首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Managed wetlands provide critical foraging and roosting habitats for shorebirds during migration; therefore, ensuring their availability is a priority action in shorebird conservation plans. Contemporary shorebird conservation plans rely on a number of assumptions about shorebird prey resources and migratory behavior to determine stopover habitat requirements. For example, the US Shorebird Conservation Plan for the Southeast-Caribbean region assumes that average benthic invertebrate biomass in foraging habitats is 2.4 g dry mass m?2 and that the dominant prey item of shorebirds in the region is Chironomid larvae. For effective conservation and management, it is important to test working assumptions and update predictive models that are used to estimate habitat requirements. We surveyed migratory shorebirds and sampled the benthic invertebrate community in coastal managed wetlands of South Carolina. We sampled invertebrates at three points in time representing early, middle, and late stages of spring migration, and concurrently surveyed shorebird stopover populations at approximately 7-day intervals throughout migration. We used analysis of variance by ranks to test for temporal variation in invertebrate biomass and density, and we used a model based approach (linear mixed model and Monte Carlo simulation) to estimate mean biomass and density. There was little evidence of a temporal variation in biomass or density during the course of spring shorebird migration, suggesting that shorebirds did not deplete invertebrate prey resources at our site. Estimated biomass was 1.47 g dry mass m?2 (95 % credible interval 0.13–3.55), approximately 39 % lower than values used in the regional shorebird conservation plan. An additional 4728 ha (a 63 % increase) would be required if habitat objectives were derived from biomass levels observed in our study. Polychaetes, especially Laeonereis culveri (2569 individuals m?2), were the most abundant prey in foraging habitats at our site. Polychaetes have lower caloric content than levels assumed in the regional plan; when lower caloric content and lower biomass levels are used to determine habitat objectives, an additional 6395 ha would be required (86 % increase). Shorebird conservation and management plans would benefit from considering the uncertainty in parameters used to derive habitat objectives, especially biomass and caloric content of prey resources. Iterative testing of models that are specific to the planning region will provide rapid advances for management and conservation of migratory shorebirds and coastal managed wetlands.  相似文献   

2.
Populations of many shorebird species appear to be declining in North America, and food resources at stopover habitats may limit migratory bird populations. We investigated body condition of, and foraging habitat and diet selection by 4 species of shorebirds in the central Illinois River valley during fall migrations 2007 and 2008 (Killdeer [Charadrius vociferus], Least Sandpiper [Calidris minutilla], Pectoral Sandpiper [Calidris melanotos], and Lesser Yellowlegs [Tringa flavipes]). All species except Killdeer were in good to excellent condition, based on size-corrected body mass and fat scores. Shorebird diets were dominated by invertebrate taxa from Orders Diptera and Coleoptera. Additionally, Isopoda, Hemiptera, Hirudinea, Nematoda, and Cyprinodontiformes contribution to diets varied by shorebird species and year. We evaluated diet and foraging habitat selection by comparing aggregate percent dry mass of food items in shorebird diets and core samples from foraging substrates. Invertebrate abundances at shorebird collection sites and random sites were generally similar, indicating that birds did not select foraging patches within wetlands based on invertebrate abundance. Conversely, we found considerable evidence for selection of some diet items within particular foraging sites, and consistent avoidance of Oligochaeta. We suspect the diet selectivity we observed was a function of overall invertebrate biomass (51.2±4.4 [SE] kg/ha; dry mass) at our study sites, which was greater than estimates reported in most other food selection studies. Diet selectivity in shorebirds may follow tenants of optimal foraging theory; that is, at low food abundances shorebirds forage opportunistically, with the likelihood of selectivity increasing as food availability increases. Nonetheless, relationships between the abundance, availability, and consumption of Oligochaetes for and by waterbirds should be the focus of future research, because estimates of foraging carrying capacity would need to be revised downward if Oligochaetes are truly avoided or unavailable for consumption.  相似文献   

3.
Many species depend on multiple habitats at different points in space and time. Their effective conservation requires an understanding of how and when each habitat is used, coupled with adequate protection. Migratory shorebirds use intertidal and supratidal wetlands, both of which are affected by coastal landscape change. Yet the extent to which shorebirds use artificial supratidal habitats, particularly at highly developed stopover sites, remains poorly understood leading to potential deficiencies in habitat management. We surveyed shorebirds on their southward migration in southern Jiangsu, a critical stopover region in the East Asian Australasian Flyway (EAAF), to measure their use of artificial supratidal habitats and assess linkages between intertidal and supratidal habitat use. To inform management, we examined how biophysical features influenced occupancy of supratidal habitats, and whether these habitats were used for roosting or foraging. We found that shorebirds at four of five sites were limited to artificial supratidal habitats at high tide for ~11–25 days per month because natural intertidal flats were completely covered by seawater. Within the supratidal landscape, at least 37 shorebird species aggregated on artificial wetlands, and shorebirds were more abundant on larger ponds with less water cover, less vegetation, at least one unvegetated bund, and fewer built structures nearby. Artificial supratidal habitats were rarely used for foraging and rarely occupied when intertidal flats were available, underscoring the complementarity between supratidal roosting habitat and intertidal foraging habitat. Joined‐up artificial supratidal management and natural intertidal habitat conservation are clearly required at our study site given the simultaneous dependence by over 35,000 migrating shorebirds on both habitats. Guided by observed patterns of habitat use, there is a clear opportunity to improve habitat condition by working with local land custodians to consider shorebird habitat requirements when managing supratidal ponds. This approach is likely applicable to shorebird sites throughout the EAAF.  相似文献   

4.
Many shorebird populations show evidence of declines. To identify the causes is a key issue in developing comprehensive shorebird conservation plans. In coastal areas, shorebirds are vulnerable to effects of shellfish and baitworm digging, including reduction of the food supply. The mudsnail Hydrobia ulvae is often reported to be the dominant inhabitant of intertidal mudflats, and is common in the diet of migrating and wintering shorebirds. This prosobranch mollusc lives at or just below the surface of intertidal mudflats, so it might be directly damaged and killed or buried within the mud by hand diggers. We studied the short-term effects of digging by hand on the availability of mudsnail to shorebirds. Twenty centimetres deep core samples were collected from undisturbed and recently disturbed intertidal mud. The total mudsnail density and biomass per core sample was similar in disturbed and undisturbed mud. However, mudsnail density and biomass were significantly lower in disturbed mud than in undisturbed mud when only the upper five centimetres of the mud were compared. If only the mudsnails found in this surface layer are potentially available for shorebirds, the available mudsnail density and biomass fraction for shorebirds had decreased by 62.6? ?±? 11.4% and 75.7? ?±? 7.2% in disturbed mud, respectively. The potential impact of this decreasing mudsnail fraction on shorebirds is addressed.  相似文献   

5.
Aim Conservation managers designate significant areas for shorebirds based on imperfect data. Significant wetlands for migratory shorebirds have usually been identified on the basis of whether they exceed certain thresholds, defined either by total abundance (usually 20,000 waterbirds) or percentage of a population (usually 1.0%). We evaluate the performance of existing criteria and determine if lowering thresholds would improve shorebird conservation without adding unreasonable numbers of significant sites. Location Australia. Methods We evaluated the best available data, which is used by managers to designate significant areas, to describe the effect of lowering thresholds on the number of significant sites identified and the number of shorebirds these sites support using a range of thresholds in existing criteria. We also investigated factors which may explain interspecific differences evident when lowering thresholds. Results When the threshold for total abundance was lowered from 20,000 to 2000 shorebirds, an additional 45 shorebird areas, holding 65% more shorebirds, were identified. When thresholds for the percentage of a population criterion were lowered from 1.0 to 0.1%, an additional 86 shorebird areas were identified which held 29% more shorebirds. The proportion of a species population counted within wetlands identified as significant by the application of criteria varied widely between species. The percentage of population criterion always identified a network of areas that included more individuals of each species than the total abundance criterion at all threshold levels tested. The percentage of species populations found in networks of significant areas showed greater increase as thresholds were lowered for species that were abundant, widespread and well represented at existing thresholds. Main conclusions Our results suggest lowering thresholds will substantially increase the number of shorebirds in identified significant areas. However, some species will remain under‐represented, partly because of interspecific differences in distribution and inadequate sampling of some shorebird habitats.  相似文献   

6.
Worldwide declines in shorebird populations, driven largely by habitat loss and degradation, motivate environmental managers to preserve and restore the critical coastal habitats on which these birds depend. Effective habitat management requires an understanding of the factors that determine habitat use and value to shorebirds, extending from individuals to the entire community. While investigating the factors that influenced shorebird foraging distributions among neighboring intertidal sand flats, we built upon species-level understandings of individual-based, small-scale foraging decisions to develop more comprehensive guild- and community-level insights. We found that densities and community composition of foraging shorebirds varied substantially among elevations within some tidal flats and among five flats despite their proximity (all located within a 400-m stretch of natural, unmodified inlet shoreline). Non-dimensional multivariate analyses revealed that the changing composition of the shorebird community among flats and tidal elevations correlated significantly (ρs = 0.56) with the spatial structure of the benthic invertebrate prey community. Sediment grain-sizes affected shorebird community spatial patterns indirectly by influencing benthic macroinvertebrate community compositions. Furthermore, combining sediment and macroinvertebrate information produced a 27% increase in correlation (ρs = 0.71) with shorebird assemblage patterns over the correlation of the bird community with the macroinvertebrate community alone. Beyond its indirect effects acting through prey distributions, granulometry of the flats influenced shorebird foraging directly by modifying prey availability. Our study highlights the importance of habitat heterogeneity, showing that no single patch type was ideal for the entire shorebird community. Generally, shorebird density and diversity were greatest at lower elevations on flats when they became exposed; these areas are at risk from human intervention by inlet sand mining, construction of groins and jetties that divert sediments from flats, and installation of seawalls on inlet shorelines that induce erosion of flats.  相似文献   

7.
长江口杭州湾鸻形目鸟类群落季节变化和生境选择   总被引:14,自引:3,他引:11  
在长江口南岸杭州湾北岸滨海滩涂进行了鸻形目鸟类的资源调查,以及鸟类栖息地选择模式分析,2004年3月至2005年1月共统计到鸟类25种,春季优势种为大缤鹬(Calidris tenuirostris)、尖尾缤鹬(Calidris alpine)和红颈滨鹬(Calidris ruficollis);夏季为环颈(Charadrius alexandrinus)、青脚鹬(Tringa nebularia)和蒙古沙(Charadrius mongolus),秋季为环颈、红颈滨鹬和青脚鹬,冬季为黑腹滨鹬(Calidris alpina)、环颈和泽鹬(Tringa stagnatilis),鸟类总体数量呈春季>秋季>冬季>夏季,海堤外(自然滩涂)和堤内(人工湿地)鸟类种数四季大致相等,但鸟类平均密度季节差异显著。通过对样点内鸟类与环境因子进行多元分析,初步总结出堤外滩宽和光滩宽是影响鸟类栖息的最关键因子,海三棱草(Scirpus× mariquete)覆盖比例和潮上坪宽度的影响程度次之。堤内浅水塘比例和裸地比例是影响形目鸟类分布的关键因子,海三棱草覆盖比例也起正向作用。而人类干扰大、芦苇(Phragmites communis)/互花米草(Spartina alternifloral)密植和高水位的区域不利于鸟类利用。  相似文献   

8.
Ge Z M  Wang T H  Zhou X  Shi W Y 《农业工程》2006,26(1):40-47
Coastal regions are important habitats for migratory shorebirds. The aim of the study is to understand habitat use by migratory shorebirds and to develop a conservation strategy in the sustainable use of wetlands. From March 2004 to January 2005, we conducted a seasonal shorebirds census in ten coastal habitats along the South Yangtze River mouth and North Hangzhou Bay, simultaneously examining the relative seasonal abundance of shorebirds and their spatial distribution. A total of 25 species were identified, the dominant seasonal species were Great Knot (Calidris tenuirostris), Sharp-tailed Sandpiper (Calidris alpine) and Red-necked Stint (Calidris ruficollis) in spring; Kentish Plover (Charadrius alexandrinus), Common Greenshank(Tringa nebularia) and Lesser Sand Plover (Charadrius mongolus) in summer; Kentish Plover, Red-necked Stint and Common Greenshank in autumn; Dunlin(Calidris alpine), Kentish Plover and Marsh Sandpiper (Tringa stagnatilis) in winter. These species accounted for more than 85% of the total shorebirds. The numbers of shorebirds counted was highest in spring and then in autumn, winter and summer respectively. Among the four seasons, there were few significant differences in the number of bird species between the sites outside the seawall (intertidal mudflat) and the sites inside the seawall (artificial wetland), but the average density of shorebirds was obviously different. The habitat-selection analysis of the environmental factors (outside and inside the seawall) impacting on the shorebird community was made in the 10 study sites with Canonical Correspondence Analysis. The study results indicated that: (1) Outside the seawall, the widths of the total intertidal mudflat and bare mudflat were the key factors affecting the shorebirds; the proportion of bulrush (Scirpusmariquete) covering and supertidal mudflat width had a positive correlation with the abundance of birds, while human disturbance and the proportion of both reed (Phragmites communis) and smooth cord-grass (Spartina alterniflora) covering in total surveyed areas had negative impacts on bird numbers; (2) Inside the seawall, the proportions of areas with shallow water and mudflats occupying the total surveyed area were key factors influencing the number of birds; the size of the bulrush area should have a positive impact on the appearance of shorebirds. Habitats with heavy human disturbance, dense reed and smooth cord-grass or a high water level were not conducive to be inhabited by shorebirds.  相似文献   

9.
Paulino  João  Granadeiro  José Pedro  Henriques  Mohamed  Belo  João  Catry  Teresa 《Hydrobiologia》2021,848(17):3905-3919

The burrowing activity of fiddler crabs inhabiting intertidal flats creates visually distinct patches within these habitats. However, differences in the composition and abundance of shorebirds and their macroinvertebrate prey between areas inhabited or not by crabs are yet to be studied. Here, we compare the macroinvertebrate and shorebird assemblages in low and high crab density areas in the intertidal flats of the Bijagos archipelago, Guinea-Bissau. High crab density areas are associated with lower richness and densities of macroinvertebrates. Shorebird assemblages were also less rich at high crab density areas and the differences in species composition occurred according to prey type preferences. Fiddler crab density was the most important variable explaining macroinvertebrate abundance, after accounting for the effects of fine fraction of sediment and distance to coast. Nonetheless, a controlled experimental setup would be required to attribute differences found to the engineering activity of fiddler crabs rather than other unaccounted habitat features. Our findings suggest that crab patches should be taken into account when assessing the distribution and abundance of macroinvertebrates and shorebirds in intertidal areas. Since low and high crab density areas differ markedly in terms of shorebird carrying capacity, monitoring variations in their extent will be important to interpret past and present population trends.

  相似文献   

10.
Coastal regions are important habitats for migratory shorebirds. The aim of the study is to understand habitat use by migratory shorebirds and to develop a conservation strategy in the sustainable use of wetlands. From March 2004 to January 2005, we conducted a seasonal shorebirds census in ten coastal habitats along the South Yangtze River mouth and North Hangzhou Bay, simultaneously examining the relative seasonal abundance of shorebirds and their spatial distribution. A total of 25 species were identified, the dominant seasonal species were Great Knot (Calidris tenuirostris), Sharp-tailed Sandpiper (Calidris alpine) and Red-necked Stint (Calidris ruficollis) in spring; Kentish Plover (Charadrius alexandrinus), Common Greenshank(Tringa nebularia) and Lesser Sand Plover (Charadrius mongolus) in summer; Kentish Plover, Red-necked Stint and Common Greenshank in autumn; Dunlin(Calidris alpine), Kentish Plover and Marsh Sandpiper (Tringa stagnatilis) in winter. These species accounted for more than 85% of the total shorebirds. The numbers of shorebirds counted was highest in spring and then in autumn, winter and summer respectively. Among the four seasons, there were few significant differences in the number of bird species between the sites outside the seawall (intertidal mudflat) and the sites inside the seawall (artificial wetland), but the average density of shorebirds was obviously different. The habitat-selection analysis of the environmental factors (outside and inside the seawall) impacting on the shorebird community was made in the 10 study sites with Canonical Correspondence Analysis. The study results indicated that: (1) Outside the seawall, the widths of the total intertidal mudflat and bare mudflat were the key factors affecting the shorebirds; the proportion of bulrush (Scirpus×mariquete) covering and supertidal mudflat width had a positive correlation with the abundance of birds, while human disturbance and the proportion of both reed (Phragmites communis) and smooth cord-grass (Spartina alterniflora) covering in total surveyed areas had negative impacts on bird numbers; (2) Inside the seawall, the proportions of areas with shallow water and mudflats occupying the total surveyed area were key factors influencing the number of birds; the size of the bulrush area should have a positive impact on the appearance of shorebirds. Habitats with heavy human disturbance, dense reed and smooth cord-grass or a high water level were not conducive to be inhabited by shorebirds.  相似文献   

11.
In saline lakes, areal cover and both species and structural diversity of macrophytes often decline as salinity increases. To assess effects of the loss of certain macrophyte growth forms, we characterized benthic and epiphytic invertebrates in three growth forms (thin-stemmed emergents, erect aquatics, and low macroalgae) in oligosaline lakes (0.8–4.2 mS cm−1) of the Wyoming High Plains, USA. We also measured the biomass and taxonomic composition of epiphytic and benthic invertebrates in two erect aquatics with very similar structure that are found in both oligosaline (Potamogeton pectinatus) and mesosaline (9.3–23.5 mS cm−1) (Ruppia maritima) lakes. Although total biomass of epiphytic invertebrates varied among oligosaline lakes, the relative distribution of biomass among growth forms was similar. For epiphytic invertebrates, biomass per unit area of lake was lowest in emergents and equivalent in erect aquatics and low macroalgae; biomass per unit volume of macrophyte habitat was greatest in low macroalgae. For benthic invertebrates, biomass was less beneath low macroalgae than other growth forms. Taxonomic composition did not differ appreciably between growth forms for either benthic or epiphytic invertebrates, except that epiphytic gastropods were more abundant in erect aquatics. Total biomass of epiphytic and benthic invertebrates for the same growth form (erect aquatic) did not differ between oligosaline (Potamogeton pectinatus) and mesosaline (Ruppia maritima) lakes, but taxonomic composition did change. In the oligosaline to mesosaline range, direct toxic effects of salinity appeared important for some major taxa such as gastropods and amphipods. However, indirect effects of salinity, such as loss of macrophyte cover and typically higher nutrient levels at greater salinities, probably have larger impacts on total invertebrate biomass lake-wide.  相似文献   

12.
Core samples were taken along a 4 km stretch of intertidal seagrass on North Stradbroke Island, eastern Australia, at nested scales of 1 m (stations), 150 m (sites), and 2 km (localities) to investigate the extent to which abundance, diversity, and assemblage composition of the dominant smaller members (<10 mm) of the intertidal seagrass macrobenthos vary spatially and over what scales. Gastropods and polychaetes dominated both the 91 species present and, together with decapods, also the numbers of individuals. Abundance was low (mean < 2000 individuals m−2) but species diversity was high (overall Simpson’s index of diversity 0.91), with 44% of species occurring only as one or two individuals, and with only two species contributing >10% to the total numbers (the microgastropod Calopia imitata and crab Enigmaplax littoralis, both little known, rarely recorded endemics). On average, a species only occurred at 6% of stations and only four occurred at >25%. Assemblages at the three localities did not vary significantly in gross ecological features (levels of species richness, faunal abundance and species diversity per component site) (ANOVA P ≫ 0.05), but did vary markedly in their composition at all spatial scales (PERMANOVA P < 0.05). Variance partitioning showed that components of total variance were least at the largest spatial scale (locality 15.9%) and greatest at the smallest scale (station 59.3%). The commoner individual species all showed random distributions at small spatial scales but clumped distributions at large spatial scales.  相似文献   

13.
Abstract Shorebirds migrating through the Southern Great Plains of North America use saline lakes as stopovers to rest and replenish energy reserves. To understand how availability of invertebrates, salinity, freshwater springs, vegetation, and water influence the value of saline lakes as migration stopovers, we compared lakes used and not used by migrant shorebirds. Shorebirds used lakes that had freshwater springs, mudflats and standing water, sparse vegetation (≤1% cover), low to moderate salinities (x = 30.87 g/L), and mean invertebrate biomass of 0.79 g/m2. Lakes that were not used were generally dry or had hypersaline water (x = 82.56 g/L), lacked flowing springs and vegetation, and had few or no invertebrates (x = 0.007 g/m2). Our results suggest that reduced spring flows and increased salinity negatively affect availability of shorebird habitats and aquatic invertebrates. We recommend preservation of the freshwater springs discharging in the saline lakes. Because the springs are discharged from the Ogallala aquifer, which is recharged through the playa wetlands, the entire complex of wetlands in the Great Plains and the Ogallala aquifer should be managed as an integral system.  相似文献   

14.
ABSTRACT Off-road vehicle (ORV) traffic is one of several forms of disturbance thought to affect shorebirds at migration stopover sites. Attempts to measure disturbance effects on shorebird habitat use and behavior at stopover sites are difficult because ORV disturbance is frequently confounded with habitat and environmental factors. We used a before-after-control-impact experimental design to isolate effects of vehicle disturbance from shorebird responses to environmental and habitat factors. We manipulated disturbance levels within beach closures along South Core Banks, North Carolina, USA, and measured changes in shorebird abundance and location, as well as the activity of one focal species, the sanderling (Calidris alba), within paired control and impact plots. We applied a discrete treatment level of one flee-response-inducing event every 10 minutes on impact plots. We found that disturbance reduced total shorebird and black-bellied plover (Pluvialis squatarola) abundance and reduced relative use of microhabitat zones above the swash zone (wet sand and dry sand) by sanderlings, black-bellied plovers, willets (Tringa semipalmata), and total shorebirds. Sanderlings and total shorebirds increased use of the swash zone in response to vehicle disturbance. Disturbance reduced use of study plots by sanderlings for resting and increased sanderling activity, but we did not detect an effect of vehicle disturbance on sanderling foraging activity. We provide the first estimates of how a discrete level of disturbance affects shorebird distributions among ocean beach microhabitats. Our findings provide a standard to which managers can compare frequency and intensity of disturbance events at other shorebird stopover and roosting sites and indicate that limiting disturbance will contribute to use of a site by migratory shorebirds.  相似文献   

15.
Dense flocks of migratory shorebirds from diverse species often concentrate in the intertidal areas for stopover. Trophic structure, food partition, prey availability and selectivity, predation risk, and abiotic factors are often used to explain the differences in habitat use of coexisting shorebirds. We sampled the macrobenthos and surveyed the distribution of shorebird populations to study the effects of foraging strategies on the habitat use of shorebirds at Chongming Dongtan, an important stopover site for shorebirds on the East Asian–Australasian Flyway. Results show that the relative abundance of epifaunal macrobenthos in salt marshes was much higher than that in the bare flats, whereas the relative abundance of infaunal macrobenthos in salt marshes was much lower than that in bare flats. The relative abundance of two life forms of macrobenthos was similar in the transitional zones between the salt marshes and the bare flats. Shorebirds with different foraging strategies exhibited different habitat uses. Pause-travel shorebirds mainly utilized the salt-marsh fringes, while tactile continuous shorebirds relied heavily on the bare flats. There was no significant difference in habitat use for visual continuous shorebirds. The density of tactile continuous shorebirds was positively correlated with bivalve density, and that of visual continuous shorebirds positively with crustacean density. Meanwhile, the relative abundance of pause-travel foraging shorebirds was positively correlated with the relative abundance of epifaunal, but negatively with infaunal macrobenthos. In contrast, the relative abundance of tactile foraging shorebirds had a positive correlation with infaunal but a negative one with epifaunal life form. Therefore, foraging strategies may play important roles in shorebirds’ habitat use in intertidal areas.  相似文献   

16.
Changes in the macroinvertebrate community were investigated over 10 months at four sites along a 19 km salinity gradient (0.21–2.60 g l−1) in a sixth-order stream, the Meurthe River, northeastern France. Abiotic characteristics other than salinity were similar between the sites. Macroinvertebrate taxonomic richness decreased by 30% downstream of the 1.4 g l−1 sites while diversity, evenness or total abundance of taxa did not change along the gradient. In terms of functioning, a slight change in relative abundances of invertebrate feeding groups followed the salinity gradient. Eight invertebrate assemblages occurred within specific salinity distributions were identified. The exotics Gammarus tigrinus, Dreissena polymorpha, Corbicula fluminalis and Corophium curvispinum, were more abundant at the highest salinity site. These results suggest that rising salinity concentrations drastically affect the species composition, including favouring exotic species.  相似文献   

17.
Macrophyte beds have been shown to influence organic matter retention and nutrient processing in streams. Less is known about the extent to which plant beds contribute to abundance, biomass, and diversity of macroinvertebrate assemblages in low-order streams. We measured aquatic invertebrate abundance, biomass, and diversity associated with plant beds and sand/gravel patches in a low-gradient second-order stream in the Central Sand Plains of Wisconsin, USA from March to October. Invertebrate abundance and biomass were higher on average in plant beds (2,552 m−2 and 1,575 mg m−2) than in sand/gravel patches (893 m−2 and 486 mg m−2). Although sand/gravel habitat was over three times more abundant than plant beds in the study reach, plant beds and sand/gravel patches contributed similarly to invertebrate abundance and biomass at the whole-reach scale. The abundance and biomass of invertebrates associated with plant beds decreased from spring to autumn. Non-insect invertebrates in the plant beds increased in relative abundance as the year progressed. Shannon–Weiner diversity and taxa richness of invertebrates were higher in the plant beds than in the sand/gravel habitat. Our results suggest that plant beds can represent hot spots for invertebrate abundance and production in low-gradient streams, and have implications for stream management and restoration in these types of ecosystems. Handling editor: S. I. Dodson  相似文献   

18.
Expansion of the monospecific mangrove, Kandelia obovata, has converted intertidal mudflats and other habitats into mangrove forests, thus reducing estuarine biodiversity in the Danshuei River estuary, northern Taiwan. Dense mangrove vegetation was removed to create a small patchwork of mudflats and a tidal creek in February 2007. Subsequent changes in sediment properties and biodiversity of the macrobenthos and avian communities were examined. The results showed that the creation of different habitats led to changes in sediment properties and biodiversity. The water content and sorting degree of the sediments differed significantly among the restored mudflat, the tidal creek, and the mangrove control site. Silt/clay, organic carbon content, and chlorophyll a concentrations varied seasonally, but not among sites. The abundance of polychaetes in the creek was greater than that in the mudflat or the mangrove (12.5 vs. 5.3 and 2.2 individuals/m2, respectively), suggesting preferential colonization of infaunal polychaetes in habitats with prolonged submersion. Crabs showed seasonal changes in density, with higher densities in summer than in autumn and winter. The species richness of wintering shorebirds on the created mudflat increased dramatically from 2002 to 2007. The transformation of a vegetated area into an open mudflat appeared to benefit shorebirds by providing roosting habitat. Our study demonstrated that controlling the spread of estuarine mangrove forests could increase biodiversity, and could particularly benefit the migratory shorebird community.  相似文献   

19.
Zhu J  Jing K  Gan X J  Ma Z J 《农业工程》2007,27(6):2149-2159
The wetland in Chongming Dongtan, China is an important stopover site for migratory shorebirds along the East Asian-Australasian Flyway. The high-abundance macrobenthos in Chongming Dongtan allow migratory birds to refuel during the stopover. This study analyzed the distribution and density of macrobenthos in the intertidal zone. Results showed that the macrobenthos mainly consisted of gastropods, bivalves, polychaetes, crustaceans and insect larvae. The density of gastropods [(2805 ± 360) ind./m2] was the highest, accounting for up to 80% of the total macrobenthos density. Meanwhile, bivalves [(51.4 ± 7.8) g/m2] and gastropods [(38.7 ± 5.1) g/m2] together accounted for more than 90% of the total biomass. On the other hand, there were significant differences in the distribution of macrobenthos among different intertidal zones. Gastropods were mainly confined to the Scirpus zones, and bivalves to the outer Scirpus zone and the muddy and sandy flats. In terms of the spatial distribution of density, the gastropod density was higher in the north but lower in the south. However, no significant difference was found in the density and biomass of macrobenthos groups between spring and autumn, except that the density of bivalves in autumn was significantly higher than that in spring (P < 0.001).  相似文献   

20.
Here we address the question of whether the presence of the burrowing crabs Chasmagnathus granulatus affects small- and large-scale habitat use by migrant shorebirds. This crab is the dominant species in soft bare sediments and vegetated intertidal areas along the SW Atlantic estuaries (southern Brazil 28°S to the northern Argentinean Patagonia 42°S). They generate very extensive burrow beds in soft bottom intertidal areas. Our information shows that this burrowing crab affects the small-scale habitat use by shorebirds, given that shorebirds never walk through the funnel-shaped entrances of burrows. Given that crab burrow entrances occupy up to 40% of the intertidal area, there is a large decrease of available shorebird habitat in crab beds, restricting their activity to the spaces between the burrows. The southern migratory shorebird Charadrius falklandicus maximize the use of these areas by foraging closer to the burrows than the other bird species. Neotropical migrants, such as Calidris fuscicollis, Pluvialis squatarola and Tringa melanoleuca, used foraging paths that tended to maximize the distance from burrows, especially the distance to larger burrows. A field experiment showed that this was not necessarily due to a decrease in the availability of polychaetes near the crab burrows. A combination of landscape measurements and satellite images showed that crab beds covered up to 40% of the intertidal area of the Mar Chiquita coastal lagoon (37°40′S, Argentina), and nearly 100% of the intertidal area of the Bahia Blanca estuary (38°48′-39°25′S, Argentina). These two estuaries are located along the migratory flyway of Neotropical migratory shorebirds, but the Bahia Blanca estuary (area∼110,000 ha) shows a much lower shorebird diversity than Mar Chiquita (area∼4500 ha). The most common species in Bahia Blanca is the two-banded plover C. falklandicus, the species least affected by crabs at Mar Chiquita and which prefers to use high-density crab areas as foraging sites. The oystercatcher Haematopus palliatus was also most abundant in high-density crab areas, but they used these areas for resting. The abundances of preys varied during the study period and between the crab density areas, indicating that the use of these areas by birds is independent of crab density. However, burrowing crabs affect the depth distribution of polychaete and thus their availability to shorebirds. We suggest that this shorebirds-burrowing organism interaction could be generalized for other intertidal estuarine habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号