首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human cathepsin H.   总被引:12,自引:7,他引:5       下载免费PDF全文
Cathepsin H was purified from human liver by a method involving autolysis and acetone fractionation, and chromatography on DEAE-cellulose, Ultrogel AcA 54, hydroxyapatite and concanavalin A-Sepharose. The procedure allowed for the simultaneous isolation of cathepsin B and cathepsin D. Cathepsin H was shown to consist of a single polypeptide chain of 28 000 mol.wt., and affinity for concanavalin A-Sepharose indicated that it was a glycoprotein. The enzyme existed in multiple isoelectric forms, the two major forms having pI values of 6.0 and 6.4; it hydrolysed azocasein (pH optimum 5.5), benzoylarginine 2-naphthylamide (Ba-Arg-NNap), leucyl 2-naphthylamide (Arg-NNap), (pH optimum 6.8). Arg-NNap and Arg-NMec, unlike Bz-Arg-NNap-, were not hydrolysed by human cathepsin B. Cathepsin H was similar to cathepsin B in being irreversibly inactivated by exposure to alkaline pH. Sensitivity to chemical inhibitors by 1 microM-leupeptin, which gave essentially complete inhibition of the other lysosomal cysteine proteinases, cathepsins B and L.  相似文献   

2.
Some properties (molecular weight, pI, temperature stability, action of selected inhibitors, substrate specificity and pH-activity dependence) of two not yet known cathepsins from rat liver lysosomes are compared with the properties of the known cathepsin B1. Cathepsin L is a thiolproteinase, has a molecular weight of 23--24000 and a pI of 5,8--6,1. By disc electrophoresis and isoelectric focusing there appear several protein bands which all have enzymatic activity. Leupeptin behaves as a strong inhibitor. The pH-optimum for digestion of proteins is close to 5,0. Cathepsin L does not hydrolyse esters and splits synthetic low molecular substrates only to a low degree. Cathepsin L stored in presence of glutathion and EDTA in liquid nitrogen kept its activity for some months. Cathepsin H is an aminopeptidase as well as an endopeptidase. An enzyme with these bifunctional properties was detected up to now only in E. coli but not in animal cells. Cathepsin H is a thiol-enzyme with a molecular weight of 28000 and a pI of 7,1. Strong inhibitors are leucyl-chlormethan and SH-blocking substances. Leupeptin shows only a weak inhibitory effect to this enzyme compared to its action on cathepsins L and B1. The pH-optimum for hydrolysis of all substrates is 6.0. Cathepsin H splits proteins, amino acid derivatives and selected N-protected amino acid derivatives. Cathepsin H compared to cathepsin L and B1 is quite temperature stable.  相似文献   

3.
《Insect Biochemistry》1990,20(3):313-318
The larval midgut of the Colorado beetle, Leptinotarsa decemlineata contains cathepsin B, D and H activity detected by use of haemoglobin, synthetic substrates specific for each enzyme, pH at which the substrate was maximally hydrolysed and effects of potential activators and inhibitors on proteolytic activity. Cysteine proteases cathepsin B, and H were activated by thiol compounds and inhibited by iodoacetamide, TLCK and epoxysuccinyl-leucyl-amido(guanidino)butane (E-64) a cysteine specific proteinase inhibitor. Cathepsin B was distinguished from H by hydrolysis of benzoyloxycarbonyl-Ala-Arg-Arg-methoxynaphthylamide, a cathepsin B specific substrate and inhibition of substrate hydrolysis by leupeptin. Cathepsin H activity, detected using the specific substrate arginine-naphthylamide, was insensitive to leupeptin. Cathepsin D had maximal activity at pH 4.5 and was inhibited by pepstatin, an aspartic proteinase inhibitor.  相似文献   

4.
Proteases of the nematode Caenorhabditis elegans   总被引:3,自引:0,他引:3  
Crude homogenates of the soil nematode Caenorhabditis elegans exhibit strong proteolytic activity at acid pH. Several kinds of enzyme account for much of this activity: cathepsin D, a carboxyl protease which is inhibited by pepstatin and optimally active toward hemoglobin at pH 3; at least two isoelectrically distinct thiol proteases (cathepsins Ce1 and Ce2) which are inhibited by leupeptin and optimally active toward Z-Phe-Arg-7-amino-4-methylcoumarin amide at pH 5; and a thiol-independent leupeptin-insensitive protease (cathepsin Ce3) with optimal activity toward casein at pH 5.5. Cathepsin D is quantitatively most significant for digestion of macromolecular substrates in vitro, since proteolysis is inhibited greater than 95% by pepstatin. Cathepsin D and the leupeptin-sensitive proteases act synergistically, but the relative contribution of the leupeptin-sensitive proteases depends upon the protein substrate.  相似文献   

5.
1. Activities of cathepsins B, D and H were measured in leg and breast muscles of fast growing (broiler) and slow growing (layer) chicks at eight time intervals between 1 and 29 days of age. 2. These enzyme activities were also measured in muscles from fast and slow growing chicks given a low protein (125 g/kg crude protein) diet between the ages of 17 and 24 days. 3. Activities of none of these cathepsins differed greatly between muscle type or strain of chick. However in both strains of chick cathepsin D and H in muscles significantly decreased with increasing age (muscle size) of the chick. Cathepsin D activity also increased when muscle proteolytic rates were increased by feeding a low protein diet. This latter effect was significant only in the muscles of fast growing chicks. 4. The results suggest that lysosomal proteases are not responsible for the differences in muscle protein degradation and growth between fast and slow growing strains of chicks, or between muscle types in the chick.  相似文献   

6.
The cathepsins B, H and L, lysosomal cysteine proteinases, play a major role in intracellular protein degradation. These proteinase activities and expressions were examined in a Ca2+ regulated epidermal culture system which consists of two morphological cell types: undifferentiated cells grown in low Ca2+ (0.1 mM concentration) and differentiated cells grown in high Ca2+ (1.8 mM concentration), respectively. Cathepsin B and L activities of the differentiated cells showed a several-fold increase compared to that of the undifferentiated cells. In addition, by using CM-cellulose column chromatography, cathepsin B and L were separated and the level of cathepsin L activity increased significantly. Cathepsin B, L and H were also detected by using an immunoblotting procedure in which their bands were expressed after differentiation was induced by the increasing calcium concentration. Cathepsin L activity and immunostaining intensity reached a maximum at 1 or 2 days of differentiation. In contrast, cystatin alpha (an endogenous inhibitor of cysteine-dependent cathepsins) appeared in the final stage of differentiation. These results indicate that the expression of epidermal cathepsins and their endogenous inhibitor are involved in part of the program of cell differentiation and the terminal differentiation process in cultured rat keratinocytes.  相似文献   

7.
An attempt has been made to extend to the cysteinyl exopeptidases cathepsins H and C affinity-labelling approaches shown to be effective with cysteinyl endopeptidases such as cathepsins B and L and the calcium-activated proteinase. This involved the preparation of amino acid and dipeptide derivatives with unblocked N-termini to satisfy the aminopeptidase and dipeptidyl aminopeptidase characteristics of cathepsins H and C respectively. For covalent reactivity, the possibilities examined included diazomethanes (-CHN2), fluoromethanes (-CH2F) and dimethylsulphonium salt [-CH2S+(CH3)2]. A dipeptidylfluoromethane with a free amino group could not be prepared, perhaps due to inherent instability. Cathepsin H was inactivated by 1 microM-H2N-Phe-CH2F (the 'H2N' indicates a free unblocked amino group) (k2 = 1878 M-1.s-1); this reagent was without effect on cathepsins C and B, even at 100-fold this concentration. Analogous selectivity was shown by H2N-Ser(OBzl)-CHN2 and H2N-Phe-CH2S+(CH3)2, members of other classes of covalently binding reagents. For cathepsin C the dipeptide derivatives H2N-Gly-Phe-CHN2 and H2N-Phe-Ala-CH2S+(CH3)2 caused rapid inactivation near 10(-7) M. Higher concentrations inactivated cathepsins H and B, but the rates were slower by two to three orders of magnitude than for cathepsin C.  相似文献   

8.
Cathepsin B1. A lysosomal enzyme that degrades native collagen   总被引:26,自引:11,他引:15  
1. Experiments were made to determine whether the purified lysosomal proteinases, cathepsins B1 and D, degrade acid-soluble collagen in solution, reconstituted collagen fibrils, insoluble collagen or gelatin. 2. At acid pH values cathepsin B1 released (14)C-labelled peptides from collagen fibrils reconstituted at neutral pH from soluble collagen. The purified enzyme required activation by cysteine and EDTA and was inhibited by 4-chloromercuribenzoate, by the chloromethyl ketones derived from tosyl-lysine and acetyltetra-alanine and by human alpha(2)-macroglobulin. 3. Cathepsin B1 degraded collagen in solution, the pH optimum being pH4.5-5.0. The initial action was cleavage of the non-helical region containing the cross-link; this was seen as a decrease in viscosity with no change in optical rotation. The enzyme also attacked the helical region of collagen by a mechanism different from that of mammalian neutral collagenase. No discrete intermediate products of a specific size were observed in segment-long-spacing crystalloids (measured as native collagen molecules aligned with N-termini together along the long axis) or as separate peaks on gel filtration chromatography. This suggests that once an alpha-chain was attacked it was rapidly degraded to low-molecular-weight peptides. 4. Cathepsin B1 degraded insoluble collagen with a pH optimum below 4; this value is lower than that found for the soluble substrate, and a possible explanation is given. 5. The lysosomal carboxyl proteinase, cathepsin D, had no action on collagen or gelatin at pH3.0. Neither cathepsin B1 nor D cleaved Pz-Pro-Leu-Gly-Pro-d-Arg. 6. Cathepsin B1 activity was shown to be essential for the degradation of collagen by lysosomal extracts. 7. Cathepsin B1 may provide an alternative route for collagen breakdown in physiological and pathological situations.  相似文献   

9.
A procedure for the isolation of cathepsin B (EC 3.4.22.1) and of cathepsin H from bovine spleen involving covalent chromatography by thiol-disulphide interchange and ion-exchange chromatography was devised. The stabilities of both cathepsins in alkaline media are markedly temperature-dependent, and reliable kinetic data can be obtained at pH values up to 8 by working at 25 degrees C with a continuous spectrophotometric assay. Both enzyme preparations contain only one type of thiol group as judged by reactivity characteristics towards 2,2'-dipyridyl disulphide at pH values up to 8; in each case this thiol group is essential for catalytic activity. Cathepsin H was characterized by kinetic analysis of the reactions of its thiol group with 2,2'-dipyridyl disulphide in the pH range approx. 2-8 and the analogous study on cathepsin B [Willenbrock & Brocklehurst (1984) Biochem. J. 222, 805-814] was extended to include reaction at pH values up to approx. 8. Cathepsin H, like the other cysteine proteinases, was shown to contain an interactive catalytic-site system in which the nucleophilic character of the sulphur atom is maintained in acidic media. The considerable differences in catalytic site characteristics detected by this two-protonic-state reactivity probe between cathepsin B, cathepsin H, papain (EC 3.4.22.2) and actinidin (EC 3.4.22.14) are discussed. Reaction with 2,2'-dipyridyl disulphide in acidic media, which is known to provide a rapid spectrophotometric active centre titration for many cysteine proteinases, is applicable to cathepsin H. This is useful because other active-centre titrations have proved unsuitable in view of the relatively low reactivity of the thiol group in cathepsin H.  相似文献   

10.
Two cathepsins were detected in Mujil auratus muscle extracts. They were classified as a thiol- and aspartyl-proteinase (cathepsins B and D, respectively) on the basis of their catalytic behaviour in presence of specific inhibitors. Following extraction in 1% KCl, the proteinases were purified by autolysis, acetone fractionation, affinity chromatography, and gel permeation chromatography. The haemoglobin-agarose column chromatography allowed us to separate the two activities. Sephadex G-75 column chromatography resulted in apparent molecular weights of 25,000 (cathepsin B) and 35,000 (cathepsin D). The molecular size, together with pH-activity profiles and kinetic parameters are similar to those reported for mammalian cathepsins B and D. This was not the case with the temperature-activity profiles, the optimum temperature as well as the heat stability being higher for fish cathepsins than for those obtained from other sources. Cathepsin B was characterized by its ability to inactivate aldolase. Fluorescence quenching experiments showed that tryptophyl residues of cathepsin B were less occluded and located in a more electronegative microenvironment that those pertaining to cathepsin D.  相似文献   

11.
Two unique cathepsin D-type proteases apparently present only in rat thoracic duct lymphocytes and in rat lymphoid tissues are described. One, termed H enzyme, has an apparent molecular weight of similar to95,000; the other, termed L enzyme, has an apparent molecular weight of similar to45,000, in common with that of most cathepsins D from other tissues and species. Both enzymes differ from cathepsin D, however, by a considerably greater sensitivity to inhibition by pepstatin and by a smaller degree of inhibition by an antiserum which inhibits rat liver cathepsin D. H enzyme is converted to L enzyme by treatment with beta-mercaptoethanol; the relationship between the two enzymes remains unknown. H and L enzyme have been detected in rat lymphoid tissues and in mouse spleen, but they are not present in other rat tissues (liver, kidney, adrenals), rabbit tissues, calf thymus, bovine spleen, or human tonsils. As measured on acid-denatured bovine hemoglobin as substrate, both enzymes have pH activity curves identical with that of rat liver cathepsin D, with optimal activity at pH 3.6. Activity on human serum albumin is much less and also shows an optimum at pH 3.6; hence, neither enzyme has the properties of cathepsin E. Thiol-reactive inhibitiors have no effect on the activity of H and L enzyme; thus they do not belong to the B group of cathepsins. Additional information, discussed in this paper, leads us to conclude that partially purified H and L enzymes are cathepsin D-type proteases.  相似文献   

12.
Effect of estrogen on lysosomal enzyme activities in rat heart   总被引:2,自引:0,他引:2  
The activities per microgram DNA of five lysosomal enzymes [cathepsin D, cathepsin B, beta-N-acetylglucosaminidase (beta-NAG), beta-glucuronidase, and acid phosphatase] were measured in homogenates of female and male rat (Sprague-Dawley) hearts. Female rats were studied during stages of the estrous cycle and at 3 weeks after ovariectomy. Three-week-postovariectomized female rats and intact male rats were injected subcutaneously with 17 beta-estradiol-3-benzoate. Lysosomal enzyme activities in the male rat heart were more responsive to exogenous estradiol than were activities in the female rat heart. Cathepsin B, beta-NAG, and beta-glucuronidase were increased dramatically in the male rat heart upon short-term administration of estrogen (4 days). In both female and male rat hearts, activities of two lysosomal proteinases, cathepsins B and D, were reduced significantly (approximately 50%) by extended administration of estrogen for 10 days.  相似文献   

13.
A Obled  A Ouali  C Valin 《Biochimie》1984,66(9-10):609-616
Lysosomal cysteine proteinases were fractionated from partially purified rat muscle lysosomes. By gel filtration on Sephadex G75, cathepsin D was separated from two thiol-requiring proteolytic fractions of Mr 25 000 and 55 000, respectively. By chromatofocusing, the first fraction (Mr = 25 000) was resolved into three isoenzymic forms of cathepsin H, eluted at pH 5.8, 6.0 and 7.2, respectively, and two isoenzymic forms of cathepsin B, eluted at pH 5.5 and 5.25. Cathepsin H isoenzymes hydrolyzed Arg-NNap and BANA, were totally inhibited by 1 mM p-CMB and only to 60% by 5.10(-5) M leupeptin. The two forms of cathepsin B which degraded Z-Phe-Arg-NMec, Z-Arg-Arg-NNap and BANA were very sensitive to p-CMB and leupeptin. In addition to cathepsins B and H, a typical cathepsin-L- like activity was found in this fraction but only as a very minor component. The high Mr fraction (Mr = 55 000) contained a cysteine proteinase hydrolyzing, at pH 6.0, Z-Phe-Arg-NMec, and to a lesser extent Z-Arg-Arg-NNap and BANA. Unlike cathepsins B and H, it was very sensitive to p-CMB and HgCl2 and was fully activated only in the presence of 10 mM DTT, and inhibited to 93% by 2.10(-8) M leupeptin. By chromatofocusing, it was resolved into several isoenzymatic forms, eluted between pH 5.8 and 4.0.  相似文献   

14.
Proteinases play an important role as virulence factors both in the life-cycle of parasites and in the pathogen–host relationship. Hysterothylacium aduncum is a worldwide fish parasite nematode which has been associated with non-invasive anisakidosis and allergic responses to fish consumption in humans. Cysteine proteinases have been associated with allergy to plant pollens, detergents and dust mites. In this study the presence of two types of cysteine proteinases (cathepsin B and cathepsin L) during in vitro development of H. aduncum is investigated. Specific fluorescent substrates were used to determine cathepsin activities. The activity detected with substrate Z-FR-AMC was identified as cathepsin L (optimum pH = 5.5; range 3.5–6.5). Cathepsin B activity was only identified with Z-RR-AMC (optimum pH = 7.0–7.5; range 5.0–8.0). The start of cultivation led to increased activity of both cathepsins (1.8-fold for cathepsin B and 6.3-fold for cathepsin L). These activities varied according to the developmental stage. Cathepsin B activity decreased after M4, returning to its initial level. Cathepsin L activity also decreased after M4, but still maintained a high level (4–6 times the initial level) in adult stages. Having considered these activity variations and the optimum pH values, we suggest that cathepsin L has a role in digestive processes while cathepsin B could be involved in cuticle renewal, among other possible functions.  相似文献   

15.
Cathepsin B, H, L and D activities in liver lysosomes were compared between species. Although cathepsin B and D were detected in bovine, pig, chicken and rat liver, striking species differences were evident for cathepsin H and L. Cathepsin L activity was particularly high in chicken lysosomal extracts, but could not be detected in bovine and pig extracts. Whereas there was no significant cathepsin H activity in bovine extracts, rat liver lysosomal extracts contained large amounts of cathepsin H activity.  相似文献   

16.
Lysosomal cysteine proteinases (cathepsins) are considered to play a role in bone degradation mediated by metastatic breast cancers. To evaluate which cathepsin contributes to the osteolysis, we quantitatively determined the expression levels of four cathepsins in two breast cancer cell lines, MCF-7 and MDA-MB-231, by competitive RT-PCR. Cathepsin K, which is the most abundant cathepsin in osteoclasts, was not detected in either cell lines. We also failed to detect cathepsin H mRNA. By contrast, we found significant expression of cathepsins B and L in both cell lines. By Northern blot analysis cathepsin B mRNA was detected in a single form in these cells, whereas osteoclasts contained multiple forms of the mRNA. Cathepsin B protein was also detected by Western blotting as a single immunoreactive band corresponding to its mature enzyme. These findings suggest that osteolysis associated with metastatic breast cancers takes place in a different way from osteoclast-mediated bone resorption.  相似文献   

17.
To determine the cellular localization of nervous tissue peptidases, 7 peptidases and 2 lysosomal marker enzyme activities were measured in cultured mouse and rat cells. Neuronal cells of both species exhibited higher activities of angiotensin-converting enzyme (ACE) and prolyl endopeptidase (Pro-EP) than glial cells did. In contrast, arginyl endopeptidase and lysosomal enzymes (acid phosphatase, β-glucuronidase) in the neuronal cell lines were lower than those in the glial cell lines. Other peptidases (alanyl aminopeptidase, arginyl aminopeptidase, leucyl aminopeptidase, dipeptidyl aminopeptidase) activities were not specifically localized in either cell lines. The effects of cellular differentiation on these peptidase activities in the PC 12h cell line and rat glioblasts were also examined using nerve growth factor (NGF) and glia maturation factor (GMF), respectively. Neuron specific peptidase (ACE and Pro-EP) activities were decreased in PC12h cells cultured with NGF, and Pro-EP activity was increased in the glioblast cells cultured with GMF. These results support the idea that some of the peptidases are differentially localized in neuronal or glial cells, and play physiological roles in central or peripheral neural tissues.  相似文献   

18.
Cysteinylglycine hydrolysis is a step in the metabolism of glutathione and glutathione S-conjugates. We had previously observed that in rat liver the enzymatic activity is predominantly located in the cytosol. Here we demonstrate that cytosolic leucyl aminopeptidase (EC 3.4.11.1) is the major cysteinylglycine hydrolysing activity in rat liver. Evidence was obtained from the use of peptidase inhibitors and from immunoprecipitation studies using Pansorbin-coupled antibodies raised against hog kidney cytosolic leucyl aminopeptidase. Both isolated cytosolic leucyl aminopeptidase and the cysteinylglycine-hydrolysing activity in rat liver cytosol are bound with equal efficiency to the affinity matrix. We demonstrate that cytosolic leucyl aminopeptidase exhibits leucinamidase and cysteinylglycinase activity. Cysteinylglycine, cystinyl-bis-glycine, S-nitrosocysteinylglycine, and bimane-S-cysteinylglycine are hydrolysed at high rates; low activity is seen with leukotriene D4. Our findings establish a previously unrecognised physiological function of cytosolic leucyl aminopeptidase, participating in glutathione metabolism and in the degradation of glutathione S-conjugates via the mercapturic acid pathway.  相似文献   

19.
The mechanism of degradation of fructose-1,6-bisphosphate aldolase from rabbit muscle by the lysosomal proteinase cathepsin B was determined. Treatment of aldolase with cathepsin B destroys up to 90% of activity with fructose 1,6-bisphosphate as substrate, but activity with fructose 1-phosphate is slightly increased. Cathepsin L, another lysosomal thiol proteinase, and papain are also potent inactivators of aldolase, whereas inactivation is not caused by cathepsins D or H even at high concentrations, or by cathepsin B inhibited by leupeptin or iodoacetate. The cathepsin-B-treated aldolase shows no detectable change in subunit molecular weight, oligomer molecular weight or subunit interactions. Cathepsin B cleaves dipeptides from the C-terminus of th aldolase subunits. Four dipeptides are released sequentially: Ala-Tyr, Asn-His, Ile-Ser and Leu-Phe, and a maximum of five additional dipeptides may be released. There are indications that this peptidyldipeptidase activity of cathepsin B may be an important aspect of its action on protein substrates generally.  相似文献   

20.
Degradation of myofibrillar proteins by cathepsins B and D   总被引:4,自引:0,他引:4       下载免费PDF全文
1. The procedure of Barrett [(1973) Biochem. J.131, 809-822] for isolating cathepsins B and D from human liver was modified for use with rat liver and skeletal muscle. The purified enzymes appeared to be similar to those reported in other species. 2. Sephadex G-75 chromatography of concentrated muscle extract resolved two peaks of cathepsin B inhibitory activity, corresponding to molecular weights of 12500 and 62000. 3. The degradation of purified myofibrillar proteins by cathepsins B and D was clearly demonstrated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. After incubation with enzyme, the polypeptide bands representing the substrates decreased in intensity and lower molecular weight products appeared. 4. Cathepsins B and D, purified from either rat liver or skeletal muscle, were shown to degrade myosin, purified from either rabbit or rat muscle. Soluble denatured myosin was degraded more extensively than insoluble native myosin. Degradation by cathepsin B was inhibited by lack of reducing agent, or by myoglobin, iodoacetic acid and leupeptin, but not by pepstatin. The same potential modifiers were applied to cathepsin D, and only pepstatin produced inhibition. 5. Rat liver cathepsin B had a pH optimum of 5.2 on native rabbit myosin. The pH optimum of cathepsin D was 4.0, with a shoulder of activity about 1pH unit above the optimum. 6. Rat liver cathepsins B and D were demonstrated to degrade rabbit F-actin at pH5.0, and were inhibited by leupeptin and pepstain, respectively. 7. The degradation of myosin and actin by cathepsin D was more extensive than that by cathepsin B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号