首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Virus specificity of human influenza virus-immune cytotoxic T cells.   总被引:4,自引:0,他引:4  
The virus specificity of human in vitro cytotoxic T cell responses to influenza virus was studied with the use of peripheral blood mononuclear leukocytes from normal adult volunteers. Previous natural exposure of these donors to a variety of type A influenza viruses was documented by HI antibody titers. Cells sensitized in vitro with A/HK or A/PR8 were cytotoxic for autologous target cells infected with A/HK, A/PR8, or A/JAP 305 type A influenza viruses, but not for B/HK-infected or uninfected cells. B/HK-sensitized effector cells lysed target cells infected with B/HK but not targets infected with type A viruses. A/HK- and A/PR8-immune effector populations were shown to recognize cross-reactive antigens on A/HK- and A/PR8-infected target cells by cold target competition. Influenza-immune effector cells were cytotoxic for virus-infected autologous targets but much less so for virus-infected allogeneic targets. This self-restriction suggested that the cytotoxicity was largely T cell-mediated and was confirmed by cell separation analysis. Thus, the human secondary cytotoxic T cell response in vitro to influenza viruses is predominantly directed against cross-reactive determinants on cells infected with serologically distinct type A influenza viruses.  相似文献   

2.
A gamma delta T-cell hybridoma established from influenza virus-infected mice responded to a reproducible way when cultured with influenza virus-infected stimulators. Subclones of this line responded to cells infected with influenza viruses A/PR/8/34 (H1N1), X-31 (H3N2), and B/HK/8/73 but not to cells infected with vaccinia virus or Sendai virus. This spectrum of response to both type A and type B orthomyxoviruses has never been recognized for the alpha beta T-cell receptor-positive subsets. There was no response to cells infected with a panel of recombinant vaccinia viruses expressing all individual influenza virus proteins, and so it is unlikely that the stimulating antigen is of viral origin. The alternative is that the antigen is a cellular molecule induced in influenza virus-infected cells. Infectious virus was required for stimulation, and immunofluorescence studies showed increased expression of heat shock protein 60 (Hsp60) in influenza virus- but not Sendai virus- or vaccinia virus-infected cells. Both the hybridoma generated from influenza virus-infected mice and an established hybridoma which uses the same gamma delta T-cell receptor combination responded to recombinant Hsp60. Furthermore, the Hsp60-reactive hybridoma, which was obtained from an uninfected mouse, also responded to influenza virus-infected cells, indicating that Hsp60 may indeed be the target antigen.  相似文献   

3.
Parenteral immunization of mice with a given strain of type A influenza virus generates two subpopulations of cytotoxic T cells in the in vivo primary response. One subpopulation is specific for the immunizing virus; the other subpopulation cross-reacts with target cells infected with type A influenza virus of a different subtype. Both subpopulations are specific for target cells infected with type A influenza virus and optimally lyse only infected targets which are syngeneic at the H-2 gene locus. In vitro stimulation of previously primed spleen cells with cells infected with homologous virus generates both subpopulations in the secondary cytotoxic response. However, in vitro stimulation of primed cells with cells infected with heterologous type A virus of a different subtype specifically selects for the cross-reactive T-cell population. These results are discussed in terms of current models for T-cell recognition of virus-infected cells and possible mechanisms for cross-reaction between type A influenza viruses of different subtypes at the level of cytotoxic T cells.  相似文献   

4.
Cells infected with influenza A virus undergo apoptosis and become susceptible to phosphatidylserine-mediated phagocytosis by macrophages. This study was undertaken to elucidate the mechanism underlying our previous finding that the activity of viral neuraminidase (NA) is required for efficient phagocytosis. Treatment of macrophages, not influenza virus-infected cells, with Arthrobacter ureafaciens NA or virus-infected cells expressing viral NA augmented the level of phagocytosis of virus-infected cells but not of latex beads or cells undergoing Fas-induced apoptosis. Oligosaccharides, including sialyllactose, bound to influenza virus-infected cells and inhibited phagocytosis by macrophages. These results indicate that surface desialylation of macrophages by influenza virus NA modulates the mode of association between macrophages and target virus-infected cells and stimulates phosphatidylserine-mediated phagocytosis.  相似文献   

5.
Influenza virus-infected cells undergo apoptosis and become susceptible to phagocytosis by macrophages in vitro, and this leads to the propagation of the virus being inhibited. We previously showed that inhibitors of phagocytosis increased the rate of mortality among influenza virus-infected mice. However, the mode of the phagocytosis of influenza virus-infected cells in vivo has not been investigated. We, in this study, assessed this issue by histochemically analyzing bronchoalveolar lavage cells and lung tissue obtained from C57BL/6 mice infected with influenza A/WSN (H1N1) virus. Both neutrophils and macrophages accumulated in the lung soon after the viral challenge, and either type of cell was capable of phagocytosing influenza virus-infected, apoptotic cells. Changes in the level of phagocytosis and the amount of virus in lung tissue roughly correlated with each other. Furthermore, alveolar macrophages prepared from influenza virus-infected mice showed greater phagocytic activity than those from uninfected mice. The phagocytic activity of macrophages was stimulated in vitro by a heat-labile substance(s) released from influenza virus-infected cells undergoing apoptosis. These results suggested that the level of phagocytosis is augmented both quantitatively and qualitatively in the lung of influenza virus-infected animals so that infected cells are effectively eliminated. Finally, lack of TLR4 caused an increase in the rate of mortality among influenza virus-challenged mice and a decrease in the level of phagocytosis of apoptotic cells in the lung. TLR4 could thus play an important role in the host defense against influenza by positively regulating the phagocytic elimination of infected cells.  相似文献   

6.
The self specificity of human influenza virus-immune cytotoxic T cells has been analyzed in order to clarify the relationship between the self antigens that they recognize and the serologically defined HLA-A and -B antigens. Virus-immune effectors from HLA-A2-positive donors were tested on panels of virus-infected target cells from donors who were either HLA-mismatched or matched only for HLA-A2. Virus-immune T cells from 11 out of 11 A2-positive donors lysed all A2-matched virus-infected target cells (and no HLA-mismatched targets), except that each of these effector cells consistently failed to lyse virus-infected target cells from one A2-positive donor (designated M7). Although the A2 specificity of donor M7 could also be distinguished from the A2 antigen of other donors by alloimmune cytotoxic T cells, no differences in the A2 antigen of donor M7 could be defined by extensive serologic analyses. These results indicate that there is a strong but incomplete association between a self antigen recognized by virus-immune T cells and the serologically defined HLA-A2 specificity.  相似文献   

7.
Peripheral blood lymphocytes (PBL) obtained from humans were cytotoxic for influenza virus-infected target cells. The PBL were shown to have associated influenza virus anti-hemagglutinin antibody (AHAb) detectable only by radioimmunoassay. This antibody could be removed by incubating PBL at 37 degrees C for 30 min. The lymphocyte population that was effective in this system was nonadherent and nonphagocytic cells. PBL gave comparable levels of cytotoxicity when tested by using either a xenogeneic or allogeneic virus-infected target cell. These results indicate that lymphocyte cytotoxicity to influenza virus infected cells may be mediated by small quantities of antibody and by lymphocytes that possess characteristics of K cells. No evidence for T cell-mediated cytolysis was found with this xenogeneic system.  相似文献   

8.
CD8(+) cytotoxic T lymphocytes (CTLs) generated by immunization with allogeneic cells or viral infection are able to lyse allogeneic or virally infected in vitro cells (e.g., lymphoma and mastocytoma). In contrast, it is reported that CD8(+) T cells are not essential for allograft rejection (e.g., heart and skin), and that clearance of influenza or the Sendai virus from virus-infected respiratory epithelium is normal or only slightly delayed after a primary viral challenge of CD8-knockout mice. To address this controversy, we generated H-2(d)-specific CD8(+) CTLs by a mixed lymphocyte culture and examined the susceptibility of a panel of H-2(d) cells to CTL lysis. KLN205 squamous cell carcinoma, Meth A fibrosarcoma, and BALB/c skin components were found to be resistant to CTL-mediated lysis. This resistance did not appear to be related to a reduced expression of MHC class I molecules, and all these cells could block the recognition of H-2(d) targets by CTLs in cold target inhibition assays. We extended our observation by persistently infecting the same panel of cell lines with defective-interfering Sendai virus particles. The Meth A and KLN205 lines infected with a variant Sendai virus were resistant to lysis by Sendai virus-specific CTLs. The Sendai virus-infected Meth A and KLN205 lines were able to block the lysis of Sendai virus-infected targets by CTLs in cold target inhibition assays. Taken together, these results suggest that not all in vivo tissues may be sensitive to CTL lysis.  相似文献   

9.
Human cytotoxic T lymphocytes specific for A/JAP/57 (H2N2) influenza virus were cloned from in vitro stimulations of peripheral blood lymphocytes. Analysis of the viral specificity in cytotoxic function revealed one clone that killed all type A influenza-infected targets, another clone that was specific for the hemagglutinin subtype of the immunizing influenza virus, and the third clone that demonstrated cytotoxicity restricted to the hemagglutinin of A/JAP/57 and A/JAP/62 (H2N2) and not other type A influenza strains with the H2N2 subtypes. The phenotype of these three clones was Leu 2?, Leu 3+, Leu 4+; MHC restriction of their cytotoxic function was mapped to HLA-DR by a panel of target cells as well as by inhibition of cytotoxicity with monoclonal antibodies. Proliferation of these clones, examined in a tritiated thymidine incorporation assay, was found to be driven by antigen in the absence of exogenous lymphokines. For all three clones antigen-dependent production and secretion of lymphokines with IL-2 activity was demonstrated. The antigen specificity of proliferation and factor production was shown to be identical to the pattern that each clone revealed in its cytotoxic function.  相似文献   

10.
The expression of Lyt-2 on T lymphocytes has been postulated to correlate closely with restriction by, or alloreactivity to, class I MHC gene products, whereas I region-restricted or alloreactive populations appear to be associated with Lyt-1 and L3T4 expression. However, exceptions to this axiom among alloreactive T cells have been shown to exist. In this report we describe a clonal population of influenza virus-specific T lymphocytes that bears the Lyt-2+, L3T4- phenotype. Notably, this clone is restricted in influenza virus recognition by class II MHC molecules and is cytolytic for virus-infected target cells expressing the appropriate class II molecules. Antibody directed to the Lyt-2 molecule does not inhibit cytolysis.  相似文献   

11.
We have investigated the mechanisms involved in the clearance of viral infection at the epithelium level by analyzing the activity of influenza virus-specific cytotoxic T lymphocytes (CTL) against virus-infected CMT-93 intestinal epithelial cells. Epithelial cells infected with live influenza virus effectively present viral antigens and were lysed by both homotypic and heterotypic influenza virus-specific CD8+ T cells. These results shed new light on the control of viral infection through the elimination of virus-infected epithelial cells by virus-specific CTL and demonstrate that CMT-93 cells furnish an appropriate model for in vitro evaluation of CTL activity against virus-infected epithelial cells.  相似文献   

12.
The lytic activity of influenza virus-specific murine cytolytic T lymphocyte (CTL) clones that are restricted by either H-2K/D (class I) or H-2I (class II) major histocompatibility (MHC) locus products was compared on an influenza virus-infected target cell expressing both K/D and I locus products. With the use of two in vitro measurements of cytotoxicity, conventional 51Cr release, and detergent-releasable radiolabeled DNA (as a measure of nuclear disintegration in the early post-lethal hit period), we found no difference between class I and class II MHC-restricted CTL in the kinetics of target cell destruction. In addition, class II MHC-restricted antiviral CTL failed to show any lysis of radiolabeled bystander cells. Killing of labeled specific targets by these class II MHC-restricted CTL was also efficiently inhibited by unlabeled specific competitor cells in a cold target inhibition assay. In sum, these data suggest that class I and class II MHC-restricted CTL mediate target cell destruction by an essentially similar direct mechanism.  相似文献   

13.
14.
Peripheral blood mononuclear cells (PBMC) from patients with ataxia-telangiectasia (A-T) were studied for their capacity to proliferate and to generate influenza virus-specific cytotoxic T lymphocytes (CTL) after in vitro stimulation with influenza A/Hong Kong (A/HK (H3N2)) virus. PBMC from 11 patients proliferated poorly to A/HK and 10 of the 11 patients failed to exhibit significant CTL effector activity when tested on influenza A/HK virus-infected autologous target cells. In contrast, PBMC from each of 18 simultaneously studied, unrelated normal individuals proliferated to A/HK and generated influenza-immune CTL. In each of the 10 A-T patients, deficient CTL activity was shown to be due to a lack of generation of CTL and not to target cell resistance to lysis, because the virtually infected target cells of the patients were lysed by parental influenza-immune CTL. Determinations of T cell numbers and existing serum antibody titers to H3N2 influenza virus suggest this nonresponsiveness cannot be simply explained by a lack of T cells or the absence of exposure to type A (H3N2) influenza virus. Studies in which CTL were generated in A-T plasmas and during co-culture of PBMC from an A-T patient and an MHC-matched sibling failed to demonstrate either plasma or cellular suppression as a mechanism for the lack of CTL production in A-T patients. This immune defect in the production of cytotoxic effector T cells may be a cause of the increased frequency of infections and neoplasms observed in A-T patients.  相似文献   

15.
Some cultured cell lines undergo typical apoptosis upon infection with influenza virus. However, the release of replicated virus into the culture medium does not change when apoptosis is inhibited. Since apoptotic cells are heterophagically eliminated at early stages of the apoptosis pathway, we anticipated that the coexistence of phagocytic cells with virus-infected cells affects the extent of virus growth. When influenza A virus-infected HeLa cells were mixed with activated mouse peritoneal macrophages, efficient phagocytosis, which was abrogated in the presence of a caspase inhibitor, occurred. At the same time, the release of virus into the culture medium was completely inhibited, and this required direct contact between virus-infected cells and macrophages. Furthermore, an immunoelectron microscopic analysis detected influenza virus particles associated with phagosome-like structures within macrophages. These results indicate that apoptosis-dependent phagocytosis of virus-infected cells may lead to direct elimination of the pathogen.  相似文献   

16.
Secondary cell-mediated responses to ectromelia virus infection were studied using an in vitro system. Lymphoid “responder” cells from mice which had recovered from intravenous primary infection at various times prior to sacrifice, were cultured with syngeneic, virus-infected macrophages or spleen cells as “stimulator” cells at 39 °C, a temperature which prevented the virus from exerting cytopathic effects against responder cells. This restrictive temperature and medium with 2-mercaptoethanol at 10?4M often gave viable cell yields of more than 100% of the original responder cells over 4 days of culture. Preliminary experiments showed that spleen cells from primed mice, cultured with syngeneic, infected spleen cells from normal mice gave the most powerful secondary cytotoxic cell responses as measured by 51Cr release from virusinfected H-2-compatible target cells. The cytotoxic cells were sensitive to anti-θ and complement treatment and lysed H-2-compatible, virus-infected target cells much more efficiently than infected, allogeneic target cells, thus indicating that they were T cells. Some activity against uninfected H-2-compatible target cells was also generated, but this was largely independent of the presence of virus-induced antigen, (i.e. infected stimulator cells were unnecessary) and therefore seemed to be a consequence of the cultural conditions. Cold target competition showed that this activity was the responsibility of a T cell subset separate from the virus-specific cytotoxic T cells. The peak of cytotoxic activity against virus-infected targets occurred at 4 days of culture and DNA synthesis was maximal on day 3. The concentration of cytotoxic T cells at the peak was eight-fold higher than at the peak of the splenic primary response in vivo, Memory T cells (precursors of secondary cytotoxic T cells) appeared in spleen within 12–14 days of primary infection in vivo, reached a plateau at 5–6 weeks and persisted for at least 16 months. Spleen cells appeared partly refractory to secondary stimulation in vitro at 8–10 days post-priming. This did not seem to be due to cellular migration from spleen to lymph nodes or peritoneal cavity, but its cause was not determined. Primary responses in vitro were not detectable under conditions optimal for secondary responses, thus suggesting a major quantitative, or qualitative difference between virgin and memory T cells.  相似文献   

17.
When influenza A/RI/5+ virus-infected cells were incubated in medium to which 2 μg of canavanine (arginine analog) per ml had been added 4 hr after infection, all viral polypeptides were synthesized but the budding-like process with the appearance of extracellular virus was completely inhibited. The plasma membrane isolated from these cells contained exclusively hemagglutinin (HA), and membrane (M) protein and nucleoprotein (NP) appeared to be associated with the nucleus, in contrast to untreated cells whose plasma membrane contained abundant HA, M protein, and NP. Disruption of canavanine-treated cells by freeze-thawing generated a number of hemagglutinating membranous vesicles or fragments containing exclusively HA. By isotope labeling it was found that the M protein synthesized in the presence of canavanine, together with HA and NP, is a canavanine-substituted polypeptide. It is suggested that canavanine inhibits the formation of the mature envelope of influenza RI/5+, because of the inability of M protein to associate with the plasma membrane.  相似文献   

18.
The cell-mediated immune (CMI) response to ectromelia virus infection in mice was studied. Virus doses from 4 × 102 up to 5 × 104 PFU of an attenuated strain inoculated intravenously (iv) all induced cytotoxic T cell responses in the spleen as measured in a 51Cr release assay using virus-infected target cells. Higher virus doses gave larger responses. There was little variation between individual animals, and mice ranging in age from 4–22 weeks gave similar responses. Following iv infection, virus grew logarithmically in spleen for 2 days, then titers declined to undetectable levels by day 5. The peak of the virus-specific cytotoxic T cell response occurred at 5–6 days post-infection, as determined by calculation of effector units based on a linear log-log relationship between killer cells added and targets lysed. T cells responsible for virus clearance in vivo gave similar kinetics, suggesting the possibility that both functions are mediated by the same T cell subset. Two other categories of cytotoxic activity were also generated at low levels in the spleen during ectromelia infection or during infection with a bacterium, Listeria monocytogenes. These activities were significantly sensitive to anti-δ and complement treatment, suggesting T cell dependence, but participation of other mechanisms has not been rigorously excluded. One category lysed allogenic target cells and reached a peak at 4 days post-infection. The other lysed H-2-compatible cells, syngeneic embryo cells, and some syngeneic tumor cells but not syngeneic macrophages, and was present at similar low levels through days 1–4. These different kinetics and evidence from “cold” target competition experiments suggested that the total cytotoxic activity of immune spleen cell populations was a composite of the activities of separate cellular subsets (probably mainly T cells), killing of any one target cell type being the responsibility of a subset with receptors at least partly specific for antigens on that target cell.  相似文献   

19.
20.
The mechanisms by which human lymphocytes lyse virus-infected allogeneic fibroblast cultures were analyzed with particular consideration of the role of anti-viral antibodies and interferon. Human cells infected with viruses were able to induce high levels of interferon upon contact with human lymphocytes. Interferon, whether produced by lymphocytes after direct infection with virus or induced upon exposure of lymphocytes to virus-infected fibroblasts, appeared to be responsible for enhancing the cytotoxic efficiency of the natural killer cell against the infected target. Activation of cytotoxic lymphocytes occurred as early as 6 hr after addition of interferon and increased up to 24 hr. Antibody-dependent cell-mediated cytotoxicity (Ab-CMC) could be easily induced by sensitization of infected target cells with antiviral antibodies and could be detected at 4 hr from the beginning of the cytotoxic test, before the effect of interferon on the natural killer cell was evident. However, the antibody-dependent effector cell was inactive after 4 hr of incubation. F(ab')2 fragments of rabbit anti-human IgG completely inhibited Ab-CMC but did not at all affect the spontaneous cytotoxic activity of the effector cells against virus-infected target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号