首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Previous studies examining regulation of synthesis of Glucose-6-Phosphate and 6-Phosphogluconate dehydrogenase in rat liver have focussed on the induction of these enzymes by different diets and some hormones. However, the precise mechanism regulating increases in the activities of these enzymes is unknown and the factors involved remain unidentified. Considering that many of these metabolic conditions occur simultaneously with the increase of some NADPH consuming pathway, in particular fatty acid synthesis, we suggest that the activities of Glucose-6-Phosphate and 6-Phosphogluconate dehydrogenase could be regulated through a mechanism involving changes in the NADPH requirement. Here, we have studied the effect of changes in the flux through different NADPH consuming pathways on the NADPH/NADP ratio and on Glucose-6-Phosphate and 6-Phosphogluconate levels. The results show that: i) an increase in consumption of NADPH, caused by activation of fatty acid synthesis or the detoxification system which consumes NADPH, is paralleled by an increase in levels of these enzymes; ii) when increase in consumption of NADPH is prevented, Glucose-6-Phosphate and 6-Phosphogluconate dehydrogenase levels do not change.Abbreviations G6PDH Glucose-6-Phosphate Dehydrogenase - 6PGDH 6-Phosphogluconate Dehydrogenase - ME Malic Enzyme - NF Nitrofurantoin - CumOOH Cumene Hydroperoxide - t-BHP t-Butyl hydroperoxide - BCNU 1,3,-Bis (2-chloroethyl)-1-nitrosourea - GR Glutathione Dehydrogenase - 2-ME 2-Mercaptoethanol - DTT Dithiothreitol - NADP B-Nicotinamide-Adenine Dinucleotide Phosphate - NADPH B-Nicotinamide-Adenine Dinucleotide Phosphate Reduced - EDTA Ethylenediaminetetraacetic Acid - GSH Glutathione Reduced Form - GSSG Glutathione Oxidized Form  相似文献   

2.
Summary Previous studies examining the regulation of the synthesis of G6PDH and 6PGDH in rat liver and adipose tissue have focused on the induction of these enzymes by different diets and some hormones. In rat liver these enzymatic activities seem to be regulated by a mechanism involving changes in the NADPH requirements. In this paper we have studied the effect of changes in the flux through different NADPH-consuming pathways on G6PDH and 6PGDH levels in adipose tissue and on the NADPH/NADP ratio. The results show that: I) an increase in the consumption of NADPH, caused by the activation of either fatty acid synthesis or detoxification systems which consume NADPH, is paralleled by an increase in the levels of these enzymes; II) when the increase in consumption of NADPH is prevented, the G6PDH and 6PGDH levels do not change.Abbreviations G6PDH Glucose-6-Phosphate Dehydrogenase - 6PGDH 6-Phosphogluconate Dehydrogenase - GR Glutathione Reductase - ME Malic Enzyme - tBHP t-Butyl Hydroperoxide - NF Nitrofurantoin - CumOOH Cumene Hydroperoxide  相似文献   

3.
The changes in the activity of the pentose phosphate cycle and the malic enzyme produced by the activation or inhibition of different NADPH-consuming pathways have been studied. The inhibition of the fatty acid synthesis by kynurenate produced a decrease in the flux through the pentose phosphate cycle and a diminution in the malic enzyme pathway. The incubation of the adipocytes in the presence of ter-butyl-hydroperoxide, a compound which is metabolized via a NADPH-consuming pathway, produced a big increase in the pentose phosphate cycle and the malic enzyme activities. The regulation of these NADPH-producing pathways by the NADPH/NADP ratio is discussed.  相似文献   

4.
5.
Cowpea [Vigna unguiculata (L.) Walp. cv. Co 4] seedlings were subjected to a weighted irradiance of 3.2 W m-2 s-1 of biologically effective ultraviolet-B radiation (UV-B, 280–320 nm) and the changes in the kinetic and other characteristics of nitrite reductase (NiR) were recorded. The activity of NiR was hampered by 19 % under UV-B irradiation compared to the control. The UV-B treated plants required higher concentrations of nitrate for the induction of NiR synthesis than the controls. The NiR activity decay kinetics showed that the UV-B treatment significantly lowers the t1/2 of the enzyme, thereby indicating a reduced rate of enzyme turnover. The comparison of kinetic characteristics of nitrate reductase (NR) and NiR under UV-B treatment showed that NiR was not so sensitive to UV-B radiation as NR. As shown by enzyme turnover rates, NiR extracted from plants irradiated by UV-B in situ was less sensitive to UV-B radiation than the enzyme extract subjected to in vitro UV-B irradiation. Though NiR was less damaged by UV-B treatment than NR, subtle changes occurred in its kinetic characteristics. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Hyperglycemia is associated with metabolic disturbances affecting cell redox potential, particularly the NADPH/NADP+ ratio and reduced glutathione levels. Under oxidative stress, the NADPH supply for reduced glutathione regeneration is dependent on glucose-6-phosphate dehydrogenase. We assessed the effect of different hyperglycemic conditions on enzymatic activities involved in glutathione regeneration (glucose-6-phosphate dehydrogenase and glutathione reductase), NADP(H) and reduced glutathione concentrations in order to analyze the relative role of these enzymes in the control of glutathione restoration. Male Sprague-Dawley rats with mild, moderate and severe hyperglycemia were obtained using different regimens of streptozotocin and nicotinamide. Fifteen days after treatment, rats were killed and enzymatic activities, NADP(H) and reduced glutathione were measured in liver and pancreas. Severe hyperglycemia was associated with decreased body weight, plasma insulin, glucose-6-phosphate dehydrogenase activity, NADPH/NADP+ ratio and glutathione levels in the liver and pancreas, and enhanced NADP+ and glutathione reductase activity in the liver. Moderate hyperglycemia caused similar changes, although body weight and liver NADP+ concentration were not affected and pancreatic glutathione reductase activity decreased. Mild hyperglycemia was associated with a reduction in pancreatic glucose-6-phosphate dehydrogenase activity. Glucose-6-phosphate dehydrogenase, NADPH/NADP+ ratio and glutathione level, vary inversely in relation to blood glucose concentrations, whereas liver glutathione reductase was enhanced during severe hyperglycemia. We conclude that glucose-6-phosphate dehydrogenase and NADPH/NADP+ were highly sensitive to low levels of hyperglycemia. NADPH/NADP+ is regulated by glucose-6-phosphate dehydrogenase in the liver and pancreas, whereas levels of reduced glutathione are mainly dependent on the NADPH supply.  相似文献   

7.
The activities of the enzymes nitrate reductase (EC 1.6.6.1), nitrite reductase (EC 1.6.6.4), glutamine synthetase (EC 6.3.1.2), glutamate synthase (GOGAT; EC 1.4.7.1), glutamate-oxaloacetate aminotransferase (EC 2.6.1.1), and glutamate dehydrogenase (EC 1.4.1.2) were compared in light-grown green or etiolated leaves of rye seedlings ( Secale cereale L. cv. Halo) raised at 22°C, and in the bleached 70S ribosome-deficient leaves of rye seedlings grown at a non-permissive high temperature of 32°C. Under normal permissive growth conditions the activities of most of the enzymes were higher in light-grown, than in dark-grown, leaves. All enzyme activities assayed were also observed in the heat-treated 70S ribosome-deficient leaves. Glutamine synthetase, glutamate synthase, and glutamate-oxaloacetate aminotransferase occurred in purified ribosome-deficient plastids separated on sucrose gradients. For glutamate-oxaloacetate aminotransferase four multiple forms were separated by polyacrylamide gel electrophoresis from leaf extracts. The chloroplastic form of this enzyme was also present in 70S ribosome-deficient leaves. It is concluded that the chloroplast-localized enzymes nitrite reductase, glutamine synthetase, glutamate synthase and glutamate-oxaloacetate aminotransferase, or their chloroplast-specific isoenzyme forms, are synthesized on cytoplasmic 80S ribosomes.  相似文献   

8.
In order to characterize further the antilipoperoxidative enzyme system of human sperm, that part of the system designed to provide reducing equivalents for the reduction of highly reactive and potentially damaging lipid hydroperoxides to relatively inert hydroxylipids was examined. The substrate that provides the reducing equivalents directly to glutathione peroxidase (GPX) is reduced glutathione (GSH), which is in turn oxidized to glutathione disulfide (GSSG). The reducing equivalents needed for regeneration of GSH through the action of glutathione reductase (GRD) are provided by NADPH, produced by the action of glucose-6-phosphate dehydrogenase (G6P-DH) on substrates glucose-6-phosphate and NADP+. The kinetic properties of the enzymes GRD and G6P-DH were determined by standard enzyme activity assay at 24 and 37°C. At 37°C, the Vmax for GRD was found to be 36 nmol/min · 108 cells, with Km values for GSSG and NAPH of 150 μM and 16 μM, respectively; the Vmax for G6P-DH was 3.3 nmol/min · 108 cells with Km for NADP+ of 8 μM. This suggested that G6P-DH activity was limiting in this reductive pathway. The activity of GRD in situ in intact cells was estimated using the thiol-reactive fluorogenic probe ThioGlo-1, which is cell permeant and reacts rapidly with GSH to give a highly fluorescent adduct. Mixing a suspension of human sperm with the fluorogenic reagent at 37°C gave an initial rapid increase in fluorescence, followed by a slower one. The rapid phase is due to reaction with intracellular GSH already present; the slow phase is due to reaction with GSH generated by the GRD-catalyzed reduction of GSSG. Both rates showed first-order kinetics. Calculation of the maximal rate as NADPH oxidation, attributable to in situ GRD activity, gave the value of 1.0 nmol/min · 108 cells, less than the maximum for NADPH production by the dehydrogenase. These results support the suggestion that NADPH production limits the capacity of the pathway leading to hydroperoxide reduction in human sperm. We propose that the antilipoperoxidative defense system of human sperm has just sufficient capacity to allow these cells to fulfill their function but is limited to allow their timely disposal from the female reproductive tract. Mol. Reprod. Dev. 49:400–407, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
球孢白僵菌高渗适应性相关基因Bbmpd的克隆与表达分析   总被引:1,自引:0,他引:1  
【目的】克隆与球孢白僵菌(Beauveria bassiana)的高渗适应性相关基因,并对其功能进行分析,以揭示球孢白僵菌对高渗等逆境适应的分子机理。【方法】利用YADE法克隆T-DNA的侧翼序列并进行基因组步行,获得突变基因的全长及上游序列;利用RT-PCR技术分析突变基因的表达特性以及与Bbhog1的关系;采用同源重组技术敲除Bbmpd基因。【结果】克隆得到插入突变基因及其上、下游序列全长3037bp。该基因与编码球孢白僵菌的1-磷酸甘露醇脱氢酶基因相似性为98%。Bbmpd的表达受高渗环境(0.8mol/L NaCl)的诱导,受Bbhog1信号途径的激活调节,Bbhog1缺失导致Bbmpd表达下调。Bbmpd缺失突变体在高渗胁迫下的生长受到明显抑制。Bbmpd缺失不影响球孢白僵菌在查氏培养基上的生长和产孢。【结论】由T-DNA突变体克隆了编码球孢白僵菌1-磷酸甘露醇脱氢酶基因Bbmpd,该基因的表达受高渗环境的诱导和Bbhog1的调控,与球孢白僵菌高渗适应性相关。  相似文献   

10.
Phosphon-D (tributyl-2, 4-dichlorobenzylphosphonium chloride), known as an inhibitor of gibberellin biosynthesis, enhances photosynthetic electron transport by up to 200%, with Fe(CN) 6 3- and NADP+ being the electron acceptors. Maximum stimulation is reached at phosphon-D concentrations around 2–5 M. At the same time photosynthetic ATP formation is gradually inhibited. Phosphon-D concentrations over 0.1 mM inhibit electron transport. The uncoupling activity of phosphon-D is manifested by inhibition of noncyclic ATP synthesis and by stimulation of light-induced electron flow. The inhibition of ATP synthesis drastically decreases photosynthetic carbon assimilation in a reconstituted spinach chloroplast system. The two ATP-dependent kinase reactions of the reductive pentose phosphate cycle become the rate-limiting steps. On the other hand a stimulated photoelectron transport increases the NADPH/NADP+ ratio, resulting in a drastic inhibition of chloroplast glucose-6-phosphate dehydrogenase (EC 1.1.1.49), the key enzyme of the oxidative pentose phosphate cycle. When light-induced electron flow is inhibited by high phosphon-D concentrations and the NADPH/NADP+ ratio is low, the light-dependent inhibition of glucose-6-phosphate dehydrogenase is gradually abolished.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidinecarboxylate methyl chloride - B-Nine N-dimethylaminosuccinamic acid - CCC (2-chloroethyl)-trimethylammonium chloride - DCMU 3-(3,4-dichlorophenyl)-1, 1-dimethyl urea - DCPIP dichlorophenolindophenol - G-6-PDH glucose-6-phosphate dehydrogenase - FBP fructose bisphosphate - F-6-P fructose-6-phosphate - 3-PGA 3-phosphoglyceric acid - Posphon-D tributyl-2,4-dichlorobenzylphosphonium chloride - PMP pentose monophosphates - PPC pentose phosphate cycle - RuBP ribulose bisphosphate - Ru-5-P ribulose-5-phosphate Dedicated to Prof. Dr. Drs.h.c. Adolf Butenandt on the occasion of his 75. birthday  相似文献   

11.
In this work, we investigate the influence of crosslinkers on the operational and heat stability of immobilized enzymes on a silanized silicon surface. To this end, glucose-6-phosphate dehydrogenase (G6PDH), a model multimeric enzyme, was attached through bifunctional crosslinkers able to bind covalently the ?NH2 in the silane layer and of amine residues in the enzyme. Five bifunctional crosslinkers in the form of “X-spacer-X” were used, differing by the reactive functional groups (X = aldehyde: ?CHO, isothiocyanate: ?NCS, isocyanate: ?NCO), by the nature of the spacer chain (aromatic or aliphatic) or by the geometry (bifunctional groups positioned in meta- or para- on an aromatic ring). A thermostability enhancement has been obtained for enzymes immobilized using 1,4-phenylene diisothiocyanate (PDC) and 1,4-phenylene diisocyanate (DIC). Moreover, using the latter crosslinker, activity was the mostly preserved upon successive uses, thus giving the best operational stability achieved. Changing the geometry of the cross-linker, i.e., 1,4- as compared to 1,3-phenylene diisothiocyanate (PDC and MDC, respectively), has a crucial effect on operational and thermal stabilities. Indeed, among all used crosslinkers, the most important loss was observed for MDC (residual activity after 6 times use is ~16%). Using dialdehyde crosslinkers: glutaraldehyde (GA) and terephtalaldehyde (TE), activity was significantly less well preserved than with DIC and PDC (for GA and TE, a loss of about 50% at 30 °C against no loss for PDC and DIC).These effects can be explained by a multipoint attachment model, in which a higher number of anchoring points stabilizes the three-dimensional structure and especially the binding of the two subunits in the active dimer, at the expense of a greater rigidity which is detrimental to the absolute activity. The differences observed with the crosslinkers are mainly due to steric hindrance at the interface which seems to be greatly influenced by the structure and the reactivity of the linkers.  相似文献   

12.
13.
Starch synthesis requires several enzymatic activities including branching enzymes (BEs) responsible for the formation of α(1 → 6) linkages. Distribution and number of these linkages are further controlled by debranching enzymes that cleave some of them, rendering the polyglucan water‐insoluble and semi‐crystalline. Although the activity of BEs and debranching enzymes is mandatory to sustain normal starch synthesis, the relative importance of each in the establishment of the plant storage polyglucan (i.e. water insolubility, crystallinity and presence of amylose) is still debated. Here, we have substituted the activity of BEs in Arabidopsis with that of the Escherichia coli glycogen BE (GlgB). The latter is the BE counterpart in the metabolism of glycogen, a highly branched water‐soluble and amorphous storage polyglucan. GlgB was expressed in the be2 be3 double mutant of Arabidopsis, which is devoid of BE activity and consequently free of starch. The synthesis of a water‐insoluble, partly crystalline, amylose‐containing starch‐like polyglucan was restored in GlgB‐expressing plants, suggesting that BEs' origin only has a limited impact on establishing essential characteristics of starch. Moreover, the balance between branching and debranching is crucial for the synthesis of starch, as an excess of branching activity results in the formation of highly branched, water‐soluble, poorly crystalline polyglucan.  相似文献   

14.
The developmental profile of the activities of some enzymes involved in malate metabolism, namely phosphoenolpyruvate carboxylase (PEPC; EC 4. 1. 1. 31), NAD+-linked (EC 1. 1. 1. 37) and NADP+-linked (EC 1. 1. 1. 82) malate dehydrosenase (MDH), NAD+linked (EC 1. 1. 1. 39) and NADP+-linked (EC 1. 1. 1. 40) malic enzyme (ME), has been determined in leaves of peach [ Prunus persica (L.) Batsch cv. Maycrest], a woody C3 species. In order to study the role of these enzymes, their activities were related to developmental changes of photosynthesis, respiration, and capacity for N assimilation. Activities of PEPC, NAD(P)+-MDH and NADP+-ME were high in young expanding leaves and decreased 2- to 3-fold in mature ones, suggesting that such enzymes play some role during the early stages of leaf expansion. In leaves of peach, such a role did not seem to be linked to C3 photosynthesis or nitrate assimilation, in that photosynthetic O2 evolution and activities of nitrate reductase (EC 1. 6. 6. 1) and glutamine synthetase (EC 6. 3. 1. 2) increased during leaf development. In contrast, leaf respiration strongly decreased with increasing leaf age. We suggest that in expanding leaves of this woody species the enzymes associated with malate metabolism have anaplerotic functions, and that PEPC may also contribute to the recapture of respiratory CO2.  相似文献   

15.
K. J. Lendzian 《Planta》1978,141(1):105-110
Glucose-6-phosphate dehydrogenase (EC 1.1.1.49) from spinach chloroplasts is strongly affected by interactions between Mg2+, proton, and substrate concentrations. Mg2+ activates the enzyme to different degrees; however, it is not essential for enzyme activity. The Mg2+-dependent activation follows a maximum curve, magnitude and position of the maximum being dependent on pH and NADPH/NADP+ ratios. At a ratio of zero and pH 7.2, maximum activity is observed at 10 mM Mg2+. Increasing the NADPH/NADP+ ratio up to 1.7 (a ratio measured in the stroma during a light period), maximum activity is shifted to much lower Mg2+ concentrations. At pH 8.2 (corresponding to the pH of the stroma in the light) and at a high NADPH/NADP+ ratio, enzyme activity is not affected by the Mg2+ ion. The results are discussed in relation to dark-light-dark regulation of the oxidative pentose phosphate cycle in spinach chloroplasts.Abbreviations DTT dithiothreitol - G-6-P glucose-6-phosphate - G-6-PDH glucose-6-phosphate dehydrogenase (EC 1.1.1.49) - PPC pentose phosphate cycle  相似文献   

16.
Abstract

To develop an efficient biocatalyst to produce optically active (S)-phenyl ethanediol (PED), a carbonyl reductase SCRII and glucose 6-phosphate dehydrogenase were coexpressed intracellularly in Pichia pastoris. The recombinant enzyme PpSCRII was purified with a specific activity of 8.32 U mg?1, over 36% higher than that of Escherichia coli SCRII. The recombinant cells P. pastoris/SCRIIG catalyzed the reduction of 2-hydroxyacetophenone to give (S)-PED with optical purity of >99% in a yield of 96.3%. The yield was improved by 19.9% and 25.7% over E. coli BL21/SCRII and Candida parapsilosis, respectively, when the reaction duration was shorted from 48 h to 24 h. When using glucose 50 g L?1 as co-substrate, these P. pastoris/SCRIIG cells could be reused ten times and the optical purity and yield of (S)-PED kept at >99% enantiomeric excess and >85%, respectively.  相似文献   

17.
Incubations of photomixotrophic suspension culture cells of spruce (Picea abies) (L.) (Karst) with an autoclaved cell wall preparation of Rhizosphaera kalkhoffii as elicitor led to a rapid increase of the activity of a number of enzymes involved in lignin biosynthesis. l-phenylalanine ammonia-lyase (EC 4.3.1.5) was induced about 10-fold, feruloyl-Coenzyme A reductase (ED 1.2.1.44) 4-fold, cinnamyl alcohol dehydrogenase (NADP+) (EC 1.1.1.195) 2-fold and peroxidase (EC 1.11.1.7) about 1.5-fold. The induction of the enzymes, with the exception of the peroxidase, was transient, showing maximal activity within 3 days after elicitation. Extracellular peroxidase activity, determined in the culture medium, rapidly decreased on initiation of elicitation.Concomitant with the increase of activity of the enzymes of lignin synthesis was a rapid clouding of the culture medium. Phloroglucinol-HCl staining revealed the presence of lignin-like material in the medium and also in the cells. The IR-spectrum of this material was identical with the IR-spectrum of authentic spruce lignin.Abbreviations PAL l-phenylalanine ammonia-lyase - FCR feruloyl-Coenzyme A reductase - CAD cinnamyl alcohol dehydrogenase - POD peroxidase  相似文献   

18.
19.
White-tailed prairie dogs (Cynomys leucurus) are spontaneous hibernators that enter torpor each fall, whereas black-tailed prairie dogs (C. ludovicianus) hibernate facultatively only when food- or water-stressed during the winter. The body masses of both species greatly increase during the fall feeding period, with most of this gain in the form of depot fat. Body fat is utilized during winter fasting and/or hibernation. We measured the activities of fatty acid synthase (FAS), ATP-citrate lyase (ACL), malic enzyme (ME), glucose-6-phosphate dehydrogenase (G6PDH), and hormone-sensitive lipase (HSL) in the tissues of both C.leucurus (hibernating and euthermic) and C. ludovicianus (euthermic only) under controlled conditions. The activities of FAS, ACL, and G6PDH in the liver all decreased during hibernation. The activities of ME and G6PDH in white adipose tissue (WAT) were also reduced during hibernation. Euthermic C. leucurus and euthermic C. ludovicianus differed only in brown adipose (BAT) ACL and WAT G6PDH activities. No significant differences in HSL activities were found between these two species or between euthermic and hibernating animals. These results suggest that this seasonal body fat cycle is due, at least in part, to seasonal variations in the activities of FAS, ME, ACL, and G6PDH that affect the rate of fatty acid synthesis. This study also demonstrates that spontaneous hibernators do not have a greater capacity to synthesize fatty acids during the fall than facultative hibernators, as previously suggested.  相似文献   

20.
Shunichi Takahashi 《BBA》2006,1757(3):198-205
We demonstrated recently that, in intact cells of Chlamydomonas reinhardtii, interruption of CO2 fixation via the Calvin cycle inhibits the synthesis of proteins in photosystem II (PSII), in particular, synthesis of the D1 protein, during the repair of PSII after photodamage. In the present study, we investigated the mechanism responsible for this phenomenon using intact chloroplasts isolated from spinach leaves. When CO2 fixation was inhibited by exogenous glycolaldehyde, which inhibits the phosphoribulokinase that synthesizes ribulose-1,5-bisphosphate, the synthesis de novo of the D1 protein was inhibited. However, when glycerate-3-phosphate (3-PGA), which is a product of CO2 fixation in the Calvin cycle, was supplied exogenously, the inhibitory effect of glycolaldehyde was abolished. A reduced supply of CO2 also suppressed the synthesis of the D1 protein, and this inhibitory effect was also abolished by exogenous 3-PGA. These findings suggest that the supply of 3-PGA, generated by CO2 fixation, is important for the synthesis of the D1 Protein. It is likely that 3-PGA accepts electrons from NADPH and decreases the level of reactive oxygen species, which inhibit the synthesis of proteins, such as the D1 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号