首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neutrophils roll on P-selectin expressed by activated platelets or endothelial cells under the shear stresses in the microcirculation. P- selectin glycoprotein ligand-1 (PSGL-1) is a high affinity ligand for P- selectin on myeloid cells. However, it has not been demonstrated that PSGL-1 contributes to the rolling of neutrophils on P-selectin. We developed two IgG mAbs, PL1 and PL2, that appear to recognize protein- dependent epitopes on human PSGL-1. The mAbs bound to PSGL-1 on all leukocytes as well as on heterologous cells transfected with PSGL-1 cDNA. PL1, but not PL2, blocked binding of 125-I-PSGL-1 to immobilized P-selectin, binding of fluid-phase P-selectin to myeloid and lymphoid leukocytes, adhesion of neutrophils to immobilized P-selectin under static conditions, and rolling of neutrophils on P-selectin-expressing CHO cells under a range of shear stresses. PSGL-1 was localized to microvilli on neutrophils, a topography that may facilitate its adhesive function. These data indicate that (a) PSGL-1 accounts for the high affinity binding sites for P-selectin on leukocytes, and (b) PSGL- 1 must interact with P-selectin in order for neutrophils to roll on P- selectin at physiological shear stresses.  相似文献   

2.
Pei XH  Lin ZX  Geng JG 《生理学报》2008,60(4):520-524
P-选凝素表达于血管内皮细胞及血小板膜上,它可以与白细胞膜表面的P-选凝素糖蛋白配基-1(P-selectin glyco-protein ligand-1,PSGL-1)相互作用,在炎症过程中介导白细胞的滚动并启动随后的白细胞迁移级联过程.我们构建了重组人野生型可溶性P-选凝素及其钙离子结合位点突变体,同时构建了重组PSGL-1免疫球蛋白融合分子(PSGL-1-Rg),并应用昆虫杆状病毒表达系统在Sf9细胞中表达这些重组蛋白,最后用镍金属螯和柱或Protein A亲和柱予以纯化.结果显示,用该系统表达的P-选凝素或PSGL-1是有活性的,但是P-选凝素的4个钙离子结合位点突变体却没有活性.该研究证明了P-选凝素钙离子结合位点在其与配基相互作用中的重要性.  相似文献   

3.
P-selectin glycoprotein ligand-1 (PSGL-1) is a disulfide-bonded, homodimeric mucin ( approximately 250 kDa) on leukocytes that binds to P-selectin on platelets and endothelial cells during the initial steps in inflammation. Because it has been proposed that only covalently dimerized PSGL-1 can bind P-selectin, we investigated the factors controlling dimerization of PSGL-1 and re-examined whether covalent dimers are required for binding its P-selectin. Recombinant forms of PSGL-1 were created in which the single extracellular Cys (Cys(320)) was replaced with either Ser (C320S-PSGL-1) or Ala (C320A-PSGL-1). Both recombinants migrated as monomeric species of approximately 120 kDa under both nonreducing and reducing conditions on SDS-polyacrylamide gel electrophoresis. P-selectin bound similarly to cells expressing either wild type or mutated forms of PSGL-1 in both flow cytometric and rolling adhesion assays. Unexpectedly, chemical cross-linking studies revealed that both C320S- and C320A-PSGL-1 noncovalently associate in the plasma membrane and cross-linking generates dimeric species. Chimeric recombinants of PSGL-1 in which the transmembrane domain in PSGL-1 was replaced with the transmembrane domain of CD43 (CD43TMD-PSGL-1) could not be chemically cross-linked, suggesting that residues within the transmembrane domain of PSGL-1 are required for noncovalent association. Cells expressing CD43TMD-PSGL-1 bound P-selectin. To further address the ability of P-selectin to bind monomeric derivatives of PSGL-1, intact HL-60 cells were trypsin-treated, which generated a soluble approximately 25-kDa NH(2)-terminal fragment of PSGL-1 that bound to immobilized P-selectin. Because N-glycosylation of PSGL-1 hinders trypsin cleavage, a recombinant form of PSGL-1 was generated in which all three potential N-glycosylation sites were mutated (DeltaN-PSGL-1). Cells expressing DeltaN-PSGL-1 bound P-selectin, and trypsin treatment of the cells generated NH(2)-terminal monomeric fragments (<10 kDa) of PSGL-1 that bound to P-selectin. These results demonstrate that Cys(320)-dependent dimerization of PSGL-1 is not required for binding to P-selectin and that a small monomeric fragment of PSGL-1 is sufficient for P-selectin recognition.  相似文献   

4.
Platelets are increasingly recognized as important for inflammation in addition to thrombosis. Platelets promote the adhesion of neutrophils [polymorphonuclear neutrophils (PMNs)] to the endothelium; P-selectin and P-selectin glycoprotein ligand (PSGL)-1 have been suggested to participate in these interactions. Whether platelets also promote PMN transmigration across the endothelium is less clear. We tested the hypothesis that platelets enhance PMN transmigration across the inflamed endothelium and that PSGL-1 is involved. We studied the effects of platelets on PMN transmigration in vivo and in vitro using a well-characterized corneal injury model in C57BL/6 mice and IL-1β-stimulated human umbilical vein endothelial cells (HUVECs) under static and dynamic conditions. In vivo, platelet depletion altered PMN emigration from limbal microvessels after injury, with decreased emigration 6 and 12 h after injury. Both PSGL-1-/- and P-selectin-/- mice, but not Mac-1-/- mice, also had reduced PMN emigration at 12 h after injury relative to wild-type control mice. In the in vitro HUVEC model, platelets enhanced PMN transendothelial migration under static and dynamic conditions independent of firm adhesion. Anti-PSGL-1 antibodies markedly inhibited platelet-PMN aggregates, as assessed by flow cytometry, and attenuated the effect of platelets on PMN transmigration under static conditions without affecting firm adhesion. These data support the notion that platelets enhance neutrophil transmigration across the inflamed endothelium both in vivo and in vitro, via a PSGL-1-dependent mechanism.  相似文献   

5.

Background  

P-selectin glycoprotein ligand-1 (PSGL-1) plays a critical role in recruiting leukocytes in inflammatory lesions by mediating leukocyte rolling on selectins. Core-2 O-glycosylation of a N -terminal threonine and sulfation of at least one tyrosine residue of PSGL-1 are required for L- and P-selectin binding. Little information is available on the intra- and inter-species evolution of PSGL-1 primary structure. In addition, the evolutionary conservation of selectin binding site on PSGL-1 has not been previously examined in detail. Therefore, we performed multiple sequence alignment of PSGL-1 amino acid sequences of 14 mammals (human, chimpanzee, rhesus monkey, bovine, pig, rat, tree-shrew, bushbaby, mouse, bat, horse, cat, sheep and dog) and examined mammalian PSGL-1 interactions with human selectins.  相似文献   

6.
Two adhesive events critical to efficient recruitment of neutrophils at vascular sites of inflammation are up-regulation of endothelial selectins that bind sialyl Lewis(x) ligands and activation of beta(2)-integrins that support neutrophil arrest by binding ICAM-1. We have previously reported that neutrophils rolling on E-selectin are sufficient for signaling cell arrest through beta(2)-integrin binding of ICAM-1 in a process dependent upon ligation of L-selectin and P-selectin glycoprotein ligand 1 (PSGL-1). Unresolved are the spatial and temporal events that occur as E-selectin binds to human neutrophils and dynamically signals the transition from neutrophil rolling to arrest. Here we show that binding of E-selectin to sialyl Lewis(x) on L-selectin and PSGL-1 drives their colocalization into membrane caps at the trailing edge of neutrophils rolling on HUVECs and on an L-cell monolayer coexpressing E-selectin and ICAM-1. Likewise, binding of recombinant E-selectin to PMNs in suspension also elicited coclustering of L-selectin and PSGL-1 that was signaled via mitogen-activated protein kinase. Binding of recombinant E-selectin signaled activation of beta(2)-integrin to high-avidity clusters and elicited efficient neutrophil capture of beta(2)-integrin ligands in shear flow. Inhibition of p38 and p42/44 mitogen-activated protein kinase blocked the cocapping of L-selectin and PSGL-1 and the subsequent clustering of high-affinity beta(2)-integrin. Taken together, the data suggest that E-selectin is unique among selectins in its capacity for clustering sialylated ligands and transducing signals leading to neutrophil arrest in shear flow.  相似文献   

7.
P-selectin glycoprotein ligand-1 (PSGL-1, CD162) is a dimeric, mucin-like, transmembrane glycoprotein constitutively expressed on leukocytes. A high baseline level of P-selectin expression in circulating equine platelets suggests a primed state toward inflammation and thrombosis via P-selectin/PSGL-1 adhesion. To investigate the potential role of equine P-selectin in these events, we first identified the cDNA sequence of equine PSGL-1 (ePSGL-1) using degenerate PCR and RACE-PCR and then compared the predicted sequence with that of human PSGL-1 (hPSGL-1). ePSGL-1 protein subunit is predicted to be 43 kDa and composed of 420 amino acids with a predicted 18-amino-acid signal sequence showing 78% homology to hPSGL-1. Previously published work has shown that binding of P-selectin requires sulfation of at least one of three tyrosines and O-glycosylation of one threonine in the N-terminus of human PSGL-1. However, the corresponding domain in ePSGL-1, spanning residues 19–43, contains only one tyrosine in the vicinity of two threonines at positions 25 and 41. ePSGL-1 contains 14 threonine/serine-rich decameric repeats as compared to hPSGL-1 which contains 14–16 threonine-rich decameric repeats. The transmembrane and cytoplasmic domains display 91% and 74% homology to corresponding human PSGL-1 domains, respectively. In summary, there is 71% homology in comparing the open reading frame (ORF) of ePSGL-1 with that of hPSGL-1. The greatest homologies between species exist in the transmembrane domain and cytoplasmic tail while substantial differences exist in the extracellular domain.The nucleotide sequence data reported in this article has been submitted to GenBank and assigned the accession number AY298766.  相似文献   

8.
Selectin-ligand interactions mediate the tethering and rolling of circulating leukocytes on vascular surfaces during inflammation and immune surveillance. To support rolling, these interactions are thought to have rapid off-rates that increase slowly as wall shear stress increases. However, the increase of off-rate with force, an intuitive characteristic named slip bonds, is at odds with a shear threshold requirement for selectin-mediated cell rolling. As shear drops below the threshold, fewer cells roll and those that do roll less stably and with higher velocity. We recently demonstrated a low force regime where the off-rate of P-selectin interacting with P-selectin glycoprotein ligand-1 (PSGL-1) decreased with increasing force. This counter-intuitive characteristic, named catch bonds, might partially explain the shear threshold phenomenon. Because L-selectin-mediated cell rolling exhibits a much more pronounced shear threshold, we used atomic force microscopy and flow chamber experiments to determine off-rates of L-selectin interacting with their physiological ligands and with an antibody. Catch bonds were observed at low forces for L-selectin-PSGL-1 interactions coinciding with the shear threshold range, whereas slip bonds were observed at higher forces. These catch-slip transitional bonds were also observed for L-selectin interacting with endoglycan, a newly identified PSGL-1-like ligand. By contrast, only slip bonds were observed for L-selectin-antibody interactions. These findings suggest that catch bonds contribute to the shear threshold for rolling and are a common characteristic of selectin-ligand interactions.  相似文献   

9.
Leukocytes express L-selectin ligands critical for leukocyte-leukocyte interactions at sites of inflammation. The predominant leukocyte L-selectin ligand is P-selectin glycoprotein ligand-1 (PSGL-1), which displays appropriate sialyl Lewis x (sLex)-like carbohydrate determinants for L-selectin recognition. Among the sLex-like determinants expressed by human leukocytes is a unique carbohydrate epitope defined by the HECA-452 mAb. The HECA-452 Ag is a critical component of L-selectin ligands expressed by vascular endothelial cells. However, HECA-452 Ag expression on human leukocyte L-selectin ligands has not been assessed. In this study, the HECA-452 mAb blocked 88-99% of neutrophil rolling on, or attachment to, adherent cells expressing L-selectin in multiple experimental systems. A function-blocking anti-PSGL-1 mAb also inhibited L-selectin binding to neutrophils by 89-98%. In addition, the HECA-452 and anti-PSGL-1 mAbs blocked the majority of P-selectin binding to neutrophils. Western blot analysis revealed that PSGL-1 immunoprecipitated from neutrophils displayed HECA-452 mAb-reactive determinants and that PSGL-1 was the predominant scaffold for HECA-452 Ag display. Leukocyte L-selectin ligands also contained sulfated determinants since culturing ligand-bearing cells with NaClO3 abrogated L-selectin binding. Consistent with this, human neutrophils expressed mRNA encoding five different sulfotransferases associated with the generation of selectin ligands: CHST1, CHST2, CHST3, TPST1, and HEC-GlcNAc6ST. Therefore, the HECA-452-defined carbohydrate determinant displayed on PSGL-1 represented the predominant L-selectin and P-selectin ligand expressed by neutrophils.  相似文献   

10.
P-selectin glycoprotein ligand-1 (PSGL-1) interacts with selectins to support leukocyte rolling along vascular wall. L- and P-selectin bind to N-terminal tyrosine sulfate residues and to core-2 O-glycans attached to Thr-57, whereas tyrosine sulfation is not required for E-selectin binding. PSGL-1 extracellular domain contains decameric repeats, which extend L- and P-selectin binding sites far above the plasma membrane. We hypothesized that decamers may play a role in regulating PSGL-1 interactions with selectins. Chinese hamster ovary cells expressing wild-type PSGL-1 or PSGL-1 molecules exhibiting deletion or substitution of decamers with the tandem repeats of platelet glycoprotein Ibalpha were compared in their ability to roll on selectins and to bind soluble L- or P-selectin. Deletion of decamers abrogated soluble L-selectin binding and cell rolling on L-selectin, whereas their substitution partially reversed these diminutions. P-selectin-dependent interactions with PSGL-1 were less affected by decamer deletion. Videomicroscopy analysis showed that decamers are required to stabilize L-selectin-dependent rolling. Importantly, adhesion assays performed on recombinant decamers demonstrated that they directly bind to E-selectin and promote slow rolling. Our results indicate that the role of decamers is to extend PSGL-1 N terminus far above the cell surface to support and stabilize leukocyte rolling on L- or P-selectin. In addition, they function as a cell adhesion receptor, which supports approximately 80% of E-selectin-dependent rolling.  相似文献   

11.
Colonization of neutrophils by the bacterium Anaplasma phagocytophilum causes the disease human granulocytic ehrlichiosis. The pathogen also infects mice, its natural host. Like binding of P-selectin, binding of A. phagocytophilum to human neutrophils requires expression of P-selectin glycoprotein ligand-1 (PSGL-1) and alpha1-3-fucosyltransferases that construct the glycan determinant sialyl Lewis x (sLex). Binding of A. phagocytophilum to murine neutrophils, however, requires expression of alpha1-3-fucosyltransferases but not PSGL-1. To further characterize the molecular features that A. phagocytophilum recognizes, we measured bacterial binding to microspheres bearing specific glycoconjugates or to cells expressing human PSGL-1 and particular glycosyltransferases. Like P-selectin, A. phagocytophilum bound to purified human PSGL-1 and to glycopeptides modeled after the N terminus of human PSGL-1 that presented sLex on an O-glycan. Unlike P-selectin, A. phagocytophilum bound to glycopeptides that contained sLex but lacked tyrosine sulfation or a specific core-2 orientation of sLex on the O-glycan. A. phagocytophilum bound only to glycopeptides that contained a short amino acid sequence found in the N-terminal region of human but not murine PSGL-1. Unlike P-selectin, A. phagocytophilum bound to cells expressing PSGL-1 in cooperation with sLex on both N-and O-glycans. Moreover, bacteria bound to microspheres coupled independently with glycopeptide lacking sLex and with sLex lacking peptide. These results demonstrate that, unlike P-selectin, A. phagocytophilum binds cooperatively to a nonsulfated N-terminal peptide in human PSGL-1 and to sLex expressed on PSGL-1 or other glycoproteins. Distinct bacterial adhesins may mediate these cooperative interactions.  相似文献   

12.
P-selectin glypoprotein ligand-1, PSGL-1, a specific ligand for P-, E-, and L-selectin, was isolated from in vivo [3H]-glucosamine labeled HL-60 cells by a combination of wheat germ agglutinin and platelet P-selectin- or E-selectin receptor globulin-agarose chromatography. The O-linked oligosaccharides on the ligand were released by mild alkaline sodium borohydride treatment and analyzed by a combination of ion-exchange, size exclusion, lectin, and paper chromatography, together with specific exoglycosidase treatments and chemical modifications. Approximately 91% of the radioactivity released from PSGL-1 was recovered in five O-linked glycans: GalNAc (approximately 4% of the total structures), Gal, 3GalNAc (36%), and Gal, 3GalNAc substituted with one (45%), two (6 %), or three (3%) N-acetyllactosamine repeat units. None of these structures contained fucose, and the majority were substituted with at least one sialic acid. The N-acetyllactosmine-containing structures appeared to be core 2. The remaining 9% of the radioactivity recovered in O-linked oligosaccharides from PSGL-1, eluted in two peaks at 11.8 and 10.2 glucose units, on size-exclusion chromatography. Results from lectin chromatography and chemical and enzymatic degradation experiments suggest that the major portion of the radioactivity in these peaks is associated with sialylated N-acetyllactosamine-type oligosaccharides, substituted with fucose at the penultimate residue in the nonreducing end. Since both sialic acid and fucose reportedly are crucial requirements for selectin binding, these results suggest that only a minor portion, approximately 4.5%, of the O-linked oligosaccharides on PSGL-1 are involved in the interaction with the selectins.  相似文献   

13.
Mechanics and surface microtopology of the molecular carrier influence cell adhesion, but the mechanisms underlying these effects are not well understood. We used a micropipette adhesion frequency assay to quantify how the carrier stiffness and microtopology affected two-dimensional kinetics of interacting adhesion molecules on two apposing surfaces. Interactions of P-selectin with P-selectin glycoprotein ligand-1 (PSGL-1) were used to demonstrate such effects by presenting the molecules on three carrier systems: human red blood cells (RBCs), human promyelocytic leukemia HL-60 cells, and polystyrene beads. Stiffening the carrier alone or in cooperation with roughing the surface lowered the two-dimensional affinity of interacting molecules by reducing the forward rate but not the reverse rate, whereas softening the carrier and roughing the surface had opposing effects in affecting two-dimensional kinetics. In contrast, the soluble antibody bound with similar three-dimensional affinity to surface-anchored P-selectin or PSGL-1 constructs regardless of carrier stiffness and microtopology. These results demonstrate that the carrier stiffness and microtopology of a receptor influences its rate of encountering and binding a surface ligand but does not subsequently affect the stability of binding. This provides new insights into understanding the rolling and tethering mechanism of leukocytes onto endothelium in both physiological and pathological processes.  相似文献   

14.
P-selectin glycoprotein ligand-1 (PSGL-1) is a homodimeric transmembrane mucin on leukocytes. During inflammation, reversible interactions of PSGL-1 with selectins mediate leukocyte rolling on vascular surfaces. The transmembrane domain of PSGL-1 is required for dimerization, and the cytoplasmic domain propagates signals that activate β(2) integrins to slow rolling on integrin ligands. Leukocytes from knock-in "ΔCD" mice express a truncated PSGL-1 that lacks the cytoplasmic domain. Unexpectedly, they have 10-fold less PSGL-1 on their surfaces than WT leukocytes. Using glycosidases, proteases, Western blotting, confocal microscopy, cell-surface cross-linking, FRET, and pulse-chase metabolic labeling, we demonstrate that deleting the cytoplasmic domain impaired dimerization and delayed export of PSGL-1 from the endoplasmic reticulum (ER), markedly increasing a monomeric precursor in the ER and decreasing mature PSGL-1 on the cell surface. A monomeric full-length PSGL-1 made by substituting the transmembrane domain with that of CD43 exited the ER normally, revealing that dimerization was not required for ER export. Thus, the transmembrane and cytoplasmic domains cooperate to promote dimerization of PSGL-1. Furthermore, the cytoplasmic domain provides a key signal to export precursors of PSGL-1 from the ER to the Golgi apparatus en route to the cell surface.  相似文献   

15.
P-selectin glycoprotein ligand-1 (PSGL-1), the primary ligand for P-selectin, is constitutively expressed on the surface of circulating leukocytes. The objective of this study was to examine the effect of leukocyte activation on PSGL-1 expression and PSGL-1-mediated leukocyte adhesion to P-selectin. PSGL-1 expression was examined via indirect immunofluorescence and flow cytometry before and after leukocyte stimulation with platelet activating factor (PAF) and PMA. Human neutrophils, monocytes, and eosinophils were all demonstrated to have significant surface expression of PSGL-1 at baseline, which decreased within minutes of exposure to PAF or PMA. PSGL-1 was detected in the supernatants of PAF-activated neutrophils by immunoprecipitation. Along with the expression data, this suggests removal of PSGL-1 from the cell surface. Soluble PSGL-1 was also detected in human bronchoalveolar lavage fluids. Down-regulation of PSGL-1 was inhibited by EDTA. However, inhibitors of L-selectin shedding and other sheddase inhibitors did not affect PSGL-1 release, suggesting that PSGL-1 may be shed by an as yet unidentified sheddase or removed by some other mechanism. Functionally, PSGL-1 down-regulation was associated with decreased neutrophil adhesion to immobilized P-selectin under both static and flow conditions, with the most profound effects seen under flow conditions. Together, these data indicate that PSGL-1 can be removed from the surface of activated leukocytes, and that this decrease in PSGL-1 expression has profound effects on leukocyte binding to P-selectin, especially under conditions of flow.  相似文献   

16.
PSGL-1, a specific ligand for P-, E- and L-selectin, was isolated from in vivo [3H]-glucosamine labeled HL-60 cells by a combination of wheat germ agglutinin-agarose and P- or E-selectin-agarose chromatography. N-linked oligosaccharides were released from the purified, denatured ligand molecule by peptide: N-glycosidase F treatment and, following separation by Sephacryl S-200 chromatography, partially characterized using lectin, ion-exchange and size-exclusion chromatography in combination with glycosidase digestions. The data obtained suggest that the N-glycans on PSGL-1 are predominantly core-fucosylated, multiantennary complex type structures with extended, poly-N-acetyllactosamine containing outer chains. A portion of the outer chains appears to be substituted with fucose indicating that the N-glycans, in addition to the O-glycans on PSGL-1, may be involved in selectin binding.  相似文献   

17.
INTroDUCTIONP-, E- and L-selectin are C-type lectins in-volved in the binding of circulating leukocytes tovarious target cellsll, 2]. The interaction(s) be-tween the selectins and the target cells is mediatedby oligosaccharide structures conjugated to specificligand molecules expressed on the taxget cell sur-faces. These ligand molecules may be recognized byone, two or all three of the selectins[1-31. AlthoughaVailable data suggest that the interaction(s) be-tween the selectins and their…  相似文献   

18.
The aspartyl protease BACE1 cleaves the amyloid precursor protein and the sialyltransferase ST6Gal I and is important in the pathogenesis of Alzheimer's disease. The normal function of BACE1 and additional physiological substrates have not been identified. Here we show that BACE1 acts on the P-selectin glycoprotein ligand 1 (PSGL-1), which mediates leukocyte adhesion in inflammatory reactions. In human monocytic U937 and human embryonic kidney 293 cells expressing endogenous or transfected BACE1, PSGL-1 was cleaved by BACE1 to generate a soluble ectodomain and a C-terminal transmembrane fragment. No evidence of the cleavage fragment was seen in primary cells derived from mice deficient in BACE1. By using deletion constructs and enzymatic deglycosylation of the C-terminal PSGL-1 fragments, the cleavage site in PSGL-1 was mapped to the juxtamembrane region within the ectodomain. In an in vitro assay BACE1 catalyzed the formation of the PSGL-1 products seen in vivo. The cleavage occurred at a Leu-Ser peptide bond as identified by mass spectrometry using a synthetic peptide. We conclude that PSGL-1 is an additional substrate for BACE1.  相似文献   

19.
20.
Activated T cells migrate from the blood into nonlymphoid tissues through a multistep process that involves cell rolling, arrest, and transmigration. P-Selectin glycoprotein ligand-1 (PSGL-1) is a major ligand for P-selectin expressed on subsets of activated T cells such as Th1 cells and mediates cell rolling on vascular endothelium. Rolling cells are arrested through a firm adhesion step mediated by integrins. Although chemokines presented on the endothelium trigger integrin activation, a second mechanism has been proposed where signaling via rolling receptors directly activates integrins. In this study, we show that Ab-mediated cross-linking of the PSGL-1 on Th1 cells enhances LFA-1-dependent cell binding to ICAM-1. PSGL-1 cross-linking did not enhance soluble ICAM-1 binding but induced clustering of LFA-1 on the cell surface, suggesting that an increase in LFA-1 avidity may account for the enhanced binding to ICAM-1. Combined stimulation by PSGL-1 cross-linking and the Th1-stimulating chemokine CXCL10 or CCL5 showed a more than additive effect on LFA-1-mediated Th1 cell adhesion as well as on LFA-1 redistribution on the cell surface. Moreover, PSGL-1-mediated rolling on P-selectin enhanced the Th1 cell accumulation on ICAM-1 under flow conditions. PSGL-1 cross-linking induced activation of protein kinase C isoforms, and the increased Th1 cell adhesion observed under flow and also static conditions was strongly inhibited by calphostin C, implicating protein kinase C in the intracellular signaling in PSGL-1-mediated LFA-1 activation. These results support the idea that PSGL-1-mediated rolling interactions induce intracellular signals leading to integrin activation, facilitating Th1 cell arrest and subsequent migration into target tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号