共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
B. Sanders T. D. Noakes S. C. Dennis 《European journal of applied physiology and occupational physiology》1999,80(4):318-323
In this study, we examined whether athletes, who typically replace only approximately 50% of their fluid losses during moderate-duration endurance exercise, should attempt to replace their Na+ losses to maintain extracellular fluid volume. Six male cyclists performed three 90-min rides at 65% of peak O2 uptake in a 32 degrees C environment and ingested either no fluid (NF), 1.21 of water (W), or saline (S) containing 100 mmol of NaCl x l(-1) to replace their electrolyte losses. Both W and S conditions decreased final heart rates by approximately 10 betas min(-1) (P<0.005) and reduced falls in plasma volume (PV) by approximately 4% (P<0.05). Maintenance of PV after 10 min in the W trial prevented further rises in plasma concentrations of Na+ [Na+], Cl- and protein but in the S and NF trials, plasma [Na+] continued to increase by approximately 4 mEq x l(-1). Differences in plasma [Na+] had little effect on the approximately 2.4 l fluid, approximately 120 mEq Na+ and approximately 50 mEq K+ losses in sweat and urine in the three trials. The main effects of W and S were on body fluid shifts. During the NF trial, PV and interstitial fluid (ISF) and intracellular fluid (ICF) volumes decreased by approximately 0.1, 1.2 and 1.0 l, respectively. In the W trial, the approximately 1.2 l fluid and approximately 120 mEq Na+ losses contracted the ISF volume, and in the S trial, ISF volume was maintained by the movement of water from the ICF. Since the W and S trials were equally effective in maintaining PV, Na+ ingestion may not be of much advantage to athletes who typically replace only approximately 50% of their fluid losses during competitive endurance exercise. 相似文献
3.
G Brandenberger V Candas M Follenius J P Libert J M Kahn 《European journal of applied physiology and occupational physiology》1986,55(2):123-129
This study examines the relationships between vascular changes and endocrine responses to prolonged exercise in the heat, associated with dehydration and rehydration by fluids of different osmolarity. Five subjects were exposed, in a 34 degrees C environment for 4 h of intermittent exercise on a cycle ergometer at 85 +/- 12 Watts (SD). Fluid regulatory hormones and cortisol were analysed in 3 experimental sessions: one without any fluid supplement (NO FLUID), and two with progressive rehydration, either by spring water (WATER) or isotonic solution (ISO), given after 70 min of exercise. Results were expressed in terms of differences between the mean values observed at the end of the exercise and the first hour values taken as references. Dehydration (NO FLUID) elicited a 4.0 +/- 0.8% (SE) decrease in plasma volume (PV) and an increase in osmolarity (8.4 +/- 3.1 mosmol X l-1). Concomitantly, plasma aldosterone (PA), renin activity (PRA), arginin vasopressin (AVP) and cortisol (PC) levels increased greatly in response to exercise in the heat (PA: 37.2 +/- 10.8 ng. 100 ml-1; PRA: 13.4 +/- 2.5 ng X ml-1 X h-1; AVP: 3.8 +/- 1.3 pg X ml-1; PC: 12.2 +/- 2.7 micrograms X 100 ml-1). Rehydration with water led to decreased osmolarity (-8.2 +/- 2.1 mosmol X l-1) with no significant changes in PV. With ISO, PV increased by 6.0 +/- 1.3% and the decrease in osmolarity was-5.8 +/- 1.8 mosmol X l-1. With both modes of rehydration, the increases in PRA, AVP and cortisol were blunted; only ISO prevented the rise in PA.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
5.
This study assessed whether replacing sweat losses with sodium-free fluid can lower the plasma sodium concentration and thereby precipitate the development of hyponatremia. Ten male endurance athletes participated in one 1-h exercise pretrial to estimate fluid needs and two 3-h experimental trials on a cycle ergometer at 55% of maximum O2 consumption at 34 degrees C and 65% relative humidity. In the experimental trials, fluid loss was replaced by distilled water (W) or a sodium-containing (18 mmol/l) sports drink, Gatorade (G). Six subjects did not complete 3 h in trial W, and four did not complete 3 h in trial G. The rate of change in plasma sodium concentration in all subjects, regardless of exercise time completed, was greater with W than with G (-2.48 +/- 2.25 vs. -0.86 +/- 1.61 mmol. l-1. h-1, P = 0.0198). One subject developed hyponatremia (plasma sodium 128 mmol/l) at exhaustion (2.5 h) in the W trial. A decrease in sodium concentration was correlated with decreased exercise time (R = 0.674; P = 0.022). A lower rate of urine production correlated with a greater rate of sodium decrease (R = -0. 478; P = 0.0447). Sweat production was not significantly correlated with plasma sodium reduction. The results show that decreased plasma sodium concentration can result from replacement of sweat losses with plain W, when sweat losses are large, and can precipitate the development of hyponatremia, particularly in individuals who have a decreased urine production during exercise. Exercise performance is also reduced with a decrease in plasma sodium concentration. We, therefore, recommend consumption of a sodium-containing beverage to compensate for large sweat losses incurred during exercise. 相似文献
6.
To determine the influence of hypovolemia on the control of forearm vascular resistance (FVR) during dynamic exercise, we studied five physically active men during 60 min of supine cycle ergometer exercise bouts at 35 degrees C in control (normovolemic) and hypovolemic conditions. Hypovolemia was achieved by 3 days of diuretic administration and resulted in an average decrease in plasma volume of 15.9%. Relative to normovolemia, hypovolemia caused an attenuation of the progressive rise in forearm blood flow (P less than 0.05) and an increase in heart rate (P less than 0.05) during exercise. Because mean arterial blood pressure during hypovolemic exercise was well maintained, the attenuation of forearm blood flow was due entirely to a relative increase in FVR. At the onset of dynamic exercise, FVR was increased significantly in control and hypovolemic conditions by 13.2 and 27.1 units, respectively. The increase in FVR was significantly different between control and hypovolemic conditions as well. We attributed the increased vasoconstrictor bias during hypovolemia to cardiopulmonary baroreceptor unloading and/or an increased sensitivity to cardiopulmonary baroreceptor unloading. We concluded that reduced blood flow to the periphery during exercise in the hypovolemic condition was caused entirely by an increase in vascular resistance, thereby preserving arterial blood pressure and adequate perfusion to the organs requiring increased flow. 相似文献
7.
V Candas J P Libert G Brandenberger J C Sagot C Amoros J M Kahn 《European journal of applied physiology and occupational physiology》1986,55(2):113-122
Five young unacclimatised subjects were exposed for 4 h at 34 degrees C (10 degrees C dew-point temperature and 0.6 m X s-1 air velocity), while exercising on a bicycle ergometer: 25 min work--5 min rest cycles for 2 hours followed by 20 min work--10 min rest cycles for two further hours. 5 experimental sessions were carried out: one without rehydration (NO FLUID) resulting in 3.1% mean loss of body weight (delta Mb), and four sessions with 20 degrees C fluid ingestion of spring water (WATER), hypotonic (HYPO), isotonic (ISO) and hypertonic (HYPER) solutions to study the effects of fluid osmolarity on rehydration. Mean final rehydration (+/- SE) after fluid intake was 82.2% (+/- 1.2). Heart rate was higher in NO FLUID while no difference among conditions was found in either delta Mb or hourly sweat rates. Sweating sensitivity was lowest in the dehydration condition, and highest in the WATER one. Modifications in plasma volume and osmolarity demonstrated that NO FLUID induced hyperosmotic hypovolemia, ISO rehydration rapidly led to plasma isoosmotic hypervolemia, while WATER led to slightly hypoosmotic normovolemia. It is concluded that adequate rehydration through ingestion of isotonic electrolyte-sucrose solution, although in quantities much smaller than evaporative heat loss, rapidly restored and expanded plasma volume. While osmolarity influenced sweating sensitivity, the plasma volume changes (delta PV) within the range -6% less than or equal to delta PV + 4% had little effect on temperature adjustments in our conditions. 相似文献
8.
9.
D S Miles M N Sawka R M Glaser J S Petrofsky 《Journal of applied physiology (Bethesda, Md. : 1985)》1983,54(2):491-495
Upper and lower body exercise was performed to assess the influence muscle mass has on plasma volume (PV) shifts. Nine male subjects (mean = 28 yr) completed a progressive intensity, discontinuous test with an arm crank (AC) and cycle (CY) ergometer. Power output (PO) levels for the AC were 25, 74, 98, and 133 W. PO levels for the CY were 49, 98, 147, and 263 W. At a given submaximal oxygen uptake (VO2), PV efflux was significantly greater for AC compared with CY exercise. When PV efflux was related to the relative intensity of the exercise (ergometer specific % peak VO2), responses were nearly identical. Maximal PV efflux was 18% for both AC and CY exercise. Mean arterial pressure (MAP) was significantly greater for AC compared with CY exercise for a given VO2. MAP plotted against the relative intensity of exercise, however, was similar for both AC and CY exercise. These results suggest that the amount of plasma efflux during exercise is related to the MAP, which is directly related to the relative intensity of the exercise. 相似文献
10.
H Hinghofer-Szalkay M H Harrison J E Greenleaf 《European journal of applied physiology and occupational physiology》1987,56(6):673-678
High precision blood and plasma densitometry was used to measure transvascular fluid shifts during water immersion to the neck. Six men (28-49 years) undertook 30 min of standing immersion in water at 35.0 +/- 0.2 degrees C; immersion was preceded by 30 min control standing in air at 28 +/- 1 degrees C. Blood was sampled from an antecubital catheter for determination of blood density (BD), plasma density (PD), haematocrit (Ht), total plasma protein concentration (PPC), and plasma albumin concentration (PAC). Compared to control, significant decreases (p less than 0.01) in all these measures were observed after 20 min immersion. At 30 min, plasma volume had increased by 11.0 +/- 2.8%; the average density of the fluid shifted from extravascular fluid into the vascular compartment was 1006.3 g.l-1; albumin moved with the fluid and its albumin concentration was about one-third of the plasma protein concentration during early immersion. These calculations are based on the assumption that the F-cell ratio remained unchanged. No changes in erythrocyte water content during immersion were found. Thus, immersion-induced haemodilution is probably accompanied by protein (mainly albumin) augmentation which accompanies the intravascular fluid shift. 相似文献
11.
Favier R.; Caceres E.; Sempore B.; Cottet-Emard J. M.; Gauquelin G.; Gharib C.; Spielvogel H. 《Journal of applied physiology》1997,83(2):376-382
Favier, R., E. Caceres, B. Sempore, J. M. Cottet-Emard, G. Gauquelin, C. Gharib, and H. Spielvogel. Fluidregulatory hormone response to exercise after coca-induced body fluidshifts. J. Appl. Physiol. 83(2):376-382, 1997.To determine the effect of coca chewing on heartrate (HR), mean arterial blood pressure (MAP), and plasma volume andtheir relationship with the hormones regulating cardiovascular and bodyfluid homeostasis, 16 male volunteers were examined at rest and during1 h of cycle exercise at ~75% of their peak oxygen uptake in twotrials separated by 1 mo. One trial was performed after the subjectschewed a sugar-free chewing gum(Coca trial), whereas theother was done after the subjects chewed 15 g of coca leaves(Coca+), with the order of theCoca andCoca+ trials being randomized.Blood samples were taken at rest, before (R1) and after 1-h chewing(R2), and during the 5th, 15th,30th, and 60th min of exercise. They were analyzed for hematocrit,hemoglobin concentration, red blood cell count, plasma proteins, andfor the fluid regulatory hormones, including plasma catecholamines [norepinephrine (NE) and epinephrine], renin, argininevasopressin, and the atrial natriuretic peptide (ANP). During thecontrol trial (Coca),from R1 toR2, there was no significantchange in hematologic, hormonal, and cardiovascular status except for asmall increase in plasma NE. In contrast, it can be calculated thatcoca chewing at rest induced a significant hemoconcentration(3.8 ± 1.3% in blood and 7.0 ± 0.7% in plasmavolume), increased NE and MAP, and reduced plasma ANP. Chewing cocabefore exercise reduced the body fluid shifts but enhanced HR responseduring exercise. These effects were not accompanied by changes in NE,epinephrine, renin, and arginine vasopressin plasma levels. Incontrast, plasma ANP response to exercise was lower during theCoca+ trial, suggesting thatcentral cardiac filling was reduced by coca use. It is likely that thereduction in body fluid volumes is a major contributing factor to thehigher HR at any given time of exercise after coca chewing. 相似文献
12.
13.
A body-atmosphere energy exchange model (BIODEX) using heat transfer theory and empirical relationships is described which predicts the change in body core temperature during exercise as an index of thermal strain. Index values may be interpreted as the length of the period of activity before the heat load on the body causes internal body temperature to rise to critical levels. The performance of the model tested under controlled laboratory conditions using human subjects was found to be reliable. BIODEX is used to show the thermal significance of midsummer climatic conditions in New Zealand for those jogging out-doors. 相似文献
14.
15.
F. J. Laso J. M. González-Buitrago C. Martín Ruiz S. de Castro 《European journal of applied physiology and occupational physiology》1991,62(4):292-296
Serum potassium, aldosterone and insulin, and plasma adrenaline, noradrenaline and cyclic adenosine 3':5'-monophosphate (cAMP) concentrations were measured during graded exhausting exercise and during the following 30 min recovery period in six untrained young men. During exercise there was an increase in concentration of serum potassium (4.74 mmol.l-1, SEM 0.12 at the end of exercise vs 3.80 mmol.l-1, SEM 0.05 basal, P less than 0.001), plasma adrenaline (2.14 nmol.l-1, SEM 0.05 at the end of exercise vs 0.30 nmol.l-1, SEM 0.02 basal, P less than 0.001), plasma noradrenaline (1.10 nmol.l-1, SEM 0.64 at the end of exercise vs 1.50 nmol.l-1, SEM 0.05 basal, P less than 0.001), serum aldosterone (0.92 nmol.l-1, SEM 0.14 at the end of exercise vs 0.36 nmol.l-1, SEM 0.05 basal, P less than 0.01), and plasma cAMP (35.4 nmol.l-1, SEM 2.3 at the end of exercise vs 21.4 nmol.l-1, SEM 4.5 basal, P less than 0.05). While concentrations of serum potassium, plasma adrenaline and cAMP returned to their basal levels immediately after exercise, those of plasma noradrenaline and serum aldosterone remained elevated 30 min later (1.90 nmol.l-1, SEM 0.01, P less than 0.01; and 0.85 nmol.l-1, SEM 0.12, P less than 0.01, respectively). Serum insulin concentration did not change during exercise (6.47 mlU.l-1, SEM 0.58 at the end of exercise vs 5.47 mlU.l-1, SEM 0.41 basal, NS) but increased significantly (P less than 0.02) at the end of the recovery period (7.12 mlU.l-1, SEM 0.65).(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
16.
17.
L A Stephenson M A Kolka 《European journal of applied physiology and occupational physiology》1988,57(4):373-381
Five women were studied during exercise and passive heating to determine whether PV dynamics were affected by the menstrual cycle. The exercise bout (80% VO2 peak) on a modified cycle ergometer and the passive heat stress were done in a hot environment (Ta = 50 degrees C, Pw = 1.61 kPa) during the follicular and luteal phase. Esophageal temperature (Tes) was measured continuously. Blood samples were drawn after each 0.2 degree C increase in Tes and VO2 was measured at that time. Initial PV was estimated at rest during the follicular phase. PV changes from rest were calculated at each Tes from Hb and Hct. During passive heating, PV decreased by a mean volume of 156 (+/- 80) ml to 2.83 (+/- 0.09) l in the follicular phase. During the luteal phase, there was a larger volume reduction (300 +/- 100 ml) during passive heating, and the final PV was lower than in the follicular phase and averaged 2.47 +/- 0.18 l. During exercise, PV decreased 463 (+/- 90) ml to 2.50 (+/- 0.11) l in the follicular and 381 (+/- 70) ml to 2.50 (+/- 0.23) l in the luteal phase. These data indicate that there is a menstrual cycle effect on PV dynamics during passive heating such that more fluid is shifted out of the vasculature during the luteal phase. During severe exercise there is a greater fluid loss during the follicular phase, yet the final PV is not different between phases. 相似文献
18.
John D. Booth Bradley R. Wilsmore Andrea D. MacDonald Annerieke Zeyl Len H. Storlien Nigel A.S. Taylor 《Journal of thermal biology》2004,29(7-8):709-715
Pre-cooling improves heat tolerance and time to exhaustion in the heat. We tested the possibility that reduced tissue temperatures may explain this phenomenon, using three whole-body treatments: pre-cooling, thermoneutral (control) and pre-heating. Pre-cooling reduced muscle temperature (Tm) by 6.3 °C while pre-heating increased Tm 3.4 °C, relative to control. Despite this offset, Tm climbed towards a common asymptote, with pre-cooling offering no thermal protection beyond 40 min. Following pre-cooling, exercising oesophageal temperature (Tes) initially increased at 0.09 °C min−1, being significantly faster than control (0.05 °C min−1) and pre-heated conditions (0.03 °C min−1). Pre-cooling lowered the sweat threshold and also resulted in a reduced cardiac frequency across the exercise-heat exposure. Our observations do not support the hypothesis that pre-cooling reduces Tm at the end of an exercise-heat exposure, thereby delaying the development of fatigue. 相似文献
19.
W J Fink D L Costill P J Van Handel 《European journal of applied physiology and occupational physiology》1975,34(3):183-190
In an effort to assess the effects of environmental heat stress on muscle metabolism during exercise, 6 men performed work in the heat (Tdb = 44 degrees C, RH = 15%) and cold (Tdb = 9 degrees C, RH = 55%). Exercise consisted of three 15-min cycling bouts at 70 to 85% VO2max, with 10-min rest between each. Muscle biopsies obtained from the vastus lateralis before and after each work bout were analyzed for glycogen and triglyceride content. Venous blood samples drawn before and after exercise were assayed for lactate, glucose, free fatty acids, hemoglobin, and hematocrit. Oxygen uptake, heart rates and rectal temperatures were all significantly higher during exercise in the heat. Blood lactate concentration was roughly twice as great during the heat experiments as that measured in the 9 degrees C environment. Muscle glycogen utilization per 60 min was significantly greater in the heat ( - 74 m moles/kg-wet muscle) as compared to the cold exercise (- 42 m moles/kg-wet muscle). On the average, muscle triglyceride declined 23% during exercise in the cold and 11% in the heat. The findings of an enhanced glycolysis during exercise in the heat is compatible with earlier studies which demonstrate a decreased availability of oxygen due to a reduction in muscle blood flow. 相似文献