首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Glucan synthase activity of Neurospora crassa was isolated by treatment of protoplast lysates with 0.1% 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate and 0.5% octylglucoside in 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer, pH 7.4, containing 5 mM EDTA, 1 mM phenylmethylsulfonylfluoride, 200 mM inorganic phosphate, 10 microM GTP, 1 mM DTT, 10 mM sodium fluoride, and 600 mM glycerol. Resulting activity was partially purified by sucrose gradient density sedimentation. Approximately 70% of enzyme activity in the sucrose gradient peak fraction was soluble and enzyme activity was purified 7.3-fold. Partially purified enzyme activity had a half-life of several weeks at 4 degrees C, and a Km(app) of 1.66 +/- 0.28 mM. Inhibitors (Cilofungin, papulacandin B, aculeacin A, echinocandin B, sorbose and UDP) of 1,3-beta-D-glucan synthase activity were tested against crude particulate and detergent treated enzyme fractions and the Ki(app) of each inhibitor determined. It seems likely that this stable preparation of glucan synthase activity may be useful for in vitro enzyme screens for new glucan synthase inhibitors.  相似文献   

2.
The uptake of 1 micrometer calcium into 6-h-old germination tubes of the fungus Phytophthora infestans follows Michaelis-Menten kinetics with a Km of 33 +/- 4 micrometer and a V of 0.3 nmol.min-1.(5 x 10(4) cells)-1.Uptake is inhibited by ruthenium red and lanthanum (both at 1 micrometer) and by the proton conductors 2,4-dinitrophenol (1 mM) and carbonylcyanide m-chlorophenylhydrazone and carbonylcyanide p-trifluoromethoxyphenylhydrazone (1--10 micrometer) and also by sodium azide. These data suggest that calcium uptake is dependent on energy and on a carrier. Calcium uptake is stimulated by pyrophosphate but not by ATP, orthophosphate, or polyphosphate. This stimulation is prevented by proton conductors or by incubation at 0 degrees C.  相似文献   

3.
Two interconvertible kinetic modes are described for ATP synthesis by bovine heart submitochondrial particles. One mode is characterized by low apparent Km values for ADP (6-10 microM) and Pi (less than or equal to 0.25 mM), and a limited capacity for ATP synthesis (apparent Vmax approximately 500 nmol ATP.min-1.mg of protein-1). ATP synthesis occurs predominantly in this mode when the coupled activity of the respiratory chain relative to the number of functional ATP synthase complexes is low. The second kinetic mode is characterized by high apparent Km values for ADP (50-100 microM) and Pi (approximately 2.0 mM) and a high capacity for ATP synthesis (Vmax greater than 1800 nmol ATP.min-1.mg of protein-1). This mode of ATP synthesis predominates when the available free energy relative to the number of functional ATP synthase units is high. These results suggest that energy pressure in mitochondria might regulate ATP synthesis such that at low levels of energy the ATP synthase operates economically (low substrate Km values, low turnover capacity for ATP synthesis), while at high levels of energy these kinetic constraints are relaxed (high substrate Km values, high turnover capacity for ATP synthesis). The implications of these findings are discussed in relation to the cooperative-type kinetics of ATP synthesis and hydrolysis, the differential effects of a number of F0-F1 inhibitors on the rates of ATP synthesis and hydrolysis, and the controversy as to whether protonic energy in mitochondria is localized or delocalized.  相似文献   

4.
We have purified unadhered human monocytes in sufficient quantities to prepare monocyte plasma membrane vesicles and study vesicular calcium transport. Monocytes were isolated from plateletpheresis residues by counterflow centrifugal elutriation. By combining this source and procedure, 7 x 10(8) monocytes of over 90% purity were obtained. The membranes, isolated on a sucrose step gradient, had an 18-fold enrichment in Na,K-ATPase, a 29-fold diminution of succinate dehydrogenase activity and were vesicular on transmission electron micrographs. The membrane vesicles loaded with oxalate accumulated calcium only in the presence of Mg and ATP. Calcium uptake did not occur if ATP was replaced by any of five nucleotide phosphates or if Mg was omitted. Calcium transport had a maximal velocity of 4 pmoles calcium/micrograms vesicle protein/min and a Km for calcium of 0.53 microM. The ionophore A23187 completely inhibited calcium accumulation while 5 mM sodium cyanide and 10 microM ouabain had no effect. A calcium-activated ATPase was present in the same plasma membrane vesicles. The calcium ATPase had a maximal velocity of 18.0 pmoles calcium/micrograms vesicle protein/min and a Km for calcium of 0.60 microM. Calcium-activated ATPase activity was absent if Mg was omitted or if (gamma - 32P) GTP replaced (gamma - 32P) ATP. Monocyte plasma membranes that were stripped of endogenous calmodulin by EGTA treatment showed a reduced level of calcium uptake and calcium ATPase activity. The addition of exogenous calmodulin restored the transport activity to that of unstripped monocyte plasma membranes. Thus, monocyte plasma membrane vesicles contain a highly specific, ATP-dependent calcium transport system and a calcium-ATPase with similar high calcium affinities.  相似文献   

5.
The relative effectiveness of the ligands Mg2+, Na+, and ATP in preparing sodium plus potassium ion transport adenosine triphosphatase for phosphorylation was studied by means of a rapid mixing apparatus. Addition of 2 mM MgC12, 120 mM NaC1, and 5 muM [gamma-32P]ATP simultaneously to the free enzyme gave an initial phosphorylation rate of about 0.3 mu mol-mg-1-min-1 at 25 degrees and pH7.4. Addition of Mg2+ to the enzyme beforehand, separately or in combination with Na+ or ATP, had little effect on the initial rate. Addition of Na+ only to the enzyme beforehand increased this rate 1.5- to 3-fold. Early addition of ATP 130 ms before Na+ plus Mg2+ increased the rate 6- to 7-fold. Early addition of Na+ plus ATP was most effective; it increased the rate about 10-fold. The data indicate that Na+ and ATP bind in a random order and that each ligand potentiates the effect of the other. The rate of dissociation of ATP from the enzyme was estimated by a chase of unlabeled ATP of variable duration. This rate was slowest in the presence of Mg2+ (k = 540 min-1), most rapid in the presence of Na+ (k = 2000 min-1), and intermediate (k = 1100 min-1) in the absence of metal ions. The effect of Na+ concentration on the rate of phosphorylation was estimated when Na+ with Mg2+ was added to the enzyme-ATP complex. The rate followed Michaelis-Menten kinetics with a maximum of 2.9 mu mol-mg-1 and a Km of 8 mM. The effect of Na+ concentration was also estimated on the increment in the rate of phosphorylation produced by the presence of Na+ with the enzyme-ATP complex beforehand. The increment followed the same kinetics with a maximum of 3.75 mu mol-mg-1-min-1 and a Km of 5.4 mM. In both cases estimation of the Hill coefficient failed to show cooperativity between binding sites for Na+. In contrast, the dependence of ouabain-sensitive ATPase activity on Na+ concentration in the absence of K+ indicated two sites for Na+ with apparent Km values of 0.16 and 8.1 mM, respectively.  相似文献   

6.
1. Enzyme activity, basal or dopamine-stimulated (10 microM), was linear with time to 25 min and with protein concentration to 0.8 mg protein/ml of final assay volume. Activity was maximal between pH 7.0 and 7.5. 2. Mg2+ maximally stimulated basal or dopamine-sensitive adenylate cyclase activity at about 4 mM. 3. Adenylate cyclase had a Km of 0.042 mM for ATP and maximum velocities for basal and dopamine-stimulated activity of 107 and 179 pmol cyclic AMP formed/mg protein per min, respectively. 4. Half-maximal stimulation of the enzyme occurred at about 4.2 x 10(-7) M dopamine with the threshold being less than 10(-9) M. Dopamine increased the Vmax but had no effect on the Km of ATP. 5. Eighty-five to 90% of the adenylate cyclase activity was found in the particulate fraction. 6. Calcium ion produced a marked inhibition of adenylate cyclase activity above 0.04 mM and half-maximal inhibition occurred near 0.1-0.2 mM.  相似文献   

7.
Cyanobacterial (Spirulina platensis) photosynthetic membranes and isolated F1 ATPase were characterized with respect to ATP activity. The following results indicate that the regulation of expression of ATPase activity in Spirulina platensis is similar to that found in chloroplasts: the ATPase activity of Spirulina membranes and isolated F1 ATPase is mostly latent, a characteristic of chloroplast ATPase activity; treatments that elicit ATPase activity in higher plant chloroplast thylakoids and isolated chloroplast coupling factor (CF1) greatly stimulate the activity of Spirulina membranes and F1, and the cation specificity of chloroplast ATPase activity, e. g., light-induced membrane activity that is magnesium dependent and trypsin-activated CF1 activity that is calcium dependent, is also observed in Spirulina. Thus, an 8- to 15-fold increase in specific activity (to 13-15 mumol Pi min-1 mg chl-1) is obtained when Spirulina membranes are treated with trypsin (CaATPase) or with methanol (MgATPase): a light-induced, dithiothreitol-dependent MgATPase activity is also found in the membranes. Purified Spirulina F1 is a CaATPase when activated with trypsin (endogenous activity increases from 4 to 27-37 mumol Pi min-1 mg protein-1) or with dithiothreitol (5.6 mumol Pi min-1 mg-1), but a MgATPase when assayed with methanol (18-20 mumol Pi min-1 mg-1). The effects of varying calcium and ATP concentrations on the kinetics of trypsin-induced CaATPase activity of Spirulina F1 were examined. When the calcium concentration is varied at constant ATP concentration, the velocity plot shows a marked sigmoidicity. By varying Ca-ATP metal-nucleotide complex concentration at constant concentrations of free calcium or ATP, it is shown that the sigmoidicity is due to the effect of free ATP, which changes the Hill constant to 1.6 from 1.0 observed when the free calcium concentration is kept constant at 5 mM. Therefore not only is ATP an inhibitor but it is also an allosteric effector of Spirulina F1 ATPase activity. At 5 mM free calcium, the Km for teh Ca-ATP metal-nucleotide complex is 0.42 mM.  相似文献   

8.
The determination of glyoxalase II (S-(2-hydroxyacyl)glutathione hydrolase, EC 3.1.2.6) activity is usually accomplished by monitoring the decrease of absorbance at 240 nm due to the hydrolysis of S-d-lactoylglutathione. However, it was not possible, using this assay, to detect any enzyme activity in situ, in Saccharomyces cerevisiae permeabilized cells. Glyoxalase II activity was then determined by following the formation of GSH at 412 nm using 5,5'-dithiobis(2-nitrobenzoic acid). Using this method we characterized the kinetics of glyoxalase II in situ using S-d-lactoylglutathione as substrate and compared the results with those obtained for cell-free extracts. The specific activity was found to be (4.08 +/- 0.12) x 10(-2) micromol min-1 mg-1 in permeabilized cells and (3.90 +/- 0.04) x 10(-2) micromol min1 mg-1 in cell-free extracts. Kinetic parameters were Km 0.36 +/- 0.09 mM and V (7.65 +/- 0.59) x 10(-4) mM min-1 for permeabilized cells and Km 0.15 +/- 0.10 mM and V (7.23 +/- 1.04) x 10(-4) mM min-1 for cell-free extracts. d-Lactate concentration was also determined and increased in a linear way with permeabilized cell concentration. gamma-Glutamyl transferase (EC 2.3.2.2), which also accepts S-d-lactoylglutathione as substrate and hence could interfere with glyoxalase II assays, was found to be absent in Saccharomyces cerevisiae permeabilized cells.  相似文献   

9.
1. Transglutaminase (EC 2.3.2.13) was purified from rat liver. 2. The enzyme was stable at 25 degrees C in the pH range of 6.0-9.0, with the optimum at pH 9.0. 3. The enzyme was inactivated after incubation for 20, 4 and 1 min at 44 degrees C, 52 degrees C, and 60 degrees C, respectively. 4. Activation energies were 30.4 kcal/mol for denaturation and 19.9 kcal/mol for substrate conversion to products. 5. The enzyme was inactivated by sulfhydryl modification with hydroxymercuribenzoate (99.1%) and N-ethylmalemide (78.5%). 6. Calcium, required for the activity, was replaced to a lesser extent, by Mg2+, Sr2+, Zn2+ and Mn2+ (31.8, 27.0, 24.6 and 3.5%). 7. Steady-state kinetics showed: Vmax = 10 microM-min-1, Km = 0.05 mM (N-dimethylated casein), kcat = 31.9 min-1 kcat/Km = 560 min-1 mM-1.  相似文献   

10.
cAMP-independent protein kinase was isolated from the wheat germ and purified to electrophoretic homogeneity. The molecular weight of enzyme was approximately 20,000, Km for ATP was (1 +/- 0.2) x 10(-5) M. V was 215 nmol phosphate mg enzyme-1 min-1, and the isoelectric point was at pH 9.2. The enzyme promotes phosphorylation of casein and crude wheat germ ribosomes.  相似文献   

11.
Bacillus pumilus PS213 isolated from bovine ruminal fluid was able to transform ferulic acid and p-coumaric acid to 4-vinylguaiacol and 4-vinylphenol, respectively, by nonoxidative decarboxylation. The enzyme responsible for this activity has been purified and characterized. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of crude extract from a culture induced by ferulic acid or p-coumaric acid shows three bands that are not present in the crude extract of an uninduced culture, while the purified enzyme shows a single band of 23 kDa; the molecular mass calculated by size exclusion chromatography is 45 kDa. Enzyme activity is optimal at 37 degrees C and pH 5.5 and is not enhanced by any cation. Kinetic studies indicated a Km of 1.03 mM and a Vmax of 0.19 mmol.min-1/mg.liter-1 for ferulic acid and a Km of 1.38 mM and a Vmax of 0.22 mmol.min-1/mg.liter-1 for p-coumaric acid.  相似文献   

12.
A Crithidia fasciculata 83-kDa protein purified during a separate study of C. fasciculata trypanothione synthetase was shown to have ATPase activity and to belong to the hsp90 family of stress proteins. Because no ATPase activity has previously been reported for the hsp90 class, ATP utilization by C. fasciculata hsp83 was characterized: this hsp83 has an ATPase kcat of 150 min-1 and a Km of 60 microM, whereas the homologous mammalian hsp90 binds ATP but has no ATPase activity. Crithidia fasciculata hsp83 undergoes autophosphorylation on serine and threonine at a rate constant of 3.3 x 10(-3) min-1. Similar analysis was performed on recombinant Trypanosoma cruzi hsp83, and comparable ATPase parameters were obtained (kcat = 100 min-1, Km = 80 microM, kautophosphorylation = 6.3 x 10(-3) min-1). The phosphoenzyme is neither on the ATPase hydrolytic pathway nor does it affect ATPase catalytic efficiency. Both C. fasciculata and T. cruzi hsp83 show up to fivefold stimulation of ATPase activity by peptides of 6-24 amino acids.  相似文献   

13.
The current studies were designed to investigate calcium uptake by intestinal jejunal sacs as well as in intestinal mitochondria of spontaneously hypertensive rats and their genetically matched WKY control rats. Kinetics of jejunal calcium uptake by jejunal sacs of adult SHR and WKY rats showed a significant decrease in Vmax of calcium uptake in SHR (227 +/- 24 versus 423 +/- 22 nmol.g tissue-1.3 min-1) compared to WKY rats P less than 0.001. To explore the intracellular handling of calcium by the intestinal mitochondria, calcium uptake was characterized by intestinal mitochondria before (suckling and weanling periods) and after (adult period) development of hypertension. Calcium uptake by intestinal mitochondria was driven by ATP in the presence of succinate as a respiratory substrate. Calcium uptake was stimulated several fold by the presence of ATP compared to no ATP conditions. Maximal calcium uptake occurred between 15-30 min and was significantly greater in adult SHR and WKY rats compared to corresponding values in weanling and suckling rats. Maximal ATP dependent calcium uptake in adult, weanling and suckling WKY rats was significantly greater compared to corresponding mean values in each age group in SHR (P less than 0.001). Oligomycin (10 micrograms/mg protein) inhibited calcium uptake partially. Ruthenium red (0.25 microM), 1 mM sodium azide and 0.5 mM dinitrophenol inhibited calcium uptake by more than 80% in both SHR and WKY rats. Kinetic parameters for ATP stimulated calcium uptake at 10 s revealed a Vmax of 0.56 +/- 0.6, 3.46 +/- 0.23 and 3.95 +/- 0.52 nmol/mg protein/10 s in suckling, weanling and adult WKY rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We present here a differentiation by kinetic methods of the tandem processes of transport and metabolic during uptake of cytosine-beta-D-arabinoside by intact rat fibroblasts. Transport across the cell membrane occurs by a carrier-mediated mechanism displaying a Km of approximately 500 microM and a V of approximately pmol x min-1 x (10(6) cells)-1. The subsequent metabolic trapping (phosphorylation) has a Km of approximately 15 microM and V of approximately 0.25 pmol x min-1 x (10(6) cells)-1. In this system, transport is rate-limiting for the first phase of the uptake process whereas phosphorylation becomes rate-limiting when internal concentration of radioactive labeled substrate exceeds that in the extracellular medium. The duration of the first phase depends on the substrate concentration.  相似文献   

15.
1. ATP-dependent calcium uptake by a rabbit brain vesicular fraction (microsomes) was studied in the presence of phosphate or oxalate. These anions, which are known to form insoluble calcium salts, increased the rate of calcium uptake and the capacity of the vesicles for calcium accumulation. 2. The degree of activation depended on the concentration of phosphate or oxalate. Under optimal conditions, phosphate promoted a 5-fold increase in the amount of calcium stored at steady state. This level was 200-250 nmol Ca-2+/mg protein. 3. Initial rate of calcium uptake followed Michaelis-Menten kinetics with an apparent Km for calcium of 6.7-10-minus 5 M and a V of 44 nmol/min per mg protein. Optimal pH was 7.0. With 2 mM ATP, optimal Mg-2+ concentration was 2 mM. 4. Dintrophenol and NaN3 inhibited calcium uptake in a mitochondria-enriched fraction but not in the microsomal fraction. 5. Calcium uptake activity was compared in the six subfractions prepared from the whole microsomal fraction by means of a sucrose density gradient fractionation. 6. The Mg-2+-dependent ATPase activity of brain microsomes was activated by calcium. Maximal activation was attained with 100 muM CaCl2. Greater calcium concentrations caused a progressive inhibition. 7. The data suggest that the ATP-dependent calcium uptake in brain microsomes, as in muscle microsomes, is brought about by an active transport process, calcium being accumulated as a free ion inside the vesicles.  相似文献   

16.
We recently reported the partial purification of a cAMP-independent and Ca2+-calmodulin-independent glycogen synthase kinase from porcine renal cortex (Schlender, K. K., Beebe, S. J., and Reimann, E. M. (1981) Cold Spring Harbor Conf. Cell Proliferation, 389-400). Subsequent purification indicated that the enzyme preparation consisted of at least three forms of glycogen synthase kinase which could be resolved by ATP gradient elution from aminoethylphosphate-agarose (AEP-agarose). The predominant form of glycogen synthase kinase, which eluted from AEP-agarose between 2 and 6 mM ATP, was purified approximately 800-fold and is designated GSK-A1. It had a molecular weight of 45,000-50,000 as determined by gel filtration and sucrose density gradient centrifugation. It catalyzed the transfer of 1 mol of 32P/mol of synthase subunit into a low molecular weight (10,000) CNBr peptide which was tentatively identified as Ser-7 (site 2) by high performance liquid chromatography. This phosphorylation decreased the activity ratio (activity in the absence of glucose-6-P divided by activity in the presence of 7.2 mM glucose-6-P) from 0.95 to about 0.55. GSK-A1 appeared to be specific for and had low s0.5 values for both substrates, ATP (13 microM) and glycogen synthase (0.3-0.4 microM). The enzyme could not use GTP as the phosphate donor. GSK-A1 was not affected by the protein kinase inhibitor, cAMP, cGMP, Ca2+-calmodulin, EGTA, or trifluoperazine and had a broad pH optimum (pH 7.0-8.5). A second form, GSK-A2, was eluted from AEP-agarose between 7 and 9 mM ATP. GSK-A2 could transfer a 2nd mol of 32P/mol of synthase subunit and decreased the activity ratio to 0.30. The interrelation among these multiple forms is not clear, but the data suggest that multiple kinases are required to form the highly inactivated glycogen synthase in renal tissues.  相似文献   

17.
Partial reactions of potassium-stimulated ATP phosphohydrolase from hog gastric mucosa were studied by means of a rapid-mixing apparatus. At 21 degrees C, in the presence of 2 mM MgCl2 and 5 microM [gamma-32P]ATP there was a rapid phosphorylation of the enzyme with a pseudofirst order rate constant of 1400 min-1. Addition of the ATP about 120 ms before the MgCl2 increased this rate constant to 4400 min-1. In the absence of MgCl2 there was no phosphorylation. Addition of 4 or 10 mM KCl to the phosphoenzyme which had been formed in the absence of KCl produced a rapid initial rate of dephosphorylation (k = 2600 and 3200 min-1 respectively). An additional slow component of dephosphorylation was observed when unlabeled ATP was added together with the KCl (k = 700 to 900 min-1). At a 4 mM concentration, KCl stimulated the ATPase activity about 9-fold. At higher concentrations, the activity was reduced in parallel with a reduction of the steady state level of phosphoenzyme. Addition of KCl to the enzyme before the addition of ATP plus MgCl2 resulted in a low rate and extent of phosphorylation. KCl appeared to inhibit the phosphorylation at a level preceeding the E.ATP complex.  相似文献   

18.
1. This paper is the first detailed report of the purification of a mitochondrial ATPase from an avian species. 2. The Gallus gallus liver mitochondrial F1-ATPase was purified by chloroform extraction and ion-exchange chromatography. 3. The enzyme shows the five alpha, beta, tau, delta, and epsilon subunits characteristic of mitochondrial F1-ATPases. 4. The Km for ATP is 1 mM and for Mg 0.5 mM with a specific activity of 25.2 mu moles of ATP hydrolyzed x min-1 x mg-1. 5. Unlike mammals enzymes the chicken mitochondrial ATPase shows maximal activity with ITP as substrate, and is strongly inhibited by Cu.  相似文献   

19.
Adenylate kinase (AK) is localized in sea urchin sperm flagella and embryonic cilia. To investigate sea urchin Strongylocentrotus purpuratus AK (SpAK) enzymatic characteristics, the full-length recombinant protein of 130 kDa (SpAKr) and each of its three catalytic domains were expressed in Escherichia coli. Although the full-length SpAK had high enzymatic activity, each of the three catalytic domains had no activity. The Km for ATP synthesis from ADP was 0.23 mM and the Vmax was 4.51 mumol ATP formed per minute per milligram of protein. The specific AK inhibitor, Ap5A, blocks SpAKr enzymatic activity with an IC50 of 0.53 microM. The pH optimum for SpAKr is 8.1, as compared to 7.7 for the natural SpAK. Calcium inhibits SpAKr activity in a dose-dependent manner. Although SpAKr has three cAMP-dependent protein kinase phosphorylation sites, and can be phosphorylated in vitro, the enzymatic kinetics after phosphorylation are not significantly altered. SpAK and Chlamydomonas flagellar AKs are the only AKs with three catalytic sites. Further study of the SpAKr will aid in understanding the active site of this interesting and important ATP synthase.  相似文献   

20.
Axenic mycelia of the ectomycorrhizal basidiomycete, Suillus bovinus, were grown in liquid media under continuous aeration with compressed air at 25 degrees C in darkness. Provided with glucose as the only carbohydrate source, they produced similar amounts of dry weight with ammonia, with nitrate or with alanine, 60-80% more with glutamate or glutamine, but about 35% less with urea as the respectively only exogenous nitrogen source. In crude extracts of cells from NH4(+)-cultures, NADH-dependent glutamate dehydrogenase exhibited high aminating (688 nmol x mg protein(-1) x min(-1)) and low deaminating (21 nmol x mg protein(-1) x min(-1)) activities. Its Km-values for 2-oxoglutarate and for glutamate were 1.43 mM and 23.99 mM, respectively. pH-optimum for amination was about 7.2, that for deamination about 9.3. Glutamine synthetase activity was comparatively low (59 nmol x mg protein(-1) x min(-1)). Its affinity for glutamate was poor (Km = 23.7 mM), while that for the NH4+ replacing NH2OH was high (Km = 0.19 mM). pH-optimum was found at 7.0. Glutamate synthase (= GOGAT) revealed similar low activity (62 nmol x mg protein(-1) x min(-1)), Km-values for glutamine and for 2-oxoglutarate of 2.82 mM and 0.28 mM, respectively, and pH-optimum around 8.0. Aspartate transaminase (= GOT) exhibited similar affinities for aspartate (Km = 2.55 mM) and for glutamate (Km = 3.13 mM), but clearly different Km-values for 2-oxoglutarate (1.46 mM) and for oxaloacetate (0.13 mM). Activity at optimum pH of about 8.0 was 506 nmol x mg protein(-1) x min(-1) for aspartate conversion, but only 39 nmol x mg protein(-1) x min(-1) at optimum pH of about 7.0 for glutamate conversion. Activity (599 nmol x mg protein(-1) x min(-1)), substrate affinities (Km for alanine = 6.30 mM, for 2-oxoglutarate = 0.45 mM) and pH-optimum (6.5-7.5) proved alanine transaminase (= GPT) also important in distribution of intracellular nitrogen. There was comparatively low activity of the obviously constitutive enzyme, urease, (42 nmol x mg protein(-1) x min(-1)) whose substrate affinity was rather high (Km = 0.56 mM). Nitrate reductase proved substrate induced; activity could only be measured after exposure of the mycelia to exogenous nitrate. Routes of entry of exogenous nitrogen and tentative significance of the various enzymes in cell metabolism are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号