首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The effects of temperature (35 and 55 degrees C), influent volatile solids (VS) concentration (S(0) = 43, 64, 82, 100, and 128 kg VS/m(3)) and hydraulic retention time (HRT = 4, 5, 8, 10, 15, and 25 days) on methane (CH(4)) production from cattle waste were evaluated using 3-dm(3) laboratoryscale fermentors. The highest CH(4) production rate achieved was 6.11 m(3) CH(4) m(-3) fermentor day(-1) at 55 degrees C, four days HRT, and S(0) = 100 kg VS/m(3). Batch fermentations showed an ultimate CH(4) yield (B(0)) of 0.42 m(3) CH(4)/kg VS fed. The maximum loading rates for unstressed fermentation were 7 kg VS m(-3) day(-1) at 35 degrees C and 20 kg VS m(-3) day(-1) at 55 degrees C. The kinetic parameter (K, an increasing K indicates inhibition of fermentation) increased exponentially as S(0) increased, and was described by: K = 0.8 + 0.0016 e(0.06S(0) ). Temperature had no significant effect on K for S(0) between 40 and 100 kg VS/m(3). The above equation predicted published K values for cattle waste within a mean standard error of 7%.  相似文献   

2.
Pretreatment of wheat straw for fermentation to methane   总被引:2,自引:0,他引:2  
The effects of pretreating wheat straw with gamma-ray irradiation, ammonium hydroxide, and sodium hydroxide on methane yield, fermentation rate constant, and loss of feedstock constituents were evaluated using laboratory-scale batch fermentors. Results showed that methane yield increased as pretreatment alkali concentration increased, with the highest yield being 37% over untreated straw for the pretreatment consisting of sodium hydroxide dosage of 34 g OH(-)/kg volatile solids, at 90 degrees C for 1 h. Gamma-ray irradiation had no significant effect on methane yield. Alkaline pretreatment temperatures above 100 degrees C caused a decrease in methane yield. After more than 100 days of fermentation, all of the hemi-cellulose and more than 80% of the cellulose were degraded. The loss in cellulose and hemicellulose accounted for 100% of the volatile solids lost. No consistent effect of pretreatments on batch fermentation rates was noted. Semicontinuous fermentations of straw-manure mixtures confirmed the relative effectiveness of sodium and ammonium-hydroxide pretreatments.  相似文献   

3.
Bioconversion of corn straw by coupling ensiling and solid-state fermentation   总被引:13,自引:0,他引:13  
Yang X  Chen H  Gao H  Li Z 《Bioresource technology》2001,78(3):277-280
A two-stage process that combined solid-state fermentation (SSF) and ensiling was used for bioconversion of corn straw, in order to increase nutritional value and palatability for animal feed. SSF of corn straw increased the level of protein from 6.7% to 14.7% and decreased the cellulose by 38.0% and hemicellulose by 21.2%. Cellulase and xylanase were produced during SSF. After SSF, the fermented substrate was directly ensiled by inoculating with lactic acid bacteria (LAB). In situ produced enzymes and bacterial inoculation resulted in a rapid drop in pH, a high level of lactic acid production, partial degradation of cell wall components and generation of reducing sugars (RSs). Efficiency of ensiling at 25 degrees C, 30 degrees C, 35 degrees C, 40 degrees C was evaluated. Temperature influenced the effect of ensiling; the higher the temperature, the shorter the ensiling period. The combined fermentation upgraded the nutritional value, enhanced the efficiency of ensiling and reduced bioprocessing costs.  相似文献   

4.
In anoxic paddy soil, rice straw is decomposed to CH(4) and CO(2) by a complex microbial community consisting of hydrolytic, fermenting, syntrophic and methanogenic microorganisms. Here, we investigated which of these microbial groups colonized the rice straw and which were localized in the soil. After incubation of rice straw in anoxic soil slurries for different periods, the straw pieces were removed from the soil, and both slurry and straw were studied separately. Although the potential activities of polysaccharolytic enzymes were higher in the soil slurry than in the straw incubations, the actual release of reducing sugars was higher in the straw incubations. The concentrations of fermentation products, mainly acetate and propionate, increased steadily in the straw incubations, whereas only a little CH(4) was formed. In the soil slurries, on the other hand, fermentation products were low, whereas CH(4) production was more pronounced. The production of CH(4) or of fermentation products in the separated straw and soil incubations accounted in sum for 54-82% of the CH(4) formed when straw was not removed from the soil. Syntrophic propionate degradation to acetate, CO(2) and H(2) was thermodynamically more favourable in the soil than in the straw fraction. These results show that hydrolysis and primary fermentation reactions were mainly localized on the straw pieces, whereas the syntrophic and methanogenic reactions were mainly localized in the soil. The percentage of bacterial relative to total microbial 16S rRNA content was higher on the straw than in the soil, whereas it was the opposite for the archaeal 16S rRNA content. It appears that rice straw is mainly colonized by hydrolytic and fermenting bacteria that release their fermentation products into the soil pore water where they are further degraded to CH(4). Hence, complete methanogenic degradation of straw in rice soil seems to involve compartmentalization.  相似文献   

5.
The anaerobic degradation of different fractions of rice straw in anoxic paddy soil was investigated. Rice straw was divided up into stem, leaf sheath and leaf blade. The different straw fractions were mixed with paddy soil and incubated under anoxic conditions. Fermentation of straw components started immediately and resulted in transient accumulation of acetate, propionate, butyrate, isobutyrate, valerate, isovalerate and caproate with much higher concentrations in the presence than in the absence of straw. Also some unidentified compounds with UV absorption could be detected. The maximum concentrations of these compounds were different when using different straw fractions, suggesting differences in the degradation pathway of these straw fractions during the early phase of incubation, i.e. with Fe(III) and sulfate serving as oxidants. When concentrations of the intermediates decreased to background values, CH(4) production started. Rates of CH(4)unamended soil. During the methanogenic phase, the percentage contribution of fermentation products to CH(4) production was determined by inhibition with 2-bromoethanesulfonate (BES). Acetate (48-83%) and propionate (18-28%) were found to be the main intermediates of the carbon flow to CH(4), irrespective of the fraction of the rice straw or its absence. Mass balance calculations showed that 84-89% of CH(4) was formed via acetate in the various incubations. Radiotracer experiments showed that 11-27% of CH(4) was formed from H(2)/CO(2), thus confirming that acetate contributed 73-89% to methanogenesis. Our results show that the addition of rice straw and the fraction of the straw affected the fermentation pattern only in the early phase of degradation, but had no effect on the degradation pathway during the later methanogenic phase.  相似文献   

6.
Two cellulose-fermenting methanogenic enrichment cultures originating from rice soil, one at 15 degrees C with Methanosaeta and the other at 30 degrees C with Methanosarcina as the dominant acetoclastic methanogen, both degraded cellulose anaerobically via propionate, acetate and H2 to CH4. The degradation was a two-stage process, with CH4 production mainly from H2/CO2 and accumulation of acetate and propionate during the first, and methanogenic consumption of acetate during the second stage. Aeration stress of 12, 24, 36 and 76 h duration was applied to these microbial communities during both stages of cellulose degradation. The longer the aeration stress, the stronger the inhibition of CH4 production at both 30 degrees C and 15 degrees C. The 72 h stressed culture at 30 degrees C did not fully recover. Aeration stress at 30 degrees C exerted a more pronounced effect, but lasted for a shorter time than that at 15 degrees C. The aeration stress was especially effective during the second stage of fermentation, when consumption of acetate (and to a lesser extent propionate) was also increasingly inhibited as the duration of the stress increased. The patterns of CH4 production and metabolite accumulation were consistent with changes observed in the methanogenic archaeal community structure. Fluorescence in situ hybridization showed that the total microbial community at the beginning consisted of about 4% and 10% archaea, which increased to about 50% and 30% during the second stage of cellulose degradation at 30 degrees C and 15 degrees C respectively. Methanosarcina and Methanosaeta species became the dominant archaea at 30 degrees C and 15 degrees C respectively. The first round of aeration stress mainly reduced the non-Methanosarcina archaea (30 degrees C) and the non-Methanosaeta archaea (15 degrees C). Aeration stress also retarded the growth of Methanosarcina and Methanosaeta at 30 degrees C and 15 degrees C respectively. The longer the stress, the lower was the percentage of Methanosarcina cells to total microbial cells after the first stress at 30 degrees C. A later aeration stress decreased the population of Methanosarcina (at 30 degrees C) in relation to the duration of stress, so that non-Methanosarcina archaea became dominant. Hence, aeration stress affected the acetotrophic methanogens more than the hydrogenotrophic ones, thus explaining the metabolism of the intermediates of cellulose degradation under the different incubation conditions.  相似文献   

7.
BACKGROUND AND AIMS: Actively growing post-embryonic sporophytes of desert mosses are restricted to the cooler, wetter months. However, most desert mosses have perennial gametophytes. It is hypothesized that these life history patterns are due in part to a reduced thermotolerance for sporophytes relative to gametophytes. METHODS: Gametophytes with attached embryonic sporophytes of Microbryum starckeanum were exposed whilst desiccated to thermal episodes of 35 degrees C (1 hr), 55 degrees C (1 hr), 75 degrees C (1 hr) and 75 degrees C (3 hr), then moistened and allowed to recover for 35 d in a growth chamber. KEY RESULTS: All of the gametophytes survived the thermal exposures and produced protonemata, with the majority also producing shoot buds. Symptoms of gametophytic stress (leaf burning and discoloration of entire shoots) were present in lower frequencies in the 55 degrees C exposure. Sporophyte resumption of growth and maturation to meiosis were significantly negatively affected by thermal treatment. Not a single sporophyte exposed to the two higher thermal treatments (75 degrees C for 1 h and 75 degrees C for 3 h) survived to meiosis, and those sporophytes exposed to 75 degrees C that survived to the post-embryonic phenophase took significantly longer to reach this phase. Furthermore, among the thermal treatments where some capsules reached maturity (35 degrees C and 55 degrees C), maternal shoots that produced a meiotic capsule took longer to regenerate through protonemata than maternal shoots aborting their sporophyte, suggestive of a resource trade-off between generations. CONCLUSIONS: Either (1) the inherent sporophyte thermotolerance is quite low even in this desert moss, and/or (2) a gametophytic thermal stress response controls sporophyte viability.  相似文献   

8.
To speed up the conversion of rice straw into feeds in a low-temperature region, a start culture used for ensiling rice straw at low temperature was selected by continuous enrichment cultivation. During the selection, the microbial source for enrichment was rice straw and soil from two places in Northeast China. Lab-scale rice straw fermentation at 10 degrees C verified, compared with the commercial inocculant, that the selected start culture lowered the pH of the fermented rice straw more rapidly and produced more lactic acid. The results from denatured gradient gel eletrophoresis showed that the selected start culture could colonize into the rice straw fermentation system. To analyze the composition of the culture, a 16S clone library was constructed. Sequencing results showed that the culture mainly consisted of two bacterial species. One (A) belonged to Lactobacillus and another (B) belonged to Leuconostoc. To make clear the roles of composition microbes in the fermented system, quantitative PCR was used. For species A, the DNA mass increased continuously until sixteen days of the fermentation, which occupied 65%. For species B, the DNA mass amounted to 5.5% at six days of the fermentation, which was the maximum relative value during the fermentation. To the authors' best knowledge, this is the first report on ensiling rice straw with a selected starter at low temperature and investigation of the fermented characteristics.  相似文献   

9.
The information presented in this publication represents current research findings on the production of glucose and xylose from straw and subsequent direct fermentation of both sugars to ethanol. Agricultural straw was subjected to thermal or alkali pulping prior to enzymatic saccharification. When wheat straw (WS) was treated at 170 degrees C for 30-60 min at a water-to-solids ratio of 7:1, the yield of cellulosic pulp was 70-82%. A sodium hydroxide extration yielded a 60% cellulosic pulp and a hemicellulosic fraction available for fermentation to ethanol. The cellulosic pulps were subjected to cellulase hydrolysis at 55 degrees C for production of sugars to support a 6-C fermentation. Hemicellulose was recovered from the liquor filtrates by acid/alcohol precipitation followed by acid hydrolysis to xylose for fermentation. Subsequent experiments have involved the fermentation of cellulosic and hemicelluosic hydrolysates to ethanol. Apparently these fermentations were inhibited by substances introduced by thermal and alkali treatment of the straws, because ethanol efficiencies of only 40-60% were achieved. Xylose from hydrolysis of wheat straw pentosans supported an ethanol fermentation by Pachysolen tannophilus strain NRRL 2460. This unusual yeast is capable of producing ethanol from both glucose and xylose. Ethanol yields were not maximal due to deleterious substances in the WS hydrolysates.  相似文献   

10.
Incorporation of plant residues strongly enhances the methane production and emission from flooded rice fields. Temperature and residue type are important factors that regulate residue decomposition and CH(4) production. However, the response of the methanogenic archaeal community to these factors in rice field soil is not well understood. In the present experiment, the structure of the archaeal community was determined during the decomposition of rice root and straw residues in anoxic rice field soil incubated at three temperatures (15 degrees C, 30 degrees C, and 45 degrees C). More CH(4) was produced in the straw treatment than root treatment. Increasing the temperature from 15 degrees C to 45 degrees C enhanced CH(4) production. Terminal restriction fragment length polymorphism analyses in combination with cloning and sequencing of 16S rRNA genes showed that Methanosarcinaceae developed early in the incubations, whereas Methanosaetaceae became more abundant in the later stages. Methanosarcinaceae and Methanosaetaceae seemed to be better adapted at 15 degrees C and 30 degrees C, respectively, while the thermophilic Methanobacteriales and rice cluster I methanogens were significantly enhanced at 45 degrees C. Straw residues promoted the growth of Methanosarcinaceae, whereas the root residues favored Methanosaetaceae. In conclusion, our study revealed a highly dynamic structure of the methanogenic archaeal community during plant residue decomposition. The in situ concentration of acetate (and possibly of H(2)) seems to be the key factor that regulates the shift of methanogenic community.  相似文献   

11.
The effect of humid heat acclimation on thermoregulatory responses to humid and dry exercise-heat stress was studied in six exercise-trained Thoroughbred horses. Horses were heat acclimated by performing moderate-intensity exercise for 21 days in heat and humidity (HH) [34.2-35.7 degrees C; 84-86% relative humidity (RH); wet bulb globe temperature (WBGT) index approximately 32 degrees C]. Horses completed exercise tests at 50% of peak O(2) uptake until a pulmonary arterial temperature (T(pa)) of 41.5 degrees C was attained in cool dry (CD) (20-21.5 degrees C; 45-50% RH; WBGT approximately 16 degrees C), hot dry (HD 0) [32-34 degrees C room temperature (RT); 45-55% RH; WBGT approximately 25 degrees C], and HH conditions (HH 0), and during the second hour of HH on days 3, 7, 14, and 21, and in HD on the 18th day (HD 18) of heat acclimation. The ratios of required evaporative capacity to maximal evaporative capacity of the environment (E(req)/E(max)) for CD, HD, and HH were approximately 1.2, 1.6, and 2.5, respectively. Preexercise T(pa) and rectal temperature were approximately 0.5 degrees C lower (P < 0. 05) on days 7, 14, and 21 compared with day 0. With exercise in HH, there was no effect of heat acclimation on the rate of rise in T(pa) (and therefore exercise duration) nor the rate of heat storage. In contrast, exercise duration was longer, rate of rise in T(pa) was significantly slower, and rate of heat storage was decreased on HD 18 compared with HD 0. It was concluded that, during uncompensable heat stress in horses, heat acclimation provided modest heat strain advantages when E(req)/E(max) was approximately 1.6, but at higher E(req)/E(max) no advantages were observed.  相似文献   

12.
Goat manure (GM) is an excellent raw material for anaerobic digestion because of its high total nitrogen content and fermentation stability. Several comparative assays were conducted on the anaerobic co-digestion of GM with three crop residues (CRs), namely, wheat straw (WS), corn stalks (CS) and rice straw (RS), under different mixing ratios. All digesters were implemented simultaneously under mesophilic temperature at 35±1 °C with a total solid concentration of 8%. Result showed that the combination of GM with CS or RS significantly improved biogas production at all carbon-to-nitrogen (C/N) ratios. GM/CS (30:70), GM/CS (70:30), GM/RS (30:70) and GM/RS (50:50) produced the highest biogas yields from different co-substrates (14840, 16023, 15608 and 15698 mL, respectively) after 55 d of fermentation. Biogas yields of GM/WS 30:70 (C/N 35.61), GM/CS 70:30 (C/N 21.19) and GM/RS 50:50 (C/N 26.23) were 1.62, 2.11 and 1.83 times higher than that of CRs, respectively. These values were determined to be the optimal C/N ratios for co-digestion. However, compared with treatments of GM/CS and GM/RS treatments, biogas generated from GM/WS was only slightly higher than the single digestion of GM or WS. This result was caused by the high total carbon content (35.83%) and lignin content (24.34%) in WS, which inhibited biodegradation.  相似文献   

13.
Wheat straw is an abundant agricultural residue which can be used as a raw material for bioethanol production. Due to the high xylan content in wheat straw, fermentation of both xylose and glucose is crucial to meet desired overall yields of ethanol. In the present work a recombinant xylose fermenting strain of Saccharomyces cerevisiae, TMB3400, cultivated aerobically on wheat straw hydrolysate, was used in simultaneous saccharification and fermentation (SSF) of steam pretreated wheat straw. The influence of fermentation strategy and temperature was studied in relation to xylose consumption, ethanol formation and by-product formation. In addition, model SSF experiments were made to further investigate the influence of temperature on xylose fermentation and by-product formation. In particular for SSF at the highest value of fibre content tested (9% water insoluble substance, WIS), it was found that a fed-batch strategy was clearly superior to the batch process in terms of ethanol yield, where the fed-batch gave 71% of the theoretical yield (based on all available sugars) in comparison to merely 59% for the batch. Higher ethanol yields, close to 80%, were obtained at a WIS-content of 7%. Xylose fermentation significantly contributed to the overall ethanol yields. The choice of temperature in the range 30-37 degrees C was found to be important, especially at higher contents of water insoluble solids (WIS). The optimum temperature was found to be 34 degrees C for the raw material and yeast strain studied. Model SSF experiments with defined medium showed strong temperature effects on the xylose uptake rate and xylitol yield.  相似文献   

14.
Wheat straw used in this study contained 44.24 +/- 0.28% cellulose and 25.23 +/- 0.11% hemicellulose. Alkaline H(2)O(2) pretreatment and enzymatic saccharification were evaluated for conversion of wheat straw cellulose and hemicellulose to fermentable sugars. The maximum yield of monomeric sugars from wheat straw (8.6%, w/v) by alkaline peroxide pretreatment (2.15% H(2)O(2), v/v; pH 11.5; 35 degrees C; 24 h) and enzymatic saccharification (45 degrees C, pH 5.0, 120 h) by three commercial enzyme preparations (cellulase, beta-glucosidase, and xylanase) using 0.16 mL of each enzyme preparation per g of straw was 672 +/- 4 mg/g (96.7% yield). During the pretreatment, no measurable quantities of furfural and hydroxymethyl furfural were produced. The concentration of ethanol (per L) from alkaline peroxide pretreated enzyme saccharified wheat straw (66.0 g) hydrolyzate by recombinant Escherichia coli strain FBR5 at pH 6.5 and 37 degrees C in 48 h was 18.9 +/- 0.9 g with a yield of 0.46 g per g of available sugars (0.29 g/g straw). The ethanol concentration (per L) was 15.1 +/- 0.1 g with a yield of 0.23 g/g of straw in the case of simultaneous saccharification and fermentation by the E. coli strain at pH 6.0 and 37 degrees C in 48 h.  相似文献   

15.
Wheat straw consists of 48.57 ± 0.30% cellulose and 27.70 ± 0.12% hemicellulose on dry solid (DS) basis and has the potential to serve as a low cost feedstock for production of ethanol. Dilute acid pretreatment at varied temperature and enzymatic saccharification were evaluated for conversion of wheat straw cellulose and hemicellulose to monomeric sugars. The maximum yield of monomeric sugars from wheat straw (7.83%, w/v, DS) by dilute H2SO4 (0.75%, v/v) pretreatment and enzymatic saccharification (45 °C, pH 5.0, 72 h) using cellulase, β-glucosidase, xylanase and esterase was 565 ± 10 mg/g. Under this condition, no measurable quantities of furfural and hydroxymethyl furfural were produced. The yield of ethanol (per litre) from acid pretreated enzyme saccharified wheat straw (78.3 g) hydrolyzate by recombinant Escherichia coli strain FBR5 was 19 ± 1 g with a yield of 0.24 g/g DS. Detoxification of the acid and enzyme treated wheat straw hydrolyzate by overliming reduced the fermentation time from 118 to 39 h in the case of separate hydrolysis and fermentation (35 °C, pH 6.5), and increased the ethanol yield from 13 ± 2 to 17 ± 0 g/l and decreased the fermentation time from 136 to 112 h in the case of simultaneous saccharification and fermentation (35 °C, pH 6.0).  相似文献   

16.
茄子光系统Ⅱ的热胁迫特性   总被引:5,自引:8,他引:5  
以耐热性较弱的黑贝一号圆茄和耐热性较强的黑贝二号圆茄为试材,热胁迫处理后采用植物效率仪PEA进行快速叶绿素荧光诱导曲线及其参数测定.结果表明:当温度高于40 ℃,PSⅡ结构受热胁迫影响较为敏感,表现为初始荧光Fo缓慢上升;PSⅡ原初光化学效率Fv/Fm和ΔF/Fm′大幅度下降,且黑贝二号Fv/Fm的半衰时间T50和ΔF/Fm′的半衰温度t50分别大于黑贝一号.较高的热胁迫剂量(48℃处理5 min或44℃处理20~30min)下,快速荧光诱导动力学曲线呈现OKJIP型,在700μs处出现与放氧复合体失活有关的K相.黑贝一号在44 ℃下处理20 min才有K相出现,黑贝二号则晚10 min出现.与35℃相比,在48℃,特别是在52℃的较高剂量热胁迫下,Strasser能量流动模型参数中的DIo/RC有大幅度地增加,体现了热耗散对PSⅡ的较强保护能力.随着热胁迫温度的升高和热胁迫时间的延长,两品种的无活性中心Fvi/Fv显著增加.  相似文献   

17.
A novel strain of Bifidobacterium bifidum NCIMB 41171, isolated from a faecal sample from a healthy human volunteer and able to express -galactosidase activity, was used in synthesis reactions for the production of galactooligosaccharide from lactose. The -galactosidase activity of whole bifidobacterial cells showed an optimum activity at pH 6.8–7.0 and 40°C. The transgalactosylation activity of the B. bifidum cells from 50% (w/w) lactose resulted in a galactooligosaccharide mixture (20% w/w) comprising (w/w): 25% disaccharides, 35% trisaccharides, 25% tetrasaccharides and 15% pentasaccharides. Using different initial lactose concentrations, the conversion rate to galactooligosaccharides was maximum (35%) when 55% (w/w) lactose was used. In fermentation experiments, B. bifidum showed an increased preference towards the produced galactooligosaccharide mixture, displaying higher growth rate and short-chain fatty acid production when compared with commercially available oligosaccharides.  相似文献   

18.
The optimal fermentation medium and conditions for mycelial growth and water-soluble exo-polysaccharides production by Isaria farinosa B05 were investigated. The medium components and fermentation conditions were optimized according to the one at a time method, while the concentration of medium components was determined by the orthogonal matrix method. The results showed that the optimal fermentation medium was as follows: sucrose 3.5% (w/v), peptone 0.5%, yeast extract 0.2%, K(2)HPO(4) 0.1%, and MgSO(4) 0.05%. The suitable fermentation conditions were as follows: initial pH 7.0, temperature 25 degrees C, medium volume 75 mL/250 mL, inoculum volume 5% (v/v), time 5d. In such optimal nutrition and environmental conditions, the maximal mycelial yield was 2.124 g/100 mL after 4 day's fermentation, while maximal water-soluble exo-polysaccharides production reached 2.144 g/L after 5 day's fermentation.  相似文献   

19.
Spores, sporeforming vegetative cells, and asporogenous populations were enumerated in two semicontinuous anaerobic fermentors digesting municipal primary sludge at 35 and 55 degrees C for more than 87 days. In the 35 degrees C fermentor, the anaerobic total population was 312.5 X 10(6)/ml, with 25.0 X 10(6)/ml being sporogenous. The populations that digest casein, starch, pectin, and cellulose were 23.1 X 10(6), 59.2 X 10(6), 26.2 X 10(6), and 7.3 X 10(6)/ml, respectively, with 2.8 X 10(6), 6.7 X 10(6), 3.4 X 10(6), and 1.5 X 10(6)/ml being sporogenous, respectively. The sporeformers accounted for 8.0 to 20.0% of each of the respective populations. In the 55 degrees C fermentor, the anaerobic total population was 512.5 X 10(6)/ml, with 336.6 X 10(6)/ml being sporogenous. The populations that digest casein, starch, pectin, and cellulose were 97.7 X 10(6), 190.7 X 10(6), 75.8 X 10(6), and 11.2 X 10(6)/ml, respectively, with 47.8 X 10(6), 110.6 X 10(6), 43.3 X 10(6), and 5.1 X 10(6)/ml, respectively, being sporogenous. The sporeformers represented 45.5 to 65.7% of each of the respective populations. The numbers of thermophilic sporeforming vegetative cells in the 55 degrees C fermentor were 9.0 to 19.8 times higher than their counterparts in the 35 degrees C fermentor. Most sporeformers were in the vegetative state in the 35 and 55 degrees C fermentors. After 18 days of fermentation at 55 degrees C, sporeformers carried out most of the digestion; however, the digestion was shared by both sporeformers and asporogenous bacteria after 87 days of fermentation. In the 35 degrees C fermentor, asporogenous bacteria digested most of the sludge. During the 18- and 87-day experimental periods, sporeformers were never predominant.  相似文献   

20.
M Chen 《Applied microbiology》1987,53(10):2414-2419
Spores, sporeforming vegetative cells, and asporogenous populations were enumerated in two semicontinuous anaerobic fermentors digesting municipal primary sludge at 35 and 55 degrees C for more than 87 days. In the 35 degrees C fermentor, the anaerobic total population was 312.5 X 10(6)/ml, with 25.0 X 10(6)/ml being sporogenous. The populations that digest casein, starch, pectin, and cellulose were 23.1 X 10(6), 59.2 X 10(6), 26.2 X 10(6), and 7.3 X 10(6)/ml, respectively, with 2.8 X 10(6), 6.7 X 10(6), 3.4 X 10(6), and 1.5 X 10(6)/ml being sporogenous, respectively. The sporeformers accounted for 8.0 to 20.0% of each of the respective populations. In the 55 degrees C fermentor, the anaerobic total population was 512.5 X 10(6)/ml, with 336.6 X 10(6)/ml being sporogenous. The populations that digest casein, starch, pectin, and cellulose were 97.7 X 10(6), 190.7 X 10(6), 75.8 X 10(6), and 11.2 X 10(6)/ml, respectively, with 47.8 X 10(6), 110.6 X 10(6), 43.3 X 10(6), and 5.1 X 10(6)/ml, respectively, being sporogenous. The sporeformers represented 45.5 to 65.7% of each of the respective populations. The numbers of thermophilic sporeforming vegetative cells in the 55 degrees C fermentor were 9.0 to 19.8 times higher than their counterparts in the 35 degrees C fermentor. Most sporeformers were in the vegetative state in the 35 and 55 degrees C fermentors. After 18 days of fermentation at 55 degrees C, sporeformers carried out most of the digestion; however, the digestion was shared by both sporeformers and asporogenous bacteria after 87 days of fermentation. In the 35 degrees C fermentor, asporogenous bacteria digested most of the sludge. During the 18- and 87-day experimental periods, sporeformers were never predominant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号