首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The aim of this study was to investigate the role of nitric oxide (NO) in a cellular model of early preconditioning (PC) in cultured neonatal rat ventricular myocytes. Cardiomyocytes "preconditioned" with 90 min of stimulated ischemia (SI) followed by 30 min reoxygenation in normal culture conditions were protected against subsequent 6 h of SI. PC was blocked by N(G)-monomethyl-L-arginine monoacetate but not by dexamethasone pretreatment. Inducible nitric oxide synthase (NOS) protein expression was not detected during PC ischemia. Pretreatment (90 min) with the NO donor S-nitroso-N-acetyl-L,L-penicillamine (SNAP) mimicked PC, resulting in significant protection. SNAP-triggered protection was completely abolished by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) but was unaffected by chelerythrine or the presence of glibenclamide and 5-hydroxydecanoate. With the use of RIA, SNAP treatment increased cGMP levels, which were blocked by ODQ. Hence, NO is implicated as a trigger in this model of early PC via activation of a constitutive NOS isoform. After exposure to SNAP, the mechanism of cardioprotection is cGMP dependent but independent of protein kinase C or ATP-sensitive K(+) channels. This differs from the proposed mechanism of NO-induced cardioprotection in late PC.  相似文献   

2.
This study represents results of investigation carried out to determine the endothelium-protective effect of early and late phases of brain ischemic preconditioning as well as local and remote adaptation. The experiments were performed on adult male rats. Prolonged 30-min four vessels brain ischemia followed by 120-min reperfusion on carotid arteries, was performed (control group). Early and late local ischemic preconditioning was due to both 5-min ischemia and 30-min and 48 h reperfusion respectively on carotid arteries. Remote ischemic preconditioning was caused by 30-min ischemia and also by 15-min and 48 h reperfusion, respectively (early and late phases of adaptation) on femoral artery before prolonged brain ischemia described above. To estimate the role of nitric oxide in ischemic adaptation, mechanisms involved both nonselective blocker of NO-synthesis (N omega-nitro-L-arginine) in the time of early adaptation phase and the relatively selective iNOS inhibitor S-methylisothiourea sulfate, given before sustained brain ischemia, on the late preconditioning. Registration of brain blood flow was made by ultrasonic high-frequency Doppler device. Degree of brain edema was studied and evaluation of desquamated endothelial cells in blood was carried out. Early and late phases of local ischemic preconditioning were found to improve the brain blood flow and level of circulatory endothelial cells as well as to reduce degree of edema. The endothelium-protective effect of remote ischemic preconditioning has been proved in this study only on the late phase. Nitric oxygen was found to be important endothelium-protective factor in ischemic preconditioning.  相似文献   

3.
4.
Remote preconditioning is a unique phenomenon in which brief episodes of ischemia and reperfusion to remote organ protect the target organ against sustained ischemia–reperfusion (I/R)-induced injury. Protective effects of remote renal preconditioning (RRPC) are well established in heart, but their mechanisms still remain to be elucidated. So, the present study was designed to investigate the possible role of oxygen-sensing hypoxia inducible factor-prolyl 4-hydroxylases (HIF-P4Hs) in RRPC-induced cardioprotection in rats. Remote renal preconditioning was performed by four episodes of 5 min renal artery occlusion and reperfusion. Isolated rat hearts were perfused on Langendorff apparatus and were subjected to global ischemia for 30 min followed by 120 min reperfusion. The levels of lactate dehydrogenase (LDH) and creatine kinase (CK) were measured in coronary effluent to assess the degree of myocardial injury. Extent of myocardial infarct size and coronary flow rate was also measured. Ethyl 3,4-dihydroxybenzoate (EDHB) and α-ketoglutarate (α-KG) were employed as HIF-P4Hs inhibitor and activator, respectively. Diethyldithiocarbamic acid (DDCA) was employed as NFkB inhibitor. Remote renal preconditioning prevented I/R-induced myocardial injury and produced cardioprotective effects. Pharmacological preconditioning with EDHB (100 mg kg−1 i.p.) mimicked the cardioprotective effects of RRPC. However, α-KG (200 mg kg−1 i.p.) and DDCA (150 mg kg−1 i.p.) abolished cardioprotective effects of RRPC and EDHB. So, it may be concluded that inhibition of HIF-P4H has a key role in RRPC-induced cardioprotection. Further, remote preconditioning-induced HIF-P4H inhibition may have triggered a transduction pathway involving activation of NFkB.  相似文献   

5.

Background  

Nitric oxide (NO) is cardioprotective and a mediator of ischemic preconditioning (IP). Endothelial nitric oxide synthase (eNOS) is protective against myocardial ischemic injury and a component of IP but the role and location of neuronal nitric oxide synthase (nNOS) remains unclear. Therefore, the aims of these studies were to: (i) investigate the role of nNOS in ischemia/reoxygenation-induced injury and IP, (ii) determine whether its effect is species-dependent, and (iii) elucidate the relationship of nNOS with mitoKATP channels and p38MAPK, two key components of IP transduction pathway.  相似文献   

6.
Reperfusion injury is remarkable clinical issue that needs to be resolved as ischemia-reperfusion is a common phenomenon encountered in numerous clinical situations. The present communication report the involvement of nitric oxide (NO) in cardioprotection offered by flavonoids (rutin and quercetin) against myocardial ischemia reperfusion. Rutin produced better cardioprotection than quercetin in normal and diabetic rats. The observed cardioprotection offered with quercetin and rutin was partially abolished by prior administration of nitric oxide synthase inhibitor, L-NAME (N-nitro-L-arginine methyl ester) in both normal and diabetic rats. L-NAME abolished the cardioprotective actions of rutin more strongly than the cardioprotective actions of quercetin. However, mechanistic study with NOS inhibitor implied the possible partial role of nitric oxide in infarct size limiting effect of quercetin and rutin  相似文献   

7.
Das M  Das DK 《IUBMB life》2008,60(4):199-203
During the last 20 years, since the appearance of the first publication on ischemic preconditioning (PC), our knowledge of this phenomenon has increased exponentially. PC is defined as an increased tolerance to ischemia and reperfusion induced by previous sublethal period ischemia. This is the most powerful mechanism known to date for limiting the infract size. This adaptation occurs in a biphasic pattern (i) early preconditioning (lasts for 2-3 h) and (ii) late preconditioning (starting at 24 h lasting until 72-96 h after initial ischemia). Early preconditioning is more potent than delayed preconditioning in reducing infract size. Late preconditioning attenuates myocardial stunning and requires genomic activation with de novo protein synthesis. Early preconditioning depends on adenosine, opioids and to a lesser degree, on bradykinin and prostaglandins, released during ischemia. These molecules activate G-protein-coupled receptor, initiate activation of K(ATP) channel and generate oxygen-free radicals, and stimulate a series of protein kinases, which include protein kinase C, tyrosine kinase, and members of MAP kinase family. Late preconditioning is triggered by a similar sequence of events, but in addition essentially depends on newly synthesized proteins, which comprise iNOS, COX-2, manganese superoxide dismutase, and possibly heat shock proteins. The final mechanism of PC is still not very clear. The present review focuses on the possible role signaling molecules that regulate cardiomyocyte life and death during ischemia and reperfusion.  相似文献   

8.
Signaling pathways involving protein kinase C isozymes are modulators of cardiovascular development and response to injury. Protein kinase C epsilon activation in cardiac myocytes reduces necrosis caused by coronary artery disease. However, it is unclear whether protein kinase C epsilon function is required for normal cardiac development or inducible protection against oxidative stress. Protein kinase C delta activation is also observed during cardiac preconditioning. However, its role as a promoter or inhibitor of injury is controversial. We examined hearts from protein kinase C epsilon knock-out mice under physiological conditions and during acute ischemia reperfusion. Null-mutant and wild-type mice displayed equivalent base-line morphology and hemodynamic function. Targeted disruption of the protein kinase C epsilon gene blocked cardioprotection caused by ischemic preconditioning and alpha(1)-adrenergic receptor stimulation. Protein kinase C delta activation increased in protein kinase C epsilon knock-out myocytes without altering resistance to injury. These observations support protein kinase C epsilon activation as an essential component of cardioprotective signaling. Our results favor protein kinase C delta activation as a mediator of normal growth. This study advances the understanding of cellular mechanisms responsible for preservation of myocardial integrity as potential targets for prevention and treatment of ischemic heart disease.  相似文献   

9.
Preconditioning with brief periods of ischemia-reperfusion (I/R) induces a delayed protection of coronary endothelial cells against reperfusion injury. We assessed the possible role of nitric oxide (NO) produced during prolonged I/R as a mediator of this endothelial protection. Anesthetized rats were subjected to 20-min cardiac ischemia/60-min reperfusion, 24 h after sham surgery or cardiac preconditioning (1 x 2-min ischemia/5-min reperfusion and 2 x 5-min ischemia/5-min reperfusion). The nonselective NO synthase (NOS) inhibitor l-NAME, the selective inhibitors of neuronal (7-nitroindazole) or inducible (1400W) NOS, or the peroxynitrite scavenger seleno-l-methionine were administered 10 min before prolonged ischemia. Preconditioning prevented the reperfusion-induced impairment of coronary endothelium-dependent relaxations to acetylcholine (maximal relaxation: sham 77 +/- 3; I/R 44 +/- 6; PC 74 +/- 5%). This protective effect was abolished by l-NAME (41 +/- 7%), whereas 7-NI, 1400W or seleno-l-methionine had no effect. The abolition of preconditioning by l-NAME, but not by selective nNOS or iNOS inhibition, suggests that NO produced by eNOS is a mediator of delayed endothelial preconditioning.  相似文献   

10.
Non-ischemic myocardial preconditioning   总被引:1,自引:0,他引:1  
The reduction of infarct size produced by brief ischemic episodes prior to a sustained occlusion of a coronary artery, called ischemic preconditioning, is a well known phenomenon that occurs in several species, but its mechanism is still under investigation. Recent reports support the idea that this protection can also be obtained by non-ischemic maneuvers like distention of the left ventricle and metabolic stimulation of myocardial cells. The features of non-ischemic preconditioning (temporal limitation, second window, tolerance development, remote preconditioning and efficiency of the protection), as opposed to those of ischemic preconditioning, are still to be determined. Neither is it known if non-ischemic preconditioning occurs in humans. From a physiological point of view the protective effect of an increase in metabolic rate of the heart means a constant feed-back mechanism in the myocardial cell that counteracts the presumptive damage consequent to the increase in metabolism. Therefore, in the presence of a sudden coronary occlusion the metabolic rate of the heart immediately before the occlusion would have a dual role of increasing the degree of ischemia and of protecting against it.  相似文献   

11.
Previous studies have indicated that PKC-epsilon is a central regulator of protective signal transduction in the heart. However, the signaling modules through which PKC-epsilon exerts its protective effects have only begun to be understood. We have identified a novel participant in the PKC-epsilon signaling system in cardioprotection, the nonreceptor tyrosine kinase Bmx. Functional proteomic analyses of PKC-epsilon signaling complexes identified Bmx as a member of these complexes. Subsequent studies in rabbits have indicated that Bmx is activated by nitric oxide (NO) in the heart, concomitant with the late phase of NO donor-induced protection, and provide the first analysis of Bmx expression/distribution in the setting of cardioprotection. In addition, increased expression of Bmx induced by NO donors was blocked by the same mechanism that blocked cardioprotection: inhibition of PKC with chelerythrine. These findings indicate that a novel type of PKC-tyrosine kinase module (involving Bmx) is formed in the heart and may be involved in pharmacological cardioprotection by NO donors.  相似文献   

12.
Pharmacological preconditioning limits myocardial infarct size after ischemia/reperfusion. Dexmedetomidine is an α(2)-adrenergic receptor agonist used in anesthesia that may have cardioprotective properties against ischemia/reperfusion injury. We investigate whether dexmedetomidine administration activates cardiac survival kinases and induces cardioprotection against regional ischemia/reperfusion injury. In in vivo and ex vivo models, rat hearts were subjected to 30 min of regional ischemia followed by 120 min of reperfusion with dexmedetomidine before ischemia. The α(2)-adrenergic receptor antagonist yohimbine was also given before ischemia, alone or with dexmedetomidine. Erk1/2, Akt and eNOS phosphorylations were determined before ischemia/reperfusion. Cardioprotection after regional ischemia/reperfusion was assessed from infarct size measurement and ventricular function recovery. Localization of α(2)-adrenergic receptors in cardiac tissue was also assessed. Dexmedetomidine preconditioning increased levels of phosphorylated Erk1/2, Akt and eNOS forms before ischemia/reperfusion; being significantly reversed by yohimbine in both models. Dexmedetomidine preconditioning (in vivo model) and peri-insult protection (ex vivo model) significantly reduced myocardial infarction size, improved functional recovery and yohimbine abolished dexmedetomidine-induced cardioprotection in both models. The phosphatidylinositol 3-kinase inhibitor LY-294002 reversed myocardial infarction size reduction induced by dexmedetomidine preconditioning. The three isotypes of α(2)-adrenergic receptors were detected in the whole cardiac tissue whereas only the subtypes 2A and 2C were observed in isolated rat adult cardiomyocytes. These results show that dexmedetomidine preconditioning and dexmedetomidine peri-insult administration produce cardioprotection against regional ischemia/reperfusion injury, which is mediated by the activation of pro-survival kinases after cardiac α(2)-adrenergic receptor stimulation.  相似文献   

13.
Opening of Ca2+-activated K+ (KCa) channels has been shown to confer early cardioprotection. It is unknown whether the opening of these channels also induces delayed cardioprotection. In addition, we determined the involvement of nitric oxide synthases (NOSs), which have been implicated in cardioprotection induced by opening of mitochondrial ATP-sensitive K+ (KATP) channels. Adult male ICR mice were pretreated with the KCa-channel opener NS-1619 either 10 min or 24 h before 30 min of global ischemia and 60 min of reperfusion (I/R) in Langendorff mode. Infusion of NS-1619 (10 microM) for 10 min before I/R led to smaller infarct sizes as compared with the vehicle (DMSO)-treated group (P <0.05). This infarct-limiting effect of NS-1619 was associated with improvement in ventricular functional recovery after I/R. The NS-1619-induced protection was abolished by coadministration with the KCa-channel blocker paxilline (1 microM). Similarly, pretreatment with NS-1619 (1 mg/kg ip) induced delayed protection 24 h later (P <0.05). Interestingly, the NS-1619-induced late protection was not blocked by the NOS inhibitor Nomega-nitro-L-arginine methyl ester (15 mg/kg ip). Unlike diazoxide (the opener of mitochondrial KATP channels), NS-1619 did not increase the expression of inducible or endothelial NOS. Western blot analysis demonstrated the existence of alpha- and beta-subunits of KCa channels in mouse heart tissue. We conclude that opening of KCa channels leads to both early and delayed preconditioning effects through a mechanism that is independent of nitric oxide.  相似文献   

14.
Despite recent advances in pharmacotherapy of coronary artery disease and interventional cardiology, the management of myocardial ischemia still remains a major challenge for basic scientists and clinical cardiologists. An urgent need to combat ischemic heart disease, its forms, such as infarction, and complications including sudden cardiac death led to the development of an alternative strategy of myocardial protection based on the exploitation of the heart's own intrinsic protective mechanisms. A new concept relies on the evidence that the heart is able to protect itself by way of adaptation, either short-term or long-term, to transient episodes of stress (e.g., ischemia, hypoxia, free oxygen radicals, heat stress, etc.) preceding sustained ischemia. Preconditioning by brief episodes of ischemia (ischemic preconditioning, IP) represents the most powerful cardioprotective phenomenon. Apart from the short-lasting protection afforded by classical IP or its delayed ("second window") phase, adaptation to long-lasting physiological stimuli or pathological processes is also known to increase myocardial resistance to ischemic injury. Although molecular mechanisms of cardiac adaptation conferring a higher ischemic tolerance still remain not sufficiently elucidated, multiple cascades of intracellular signalization are suggested to be involved in this process. Experimental studies led to the observations that pharmacological modulations at different levels of signal transduction might mimic protective effects of the adaptive phenomena and thus provide a safer way of inducing cardioprotection in humans.  相似文献   

15.
COX-2 and iNOS in opioid-induced delayed cardioprotection in the intact rat   总被引:10,自引:0,他引:10  
Patel HH  Hsu AK  Gross GJ 《Life sciences》2004,75(2):129-140
Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) have been previously implicated in the late phase of cardioprotection associated with opioid-induced and ischemic preconditioning (IPC) in conscious rabbits and COX-2 in isolated rat hearts pretreated with an exogenous delta opioid agonist. However, it is not know if both iNOS and COX-2 mediate the late phase of cardioprotection induced by opioids in the intact blood-perfused rat. Therefore, we investigated the role of COX-2 and iNOS in the delayed phase of protection mediated by delta opioid receptor activation. Rats were pretreated 24 hours prior to an occlusion/reperfusion protocol with the selective non-peptide delta opioid agonists, BW373U86 (BW) and SNC-121 (SNC). NS-398, a selective COX-2 inhibitor was administered after the 24-hour recovery period just prior to index ischemia. The selective iNOS inhibitors, S-methylthiourea (SMT) and aminoguanidine (AG), were administered in conjunction with opioid pretreatment or were also given 24 hours after opioid administration just prior to index ischemia. COX-2 inhibition by NS-398 given 24 hours after opioid administration attenuated the protective effects of both BW and SNC (46 +/- 6 vs. 13 +/- 3 and 51 +/- 5 vs. 29 +/- 2, p < 0.001, respectively). Similarly, inhibition of iNOS following 24 hours of treatment with opioids also attenuated the protective effects of BW and SNC. However, the delayed protective effects of the opioids were not attenuated by pretreatment with the iNOS inhibitors 24 hours prior to the infarct protocol. These results suggest that both COX-2 and iNOS are mediators of delayed protection induced by non-peptide delta opioid agonists. It appears that the trigger effect is not dependent on the activity of iNOS or COX-2 but the late phase of cardioprotection is dependent on the upregulation of these enzymes.  相似文献   

16.
Nitric oxide (NO) plays an important role in acute ischemic preconditioning (IPC). In addition to activating soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) signaling pathways, NO-mediated protein S-nitros(yl)ation (SNO) has been recently shown to play an essential role in cardioprotection against ischemia–reperfusion (I/R) injury. In our previous studies, we have shown that IPC-induced cardioprotection could be blocked by treatment with either N-nitro-L-arginine methyl ester (L-NAME, a constitutive NO synthase inhibitor) or ascorbate (a reducing agent to decompose SNO). To clarify NO-mediated sGC/cGMP/PKG-dependent or -independent (i.e., SNO) signaling involved in IPC-induced cardioprotection, mouse hearts were Langendorff-perfused in the dark to prevent SNO decomposition by light exposure. Treatment with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, a highly selective inhibitor of sGC) or KT5823 (a potent and selective inhibitor of PKG) did not abolish IPC-induced acute protection, suggesting that the sGC/cGMP/PKG signaling pathway does not play an important role in NO-mediated cardioprotective signaling during acute IPC. In addition, treatment with ODQ in IPC hearts provided an additional protective effect on functional recovery, in parallel with a higher SNO level in these ODQ+IPC hearts. In conclusion, these results suggest that the protective effect of NO is not related primarily to activation of the sGC/cGMP/PKG signaling pathway, but rather through SNO signaling in IPC-induced acute cardioprotection.  相似文献   

17.
Claudia Penna 《BBA》2009,1787(7):781-793
A series of brief (a few minutes) ischemia/reperfusion cycles (ischemic preconditioning, IP) limits myocardial injury produced by a subsequent prolonged period of coronary artery occlusion and reperfusion. Postconditioning (PostC), which is a series of brief (a few seconds) reperfusion/ischemia cycles at reperfusion onset, attenuates also ischemia/reperfusion injury. In recent years the main idea has been that reactive oxygen species (ROS) play an essential, though double-edged, role in cardioprotection: they may participate in reperfusion injury or may play a role as signaling elements of protection in the pre-ischemic phase. It has been demonstrated that preconditioning triggering is redox-sensitive, using either ROS scavengers or ROS generators. We have shown that nitroxyl triggers preconditioning via pro-oxidative, and/or nitrosative stress-related mechanism(s). Several metabolites, including acetylcholine, bradykinin, opioids and phenylephrine, trigger preconditioning-like protection via a mitochondrial KATP-ROS-dependent mechanism. Intriguingly, and contradictory to the above mentioned theory of ROS as an obligatory part of reperfusion-induced damage, some studies suggest the possibility that some ROS at low concentrations could protect ischemic hearts against reperfusion injury. Yet, we demonstrated that ischemic PostC is also a cardioprotective phenomenon that requires the intervention of redox signaling to be protective. Emerging evidence suggests that in a preconditioning scenario a redox signal is required during the first few minutes of myocardial reperfusion following the index ischemic period. Intriguingly, the ROS signaling in the early reperfusion appear crucial to both preconditioning- and postconditioning-induced protection. Therefore, our and others' results suggest that the role of ROS in reperfusion may be reconsidered as they are not only deleterious.  相似文献   

18.
《Free radical research》2013,47(6-7):517-525
Abstract

While nitric oxide (NO) induces cardioprotection by targeting the mitochondrial permeability transition pore (mPTP), the precise mitochondrial signaling events that mediate the action of NO remain unclear. The purpose of this study was to test whether NO induces cardioprotection against ischemia/reperfusion by inhibiting oxidative stress through mitochondrial zinc and Src tyrosine kinase. The NO donor S-nitroso-N-acetyl penicillamine (SNAP) given before the onset of ischemia reduced cell death in rat cardiomyocytes subjected to simulated ischemia/reperfusion, and this was abolished by the zinc chelator N,N,N’,N’-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN) and the Src tyrosine kinase inhibitor PP2. SNAP also prevented loss of mitochondrial membrane potential (ΔΨm) at reperfusion, an effect that was blocked by TPEN and PP2. SNAP increased mitochondrion-free zinc upon reperfusion and enhanced mitochondrial Src phosphorylation in a zinc-dependent manner. SNAP inhibited both mitochondrial complex I activity and mitochondrial reactive oxygen species (ROS) generation at reperfusion through zinc and Src tyrosine kinase. Finally, the anti-infarct effect of SNAP was abrogated by TPEN and PP2 applied at reperfusion in isolated rat hearts. In conclusion, NO induces cardioprotection at reperfusion by targeting mitochondria through attenuation of oxidative stress resulted from the inhibition of complex I at reperfusion. Activation of mitochondrial Src tyrosine kinase by zinc may account for the inhibition of complex I.  相似文献   

19.
Jiang X  Shi E  Nakajima Y  Sato S 《Life sciences》2006,78(22):2543-2549
Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) have been shown to be mediators of cardioprotection induced by ischemic preconditioning and opioids. However, it is not known whether COX-2 is involved in morphine-induced cardioprotection accompanied with iNOS. Therefore, we investigated the role of COX-2 in morphine-induced cardioprotection and the effect of iNOS on COX-2. Myocardial ischemia was induced by a 45-min coronary artery occlusion in mice. Infarct size (IS) as a percentage of the area at risk (AAR) was determined by triphenyltetrazolium chloride staining. The COX-2-selective inhibitor NS-398 was used to investigate the role of COX-2. Expression of COX-2 was assessed by Western blotting, and the myocardial prostaglandin (PG)E2 and 6-keto-PGF(1alpha) contents were measured using enzyme immunoassays. The iNOS-selective inhibitor SMT and iNOS gene-knockout mice were used to investigate the effect of iNOS on COX-2. IS/AAR was reduced significantly 1 and 24 h after morphine preconditioning. The infarct-sparing effect 24 h after morphine administration, but not the cardioprotection 1 h later, was completely abolished by NS-398. Marked enhancement of myocardial COX-2 expression was measured 24 h after morphine preconditioning associated with up-regulation of myocardial contents of PGE2 and 6-keto-PGF(1alpha). Neither the level of COX-2 nor the contents of PGE2 and 6-keto-PGF(1alpha) were enhanced 1 h later. Administration of SMT and targeted abrogation of iNOS gene blocked the enhancement of myocardial PGE2 and 6-keto-PGF(1alpha) 24 h after morphine administration but did not inhibit the up-regulation of COX-2 expression. We concluded that COX-2 mediates morphine-induced delayed cardioprotection via an iNOS-dependent pathway.  相似文献   

20.
In conscious rabbits, a sequence of six 4-min coronary occlusion/4-min reperfusion cycles, which elicits late preconditioning (PC), caused rapid activation of calcium-dependent nitric oxide (NO) synthase (NOS) [cNOS; endothelial NOS (eNOS) and/or neuronal NOS (nNOS)], whereas calcium-independent NOS [inducible NOS (iNOS)] activity remained unchanged. The enhanced cNOS activity was associated with increased myocardial levels of NO(2) and/or NO(3) (NO(x)). Twenty-four hours after ischemic PC was induced, the opposite pattern was observed, i.e., there was a pronounced increase in cytosolic iNOS activity but no change in cNOS activity. The initial burst of ischemia-induced cNOS activity was not affected by pretreatment with the antioxidant N-2-mercaptopropionyl glycine (MPG), the protein kinase C (PKC) inhibitor chelerythrine, or the tyrosine kinase inhibitor lavendustin A, indicating that it is independent of the generation of oxidant species and the activation of PKC and tyrosine kinases. In contrast, the delayed upregulation of iNOS 24 h after PC was prevented by pretreatment with N(omega)-nitro-L-arginine, MPG, or chelerythrine before the PC ischemia, indicating that it is triggered by a signaling mechanism that involves the generation of NO, the formation of oxidant species, and the activation of PKC. Taken together, these results demonstrate that, in conscious animals, ischemic PC elicits a biphasic response in cardiac NOS activity, i. e., an immediate activation of cNOS (most likely eNOS) followed 24 h later by a delayed upregulation of iNOS. To our knowledge, this is the first study to directly measure NOS activity after brief myocardial ischemia in vivo. In conjunction with previous functional studies, the data support a distinctive role of NOS isoforms in late PC, with eNOS serving as the trigger on day 1 and iNOS as the mediator on day 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号