首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mutation, ilvA538, in the gene coding for the biosynthetic L-threonine deaminase of Escherichia coli K-12 has previously been demonstrated to have pleiotropic regulatory effects leading to low and invariant expression of some of the isoleucine-valine biosynthetic enzyme, and altered expression of the branched-chain aminoacyl-tRNA synthetases. Strain PS187, which carries the ilvA538 allele, has a partial growth requirement for L-isoleucine and is characterized by a sensitivity to growth inhibition by L-leucine. The experiments reported here demonstrate that the L-threonine deaminase produced by strain PS187 is hypersensitive to inhibition by the pathway end product L-isoleucine. In addition, L-leucine, which acts at relatively high concentrations in vitro as an inhibitor of L-threonine deaminase from the wild type, is a more potent inhibitor of the activity of the mutant enzyme. Forty-six derivatives of strain PS187 were isolated as spontaneous mutants resistant to the growth-inhibitory effects of L-leucine. Two of these, strains MSR14 and MSR16, produce an L-threonine deaminase that is more resistant than the wild type to L-isoleucine inhibition, and intermediate between the wild type and strain PS187 with respect to L-leucine inhibition. Strains MSR14 and MSR16 produce L-threonine deaminase and dihydroxyacid dehydrase, the ilvD gene product, at the low levels characteristic of the parent strain. Other L-leucine-resistant derivatives of strain PS187 produce higher levels of the feedback-hypersensitive L-threonine deaminase. Thus, the sensitivity to growth inhibition by L-leucine observed with strain PS187 appears to be related both to the hypersensitivity of L-threonine deaminase to inhibition of catalytic activity and to the low level of ilv gene expression. The results reported here indicated that L-threonine deaminase is structurally altered in strain PS187, and thus provide further support for the proposal that L-threonine deaminase participates as a genetic regulatory element for the expression of the branched-chain amino acid biosynthetic enzymes.  相似文献   

2.
Escherichia coli K-12 mutant PS187 carries a mutation, ilvA538, in the structural gene for the biosynthetic L-threonine deaminase that leads to a leucine-sensitive growth phenotype, an isoleucine- and leucine-hypersensitive L-threonine deaminase, and pleiotropic effects resulting in abnormally low and invariant expression of some of the isoleucine-valine biosynthetic enzymes. Fifty-eight derivatives of strain PS187 were isolated as resistant to growth inhibition by leucine, by valine, or by valine plus glycly-valine and were biochemically, genetically, and physiologically characterized. All of these derivatives produced the feedback-hypersensitive L-threonine deaminase, and thus presumably possess the ilvA538 allele of the parent strain. Elevated synthesis of L-threonine deaminase was observed in 41 of the 58 isolates. Among 18 strains analyzed genetically, only those with mutations linked to the ilv gene clusters at 83 min produced elevated levels of L-threonine deaminase. One of the strains, MSR91, isolated as resistant to valine plus glycyl-valine, was chosen for more detailed study. The locus in strain MSR91 conferring resistance was located in four factor crosses between ilvE and rbs, and is in or near the ilvO gene postulated to be a site controlling the expression of the ilvEDA genes. Synthesis of the ilvEDA gene products in strain MSR91 is constitutive and derepressed approximately 200-fold relative to the parent strain, indicating that the genetic regulatory effects of the ilvA538 allele have been suppressed. Strain MSR91 should be suitable for use in purification of the ilvA538 gene product, since enzyme synthesis is fully derepressed and the suppressor mutation is clearly not located within the ilvA gene.  相似文献   

3.
4.
In Escherichia coli, the three branched-chain amino acid activating enzymes appear to be essential for multivalent repression of the isoleucine- and valine-forming enzymes. The results of experiments with a mutant, strain CU18, having an altered threonine deaminase, indicate that free isoleucine and some form of threonine deaminase (the product of the ilvA gene) are also involved in multivalent repression. This strain exhibits abnormally high derepressibility but normal repressibility of its ilv gene products, and its threonine deaminase is inhibited only by high concentrations of isoleucine. In strain CU18, the isoleucine analogue, thiaisoleucine, is incapable of replacing isoleucine in the multivalent repression of the ilv genes, whereas the analogue can fully replace the natural amino acid in repression in other strains examined. The dipeptide, glycyl-leucine, which, like isoleucine, is a heterotropic negative effector of threonine deaminase but is not a substrate for isoleucyl-transfer ribonucleic acid synthetase, can completely prevent the accumulation of threonine deaminase-forming potential during isoleucine starvation in strains with normal threonine deaminases. It can not, however, prevent such accumulation in strain CU18 or in other strains in which threonine deaminase is insensitive to any concentration of isoleucine.  相似文献   

5.
(a) The measured L-serine deaminating activity of a crude bacterial extract may originate from L-serine deaminase, from biosynthetic L-threonine deaminase, or from degradative L-serine deaminase. Nevertheless, the contribution of the individual enzymes can be determined.(b) About a half of the L-serine deaminating activity of wild type E. coli bacteria, grown in synthetic minimal medium, originates from L-serine deaminase and about half from biosynthetic L-threonine deaminase.(c) Ninety percent of L-serine deaminating activity of wild type E. coli bacteria, grown in yeast extract-tryptone medium, originates from L-serine deaminase, and the remainging ten percent from the degradative L-threonine deaminase.(d) Conditions have been established in which threonine deaminases are eliminated and the activity of L-serine deaminase alone could be measured, even in crude extracts.  相似文献   

6.
The effects exerted by carbamoyl phosphate (CP) and cyanate (KCNO) on rat liver L-threonine deaminase have been studied. The two compounds showed that same effects, inhibiting through a competitive mechanism both the holoenzyme and the dialyzed enzyme; inhibition was more evident for the latter. Ki values, both for L-threonine and pyridoxal 5'-phosphate (PLP), were lower for the apoenzyme and the inhibitors also affected the Km of the apoenzyme for PLP. The effects of CP and KCNO are mainly due to an interference in the association reaction apoenzyme + PLP in equilibrium holoenzyme This was clearly demonstrated by the fact that, when PLP was incubated with CP or KCNO, it failed to enhance the activity of the holoenzyme nor did it reactivate the resolved apoenzyme. Such interference of CP and KCNO in the L-threonine deaminase activity was mainly due to a specific mechanism, the formation of a new derivative of PLP. The reaction of PLP with either CP or KCNO occurred readily, at low concentrations, under physiological conditions. The new compound was identified as 3,4-dihydro-2H-pyrido[3,4-e]1,3-oxazin-2-one derivative by ultraviolet-visible spectra, elemental analysis, infrared, NMR and MS spectra. In this paper we formulate the hypothesis that this compound is involved in the regulation of the CP and PLP intracellular content and in the control of PLP dependent enzymes.  相似文献   

7.
A permeabilized-cell technique for rapid assay of enzyme activity has revealed enhanced allosteric regulation of both threonine deaminase (L-threonine hydrolyase (deaminating), EC 4.2.1.16) and acethohydroxy acid synthease (acetolactate pyruvate-lyase (carboxylating), EC 4.1.3.18) in Escherichia col K-12. In the permeabilized cell assay threonine deaminase exhibited a higher Hill coefficient for inhibition by L-isoleucine, and acetohydroxy acid synthase exhibited a hypersensensitivity to allosteric inhibition by L-valine when compared to studies on crude extracts. We propose that these effects reflect the in situ microenvironments of both enzymes. Preliminary evidence further indicates that acetohydroxy acid synthase may loosely associate with the cell membrane.  相似文献   

8.
Summary An impaired threonine deaminase resulting from a point mutation ilv1-6 in the locus corresponding to the structural gene coding for this enzyme in Saccharomyces cerevisiae is more susceptible to inactivation by aging than the corresponding wild type enzyme. However, this impaired activity can be fully recovered by addition of differently inactivated extracts. This reactivation can be achieved by the sole addition of the coenzyme pyridoxalphosphate (PLP). It is time and concentration dependent. All these effects are less pronounced with the wild type enzyme than with the mutant enzyme. It has been shown by sedimentation in glycerol gradients that inactivation of the mutant enzyme (MW 197000) is accompanied by dissociation into two protomers (MW 107000). Such a dissociation might be a clue to explain the numerous consequences of the mutation on the kinetic properties of the impaired enzyme as they might reveal a modified association between subunits and protomers.This work was supported by grants from the DGRST-France; the CEA-France and the FRMF.  相似文献   

9.
Kinetic and allosteric propeties of highly purified "biosynthetic" L-threonine dehydratase from brewer's yeast S. carlbergensis were studied at three pH values, using L-threonine and L-serine as substrates. It was shown that the plot of the initial reaction rate (v) versus initial substrate concentrations ([S]0 pH 6.5 is hyperbolic (Km=5.0.10-2M), while these at pH 7.8 and 9.5 have a faintly pronounced sigmoidal shape with fast occurring saturation plateaus ([S]0.5= 1.0.10-2 and 0.9.10-2M, respectively). the ratios between L-threonine and L-serine dehydratation rates depend on pH. The kinetic properties and the dependence of substrate specificity on pH suggest that the enzyme molecule undergoes pH-induced (at pH 7.0) conformational changes. The determination of pK values of the enzyme functional groups involved in L-threonine binding demonstrated that these groups have pK is approximately equal to 7.5 and 9.5. The latter group was hypothetically identified as a epsilon-NH2-group of the lysine residue. High concentrations of the allosteric inhibitor (L-isoleucine) decrease the rates of L-threonine and L-serine dehydratation and induce the appearance (at pH 6.5) or increase (at pH 7.9 and 9.5) of homotropic cooperative interactions between the active sites in the course of L-threonine dehydratation. The enzyme inhibition by L-isoleucine increases with a decrease of L-threonine concentrations. Low L-isoleucine concentrations, as well as the enzyme activator (L-valine) stimulate the enzyme at non-saturating substrate concentrations (when L-threonine or L-serine are used as substrates) without normalization of (v) versus [S]0 plots. The maximal activation of the enzyme is observed at pHG 8.5--9.0. It is assumed that the molecule of "biosynthetic" L-threonine dehydratase from brewer's yeast contains two types of sites responsible for the effector binding, i.e., "activatory" and "inhibitory" ones.  相似文献   

10.
The mutant IP7 of Escherichia coli B requires isoleucine or pyridoxine for growth as a consequence of a mutation in the gene coding for biosynthetic threonine deaminase. The mutation of IP7 was shown to be of the nonsense type by the following data: (1) reversion to isoleucine prototrophy involves the formation of external suppression at a high frequency, as shown by transduction experiments; and (ii) the isoleucine requirement is suppressed by lysogenization with a phage carrying the amber suppressor su-3. Cell extracts of the mutant strain contain a low activity of threonine deaminase. The possibility that this activity is biodegradative was ruled out by kinetic experiments. The mutant threonine deaminase was purified to homogeneity by conventional procedures. The enzyme is a dimer of identical subunits of an approximate molecular weight of 43,000 (Grimminger and Feldner, 1974), whereas the wild-type enzyme is a tetramer of 50,000-dalton subunits (Calhoun et al., 1973; Grimminger et al., 1973). The mutant enzyme is not inhibited by isoleucine and does not bind isoleucine, as shown by equilibrium dialysis experiments. Pyridoxal phosphate enhances the maximum catalytic activity of the mutant enzyme by a factor of five, whereas the wild-type enzyme is not affected. In wild-type and mutant threonine deaminase the ratio of protein subunits and bound pyridoxal phosphate is 2:1. The activation of threonine deaminase from strain IP7 is due to a second coenzyme binding site, as shown by (i) spectrophotometric titration of the enzyme with pyridoxal phosphate and by (ii) measurement the pyridoxal phosphate content of the enzyme after sodium borohydride reduction of the protein. The observation of one pyridoxal phosphate binding site per peptide dimer in the wild-type enzyme and of two binding sites per dimer in the mutant strongly suggests that one of the potential sites in the wild-type enzyme is masked by allosteric effects. The factors responsible for the half-of-the-sites reactivity of the coenzyme sites appear to be nonoperative in the mutant protein.  相似文献   

11.
A mutant of Escherichia coli K-12 isolated as being growth resistant to L-valine (Valr) was shown also to exhibit growth resistance to 4-azaleucine (Azlr). Transductional analysis indicated that Azlr is cotransduced with Valr at a frequency of 100% and both are linked to leu, ara, and carA. This mutation conferring valine and azaleucine growth resistance resulted in increased levels of isoleucine and valine biosynthetic enzymes as well as those of valyl- and isoleucyl-tRNA synthetases during growth in minimal and enriched media. Acquisition of Vals/Azls results in the restoration of normal regulation of both classes of ilv enzymes and normal patterns of the tRNA Ile species. The overall regulatory patterns observed for individual isoleucine and valine gene products suggest differential participation of isoleucine and valine and/or isoleucyl- and valyl-tRNA's in control of expression of the respective structural genes.  相似文献   

12.
In Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum, homoserine dehydrogenase (HD), the enzyme after the branch point of the threonine/methionine and lysine biosynthetic pathways, is allosterically inhibited by L-threonine. To investigate the regulation of the C. glutamicum HD enzyme by L-threonine, the structural gene, hom, was mutated by UV irradiation of whole cells to obtain a deregulated allele, homdr. L-Threonine inhibits the wild-type (wt) enzyme with a Ki of 0.16 mM. The deregulated enzyme remains 80% active in the presence of 50 mM L-threonine. The homdr gene mutant was isolated and cloned in E. coli. In a C. glutamicum wt host background, but not in E. coli, the cloned homdr gene is genetically unstable. The cloned homdr gene is overexpressed tenfold in C. glutamicum and is active in the presence of over 60 mM L-threonine. Sequence analysis revealed that the homdr mutation is a single nucleotide (G1964) deletion in codon 429 within the hom reading frame. The resulting frame-shift mutation radically alters the structure of the C terminus, resulting in ten amino acid (aa) changes and a deletion of the last 7 aa relative to the wt protein. These observations suggest that the C terminus may be associated with the L-threonine allosteric response. The homdr mutation is unstable and probably deleterious to the cell. This may explain why only one mutation was obtained despite repeated mutagenesis.  相似文献   

13.
14.
Summary A temperature-sensitive mutant of Escherichia coli was identified as having an altered alanyl-tRNA synthetase. Specific activity of wild type and mutant cell-free extracts showed no difference in the hydroxamate assay; the charging activity, however, was more than 10 fold lower for mutant extract protein. Wild type alanyl-tRNA synthetase has been purified 344 fold, the mutant enzyme was enriched 45 fold. With these preparations the following results were obtained:Sedimentation analysis in sucrose gradients indicates a molecular weight of the mutant enzyme of half the size of the wild type enzyme. Analytical gel filtration yields an approximate size for the native enzyme of 165000 and for the mutant enzyme material of 95,000. The mutant alanyl-tRNA synthetase differs from the wild type enzyme by a 10 fold increase in the k mfor tRNA; no true difference in the k m-values for the other substrates was detected. Temperature studies indicate an unusual low temperature-optimum for the charging reaction of both enzymes, whereas hydroxamate fromation capacity increases linearly up to almost 50°C. High temperature treatment of the native enzyme selectively affects the aminoacylation reaction but not the activation step; no effect of such treatment of the mutant enzyme was detected. It is proposed that the mutation causes the enzyme to dissociate and that the resulting subunits possess and altered tRNA binding site.  相似文献   

15.
Mutants of Pseudomonas aeruginosa PAC1 which could grow on L-threonine were isolated. These mutants, like the parent strain, synthesized a biosynthetic threonine deaminase, but its apparent Km value for threonine was higher than that of the enzyme from strain PAC1. These mutants also synthesized an inducible NAD-dependent threonine dehydrogenase, which was not present in the parent strain. No threonine aldolase activity could be detected. The results suggest that the threonine deaminase with lowered affinity for L-threonine, together with L-threonine dehydrogenase, enabled these mutants to utilize L-threonine as the sole source of carbon for growth.  相似文献   

16.
Summary We describe the regulatory properties of two strains carrying either the ilvA624 or the ilvA625 mutations, located in the structural gene for threonine deaminase. Crude extracts of both these strains possess a threonine deaminase activity migrating on polyacrylamide gels, differently from the wild type enzyme. Growth studies demonstrate that these mutations do not cause a limitation of isoleucine biosynthesis, suggesting normal catalytic activity of deaminase.A regulatory consequence of the ilvA624 allele is a derepression of the isoleucine-valine biosynthetic enzymes, which is recessive to an ilvA + allele. The ilvA625 mutation causes a derepression which is dominant in an ilvA625/ilvA + diploid. We interpret these data assuming that threonine deaminase, previously shown to be an autogenous regulator of the ilv genes, lacks a repressor function in the ilvA624 mutant, while in the ilvA625 mutant it is a better activator than wild type threonine deaminase.The data are discussed in terms of a model requiring that threonine deaminase, or a precursor of it, is in equilibrium between two forms, one being an activator of gene expression and the other being a repressor.  相似文献   

17.
Antipolarity in the ilv operon of Escherichia coli K-12   总被引:9,自引:7,他引:2       下载免费PDF全文
The genes governing three of the enzymes of the isoleucine-valine biosynthetic pathway form the operon: operator-ilvA-ilvD-ilvE. The enzymes are: ilvA, l-threonine deaminase; ilvD, dihydroxy acid dehydrase; and ilvE, transaminase B. A nonsense mutation in the ilvD gene (D-ochre) and a nonsense mutation in the ilvE gene (E-amber) affect the properties of the proximal gene product, l-threonine deaminase (TD), in addition to inactivating the enzymes produced by the genes in which the mutations have occurred. The D-ochre mutation causes TD to move in diffusion and gel filtration experiments as though it were 30% smaller than the wild-type enzyme. The E-amber mutation causes TD to move in similar experiments as though it were much larger than the wild-type enzyme. Both mutations completely abolish the sensitivity of TD to l-isoleucine, the normal feedback inhibitor of the wild-type enzyme. The effects of the nonsense mutations on TD can be reversed in three ways: by genetic reversion of the D-ochre mutation; by treatment of the altered enzymes with 3.0 m urea; and by forming a heterozygous diploid, containing the wild-type allele as well as the mutant allele of ilvD or ilvE. The results suggest that the subunits of TD undergo abnormal aggregation in the presence of the partial polypeptides produced by the mutant alleles of ilvD or ilvE; multi-enzyme aggregates in extracts of wild type, however, could not be detected.  相似文献   

18.
The origin of reaction and substrate specificity and the control of activity by protein-protein interaction are investigated using the tryptophan synthase alpha 2 beta 2 complex from Salmonella typhimurium. We have compared some spectroscopic and kinetic properties of the wild type beta subunit and five mutant forms of the beta subunit that have altered catalytic properties. These mutant enzymes, which were engineered by site-directed mutagenesis, have single amino acid replacements in either the active site or in the wall of a tunnel that extends from the active site of the alpha subunit to the active site of the beta subunit in the alpha 2 beta 2 complex. We find that the mutant alpha 2 beta 2 complexes have altered reaction and substrate specificity in beta-elimination and beta-replacement reactions with L-serine and with beta-chloro-L-alanine. Moreover, the mutant enzymes, unlike the wild type alpha 2 beta 2 complex, undergo irreversible substrate-induced inactivation. The mechanism of inactivation appears to be analogous to that first demonstrated by Metzler's group for inhibition of two other pyridoxal phosphate enzymes. Alkaline treatment of the inactivated enzyme yields apoenzyme and a previously described pyridoxal phosphate derivative. We demonstrate for the first time that enzymatic activity can be recovered by addition of pyridoxal phosphate following alkaline treatment. We conclude that the wild type and mutant alpha 2 beta 2 complexes differ in the way they process the amino acrylate intermediate. We suggest that the wild type beta subunit undergoes a conformational change upon association with the alpha subunit that alters the reaction specificity and that the mutant beta subunits do not undergo the same conformational change upon subunit association.  相似文献   

19.
Ribonuclease H (RNase H, EC 3.1.26.4) was purified to homogeneity from Escherichia coli wild type strain KS 351 and the RNase H mutant strain FB 2. The specific activity of the wild type enzyme was 43,200 units/mg, while that of the mutant enzyme was 3,430 units/mg, less than 8% of the wild type activity. Isoelectric focusing also revealed differences in the protein from mutant and wild type. The activity of the wild type enzyme was separated into two peaks with isoelectric points of 9.6 and 9.0. In contrast, the activity of the mutant enzyme focused in a single peak with a pI of 9.4. These results indicate that the mutation in the FB2 strain affects the structural gene for RNase H. The molecular weight of both enzymes was determined by gel filtration as well as NaDodSO4-polyacrylamide gel electrophoresis and found to be identical. Both enzymes are very sensitive to increased temperatures and show indistinguishable rates of inactivation. The basis for the heterogeneity of the isoelectric point and the altered activity of the mutant enzyme is still unknown.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号