a single band (2.7 kDa) when analyzed by Tris-Tricine buffered SDS-PAGE, and its amino acid sequence was confirmed using tandem mass spectrometry. Extending the pleurocidin sequence with a C-terminal glycine (r-pleurocidin-G) suppressed production of the fusion peptide 15-fold. When pleurocidin was extended further to include aspartate (r-pleurocidin-GD), the same effect was observed, and when pleurocidin was extended with aspartate alone, no effect was observed. Expression of fusion peptide containing either r-pleurocidin-G or r-pleurocidin-GD with low concentrations of inductant caused E. coli to enter stationary phase prematurely, but did not affect overall growth rates. A partial production recovery of r-pleurocidin-G was achieved by inducing expression in stationary phase cells. We observed r-pleurocidin-G to have enhanced antimicrobial activity compared with r-pleurocidin, and we propose that this activity interferes with E. coli metabolism during expression. This antimicrobial effect is probably facilitated by residual solubility of the fusion peptide and by a C-terminal cap structure, which stabilizes the r-pleurocidin-G alpha-helix that is thought to be important for activity.  相似文献   

14.
Maltose-binding protein (MBP) is translocated across the cytoplasmic membrane of Escherichia coli; successful export depends on information in both the signal peptide and the mature moiety of the protein. To determine the shortest portion of the mature region that would maintain detectable entry of MBP into the export pathway, we took advantage of the properties of an MBP species with proline substituted in the +1 position relative to the cleavage site (MBP27-P). This protein efficiently crosses the cytoplasmic membrane but is not processed and acts as a competitive inhibitor of signal peptidase I (leader peptidase). Export of MBP27-P is measured by the inhibition of processing of other proteins, such as ribose-binding protein (RBP). A series of truncated derivatives of MBP27-P were tested for the ability to inhibit processing of RBP. An MBP27-P species with only 33 amino acids of the mature moiety inhibited processing of RBP, indicating that this truncated polypeptide was probably exported and interacted with signal peptidase I.  相似文献   

15.
The pokeweed antiviral protein is a ribosome inactivating protein acting on eukaryotic as well as on prokaryotic ribosomes thus is toxic for both cell types. Using the PCR technique to clone the PAP open reading frame, we characterized two cDNAs coding for proteins inhibiting eukaryotic translation process and which are not toxic for Escherichia coli, unlike the wild type protein. The sequence of the two cDNAs showed that the proteins contain only one and two point mutations. This result suggest that the wild type amino acids in the mutated positions participate in the prokaryotic ribosome recognition. These mutants might be useful for the construction of immunotoxins containing the pokeweed antiviral protein as toxin.  相似文献   

16.
M C O'Hare  N J Clarke  T E Cawston 《Gene》1992,111(2):245-248
Porcine type-I collagenase (Colg-1) was produced as a fusion protein in Escherichia coli using the pAX5 expression vector. The fusion protein consists of beta-galactosidase at the N terminus joined to a collagen hinge region and a blood-coagulation factor Xa cleavage site linked to Colg-1. Recombinant collagenase (reColg-1) was biologically active in the form of a fusion protein and could be released by treatment with factor Xa to yield Colg-1 with the authentic N terminus (phenylalanine) found in vivo. The results show that reColg-1 produced in E. coli is folded correctly, cleaves type-I collagen into 1/4 and 3/4 fragments at the characteristic Colg-sensitive site, and is produced at high enough levels to generate a source of recombinant enzyme for x-ray crystallography studies.  相似文献   

17.
Guo F  Zhu G 《BioTechniques》2012,52(4):247-253
We observed the presence of contaminating NADH oxidation activity in maltose binding protein (MBP) fusion proteins expressed in Escherichia coli and purified using conventional amylose resin-based affinity chromatography. This contaminating NADH oxidation activity was detectable with at least four different enzymes from Cryptosporidium parvum expressed as MBP-fusion proteins (i.e., an enoyl-reductase domain from a type I fatty acid synthase, a fatty acyl-CoA binding protein, the acyl-ligase domain from a polyketide synthase, and a putative thioesterase), regardless of their NADH dependence. However, contaminating NADH oxidation activity was not present when fusion proteins were engineered to contain a His-tag and were purified using a Ni-NTA resin-based protocol. Alternatively, for proteins containing only an MBP-tag, the contaminating activity could be eliminated through the addition of 0.1% Triton X-100 and 2% glycerol to the column buffer during homogenization of bacteria and first column wash, followed by an additional wash and elution with regular column and elution buffers. Removal of the artifactual activity is very valuable in the study of enzymes using NADH as a cofactor, particularly when the native activity is low or the recombinant proteins are inactive.  相似文献   

18.
We have reconstituted Escherichia coli maltoporin into phospholipid membranes at low lipid-to-protein ratios to produce two-dimensional crystals of this membrane protein. Electron microscopy of negatively stained membranes showed three different types of arrays, two of them hexagonal and the third rectangular, all diffracting to approximately (2 nm)-1. Furthermore, we have core-constituted maltoporin with the maltose-binding protein from E. coli, a soluble periplasmic protein that has been proposed to interact with maltoporin. One of the hexagonal arrays was found to bind maltose-binding protein molecules in a regular way, while the maltose-binding protein binding sites were not accessible in the other crystal forms. Difference maps from averaged decorated arrays and undecorated controls showed three symmetry-related maltose-binding protein binding sites per maltoporin trimer, of which not more than one is likely to be occupied at a given time. Using multivariate statistical analysis to select similar unit cells of the decorated maltoporin array, we have obtained a map showing the rough outline of a maltose-binding protein molecule interacting with the pore formed by a maltoporin trimer.  相似文献   

19.
The human interferon gamma (hIFNgamma) gene was used as a fusion partner to mediate the expression of heterologous proteins and the effect of the fusion partner length on the expression of the heterologous protein was researched. Plasminogen kringle 5 (pk5), an inhibitor of angiogenesis, was fused to hIFNgamma and its serially truncated fragments, respectively, and the expression of fusion proteins was determined by SDS-Page gel. The pk5 protein was obtained readily by the introduction of sequences recognized by protease factor Xa at the fusion site and ion-exchange chromatography was employed to purify pk5. The recovery of the biological activities of pk5 was studied using the orthogonal experimental design L9 (3(4)) (four factors, three levels, nine experiments) and evaluated by measurement of anti-endothelial cell proliferation in vitro.  相似文献   

20.
We have fused the variable domains of a mouse antibody to the C-terminal end of the maltose-binding protein (malE), at the genetic level. The hybrid proteins were expressed in E. coli under control of the malEp promoter, and exported to the periplasm, at low temperature. They were purified by affinity chromatography on cross-linked amylose. When the two variable domains were fused together through a peptide link, the hybrid displayed similar affinity and specificity to the antigen as the native antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号