首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of Wnt signalling pathway genes during tooth development.   总被引:13,自引:0,他引:13  
We have carried out comparative in situ hybridisation analysis of six Wnt genes Wnts-3, -4, -5a, -6, -7b, and 10b together with Wnt receptor MFz6 and receptor agonist/antagonists MFrzb1 and Mfrp2 during murine odontogenesis from the earliest formation of the epithelial thickening to the early bell stage. Expression of Wnt-4, Wnt-6, and one Wnt receptor MFz6 was observed in the facial, oral and dental epithelium. Wnt10b was localised specifically to the presumptive dental epithelium. Wnts-3 and -7b were expressed in oral epithelium but showed no expression in the presumptive dental epithelium. Wnt-3 also showed no expression in the epithelial cells of the molar bud stage tooth germs, but showed restricted expression in the enamel knots which are signalling centres believed to be involved in regulating tooth shape. Wnts -6, -10b and MFz6 were also detected in the primary and secondary enamel knots. Wnt-5a and agonist/antagonists MFrzb1 and Mfrp2 were expressed in a graded proximo-distal (P-D) manner in mesenchymal cells during the early stages of tooth development with no overlying expression in the oral or dental epithelium. Wnt-5a and MFrzb1 show strong expression in the dental papilla mesenchyme.  相似文献   

2.
The dental basement membrane (BM) putatively mediates epithelial-mesenchymal interactions during tooth morphogenesis and cytodifferentiation. Type IV collagen alpha chains, a major network-forming protein of the dental BM, was studied and results disclosed distinct expression patterns at different stages of mouse molar germ development. At the dental placode and bud stage, the BM of the oral epithelium expressed alpha 1, alpha 2, alpha 5 and alpha 6 chains while the gubernaculum dentis, in addition to the above four chains, also expressed a 4 chain. An asymmetrical expression for alpha 4, alpha 5 and alpha 6 chains was observed at the bud stage. At the early bell stage, the BM associated with the inner enamel epithelium (IEE) of molar germ expressed alpha 1, alpha 2 and alpha 4 chains while the BM of the outer enamel epithelium (OEE) expressed only alpha 1 and a 2 chains. With the onset of dentinogenesis, the collagen a chain profile of the IEE BM gradually disappeared. Howeverfrom the early to late bell stage, the gubernaculum dentis consistently expressed alpha 1, alpha 2, alpha 5 and a 6 chains resembling fetal oral mucosa. These findings suggest that stage- and position-specific distribution of type IV collagen alpha subunits occur during molar germ development and that these changes are essential for molar morphogenesis and cytodifferentiation.  相似文献   

3.
Itm2a is a type II transmembrane protein with a BRICHOS domain. We investigated the temporospatial mRNA and protein expression patterns of Itm2a in the developing lower first molar, and examined the subcellular localization of Itm2a in murine dental epithelial (mDE6) cells. From the initiation to the bud stage, the in situ and protein signals of Itm2a were not detected in either the dental epithelial or mesenchymal cells surrounding the tooth bud. However, at the bell stage, these signals of Itm2a were primarily observed in the inner enamel epithelium of the enamel organ. After the initiation of the matrix formation, strong signals were detected in ameloblasts and odontoblasts. Itm2a showed a punctate pattern in the cytoplasm of the mDE6 cells. The perinuclear-localized Itm2a displayed a frequent overlap with the Golgi apparatus marker, GM130. A tiny amount of Itm2a was colocalized with lysosomes and endoplasmic reticulum. Minimal or no overlap between the Itm2a-EGFP signals with the other organelle markers for endoplasmic reticulum, lysosome and mitochondria used in this study noted in the cytoplasm. These findings suggest that Itm2a may play a role in cell differentiation during odontogenesis, rather than during the initiation of tooth germ formation, and may be related to the targeting of proteins associated with enamel and dentin matrices in the secretory pathway.  相似文献   

4.
Bone morphogenetic proteins (BMPs) play important roles in tooth development. However, their expression has not been studied in miniature pigs, which have many anatomical similarities in oral and maxillofacial region compared to human. This study investigated BMP2/4/7 expression patterns during deciduous molar development in miniature pigs on embryonic days (E) 40, 50, and 60. The mandibles were fixed, decalcified, and embedded before sectioning. H&E staining, immunohistochemistry, in situ hybridization using specific radionuclide-labeled cRNA probes, and real-time PCR were used to detect the BMP expression patterns during morphogenesis of the third deciduous molar. H&E staining showed that for the deciduous third molar, E40 represented the cap stage, E50 represented the early bell stage, and E60 represented the late bell stage or secretory stage. BMP2 was expressed in both the enamel organ and in the dental mesenchyme on E40 and E50 and was expressed mainly in pre-odontoblasts on E60. BMP7 expression was similar to BMP2 expression, but BMP7 was also expressed in the inner enamel epithelium on E60. On E40, BMP4 was expressed mainly in the epithelium, with some weak expression in the mesenchyme. On E50, BMP4 expression was stronger in the mesenchyme but weaker in the epithelium. On E60, BMP4 was expressed mainly in the mesenchyme. These data indicated that BMP2/4/7 showed differential spatial and temporal expression during the morphogenesis and odontogenesis of deciduous molars, suggesting that these molecules were associated with tooth morphogenesis and cell differentiation.  相似文献   

5.
6.
7.
We previously performed cDNA subtraction between the mouse mandibles at embryonic day 10.5 (E10.5) in the pre-initiation stage of the odontogenesis and E12.0 in the late initiation stage to investigate the key regulator genes in odontogenesis. Ribosomal protein L21 (Rpl21) is one of differentially expressed genes in the E12.0 mandible. This study examined the precise expression pattern of Rpl21 mRNA in the mouse mandibular first molar by in situ hybridization. Rpl21 mRNA was expressed in the presumptive dental epithelium and the underlying mesenchyme at E10.5, and in the thickened dental epithelium at E12.0. Strong in situ signals were observed in the epithelial bud at E14.0, and in the enamel organ at E15.0. However, either no (E14.0) or only a weak (E15.0) in situ signal was found in the primary enamel knot at these gestational days. Rpl21 was strongly expressed in the inner enamel epithelium, cervical loop and dental lamina from E16.0 to E18.0. In addition, Rpl21 mRNA was also demonstrated in various developing cranio-facial organs. These results suggest that Rpl21 participates in the synthesis of various polypeptides which might be related to the initiation and the development of such tooth germ, and also in the synthesis of enamel components in the presecretory stage of the ameloblast. Rpl21 for protein synthesis might also be related to the morphogenesis of the developing cranio-facial organs.  相似文献   

8.
9.
Before the secretion of hard dental tissues, tooth germs undergo several distinctive stages of development (dental lamina, bud, cap and bell). Every stage is characterized by specific proliferation patterns, which is regulated by various morphogens, growth factors and homeodomain proteins. The role of MSX homeodomain proteins in odontogenesis is rather complex. Expression domains of genes encoding for murine Msx1/2 during development are observed in tissues containing highly proliferative progenitor cells. Arrest of tooth development in Msx knockout mice can be attributed to impaired proliferation of progenitor cells. In Msx1 knockout mice, these progenitor cells start to differentiate prematurely as they strongly express cyclin-dependent kinase inhibitor p19INK4d. p19INK4d induces terminal differentiation of cells by blocking the cell cycle in mitogen-responsive G1 phase. Direct suppression of p19INK4d by Msx1 protein is, therefore, important for maintaining proliferation of progenitor cells at levels required for the normal progression of tooth development. In this study, we examined the expression patterns of MSX1, MSX2 and p19INK4d in human incisor tooth germs during the bud, cap and early bell stages of development. The distribution of expression domains of p19INK4d throughout the investigated period indicates that p19INK4d plays active role during human tooth development. Furthermore, comparison of expression domains of p19INK4d with those of MSX1, MSX2 and proliferation markers Ki67, Cyclin A2 and pRb, indicates that MSX-mediated regulation of proliferation in human tooth germs might not be executed by the mechanism similar to one described in developing tooth germs of wild-type mouse.  相似文献   

10.
This study investigated the minute distribution of both proliferating and non-proliferating cells, and cell death in the developing mouse lower first molars using 5-bromo-2-deoxyuridine (BrdU) incorporation and the terminal deoxynucleotidyl transferase-mediated deoxyuridine-5-triphosphate (dUTP)-biotin nick end labeling (TUNEL) double-staining technique. The distribution pattern of the TUNEL-positive cells was more notable than that of the BrdU-positive cells. TUNEL-positive cells were localized in the following six sites: (1) in the most superficial layer of the dental epithelium during the initiation stage, (2) in the dental lamina throughout the period during which tooth germs grow after bud formation, (3) in the dental epithelium in the most anterior part of the antero-posterior axis of the tooth germ after bud formation, (4) in the primary enamel knot from the late bud stage to the late cap stage, (5) in the secondary enamel knots from the late cap stage to the late bell stage, and (6) in the stellate reticulum around the tips of the prospective cusps after the early bell stage. These peculiar distributions of TUNEL-positive cells seemed to have some effect on either the determination of the exact position of the tooth germ in the mandible or on the complicated morphogenesis of the cusps. The distribution of BrdU-negative cells was closely associated with TUNEL-positive cells, which thus suggested cell arrest and the cell death to be essential for the tooth morphogenesis.  相似文献   

11.
Apoptosis represents an important process in organ and tissue morphogenesis and remodeling during embryonic development. A role for apoptosis in shape formation of developing teeth has been suggested. The field vole is a useful model for comparative studies in odontogenesis, particularly because of its contrasting molar morphogenesis when compared to the mouse. However, little is known concerning apoptosis in tooth development of this species. Morphological (cellular and nuclear alterations) and biochemical (specific DNA breaks--TUNEL staining) characteristics of apoptotic cells were used to evaluate the temporal and spatial occurrence of apoptosis in epithelial and mesenchymal tissues of the developing first molar tooth germs of the field vole. Apoptotic cells were found in non-proliferating areas (identified previously) throughout bud to bell stages, particularly in the epithelium, however, scattered also in the mesenchyme. A high concentration of TUNEL positive cells was evident in primary enamel knots at late bud stage with increasing density of apoptotic cells until ED 16 when the primary enamel knot in the field vole disappears and mesenchyme becomes protruded in the middle axes of the bell forming two shallow areas with zig-zag located secondary enamel knots. Distribution of TUNEL positive cells corresponded with localisation of secondary enamel knots as shown using histological and 3D analysis. Apoptosis was shown to be involved in the first molar development of the field vole, however, exact mechanisms and roles of this process in tooth morphogenesis require further investigation.  相似文献   

12.
13.
The development of the lower incisor in the mouse was investigated from histological sections using computer-aided 3D reconstructions. At ED 13.0, the incisor was still at the bud stage. At ED 13.5, the initial cap was delimited by a short cervical loop, the development of which proceeded on the labial side, but was largely retarded on the medial side. This difference was maintained up to ED 15.0. From ED 16.0, the bell stage was achieved. Metaphases had a ubiquitous distribution both in the enamel organ and in the dental papilla from the bud to early bell stage. Apoptosis gradually increased in the mesenchyme posteriorly to the labial cervical loop from ED 13.5 to 14.0 and then disappeared; this apoptosis was not related to the posterior growth of the incisor. From ED 13.5, a high apoptotic activity was observed in the stalk. A focal area of apoptosis was observed at ED 13.5 in the enamel organ, approaching the epithelio-mesenchymal junction at the future tip of the incisor. There, the inner dental epithelium formed a bulbous protrusion towards dental papilla, reminiscent of the secondary enamel knot of mouse molars. This epithelial protrusion was still maintained at the bell stage. The enamel knot in the incisor demonstrated specific features, different from those characterizing the enamel knot in the molar: the concentric arrangement of epithelial cells was much less prominent and the occurrence of apoptosis was very transitory in the incisor at ED 13.5. The disappearance of the enamel knot despite a low apoptotic activity and the maintenance of the protrusion suggested a histological reorganization specific for rodent incisor.  相似文献   

14.
Insulin-Like Growth Factor 2 (IGF-2) is a peptide hormone essential for prenatal growth and development. IGF-2 exerts its mitogenic effects via Insulin-Like Growth Factor 1 Receptor (IGF-1R), and is eliminated by binding to Insulin-Like Growth Receptor 2 (IGF-2R). IGF-2 is also negatively regulated by Phosphatase and Tensin Homolog (PTEN), a phosphatase mutated in various tumors. Not much is known about the interplay between these factors during human odontogenesis. In this study, expression patterns of IGF-2, IGF-1R, IGF-2R and PTEN were analyzed by double immunofluorescence in incisor human tooth germs during the foetal period of development between the 7th and 20th gestational week. Throughout the investigated period, IGF-2 was mostly expressed in enamel organ, whereas mild to moderate expression of PTEN could be seen in dental papilla and parts of enamel organ. Expression of IGF-1R was ubiquitous and displayed strong intensity throughout the entire enamel organ. In contrast, expression of IGF-2R had rather erratic pattern in enamel organ and dental papilla alike. Expression patterns of IGF-2, IGF-1R, IGF-2R and PTEN in highly proliferative cervical loops, as well as in differentiating pre-ameloblasts and pre-odontoblasts of cusp tip region during the early and late bell stages when enamel organ acquires definitive shape, indicate importance of these factors in crown morphogenesis of human incisor. Taken together, our data suggest the involvement of IGF-2, IGF-1R, IGF-2R and PTEN in temporo-spatial patterning of basic cellular processes (proliferation, differentiation) during normal tooth development. They are also relevant for improving knowledge of molecular basis of human odontogenesis.  相似文献   

15.
We have used immunocytochemistry to analyse expression of nerve growth factor receptor (NGFR) in developing, aging and injured molar teeth of rats. The patterns of NGFR immunoreactivity (IR) in developing epithelia and mesenchyme matched the location of NGFR mRNA assayed by in situ hybridization with a complementary S35-labeled RNA probe. The following categories of NGFR expression were found. (1) There was NGFR-IR in the dental lamina epithelium and in adjacent mesenchyme during early stages of third molar formation. (2) NGFR-IR nerve fibers were posterior and close to the bud epithelium. (3) During crown morphogenesis NGFR expression was prominent in internal enamel epithelium and preodontoblasts; it faded as preameloblasts elongated and as odontoblasts began to make predentin matrix; and it was weak or absent from outer enamel epithelium, the cervical loop, and differentiated ameloblasts and odontoblasts. (4) When NGFR-IR nerve fibers entered the molars late in the bell stage, they innervated the most mature peripheral pulp and dentin in an asymmetric pattern which correlated more with asymmetric enamel synthesis than with mesenchymal NGFR-IR distribution. (5) The mesenchymal pulp cells continued to have intense NGFR expression in adult teeth, especially near coronal tubular dentin. (6) The pulpal NGFR-IR decreased in very old rats or subjacent to reparative dentin (naturally occurring or experimentally induced). (7) During root formation, the preodontoblasts had NGFR-IR but most root mesenchymal cells and Hertwig's epithelial root sheath did not. This work suggests that there are important epithelial and mesenchymal targets of NGF regulation during molar morphogenesis that differ for crown and root development and that do not correlate with neural development. The continuing expression of NGFR-IR by pulpal mesenchymal cells in adult rats was most intense near coronal odontoblasts making tubular dentin; and it was lost during aging, or subjacent to sites of dentin injury that caused a phenotypic change in the odontoblast layer.  相似文献   

16.
Intercellular signaling controls all steps of odontogenesis. The purpose of this work was to immunolocalize in the developing mouse molar four molecules that play major roles during odontogenesis: BMP-2, -4, FGF-4, and WNT10b. BMP-2 and BMP-4 were detected in the epithelium and mesenchyme at the bud stage. Staining for BMP-2 markedly increased at the cap stage. The relative amount of BMP-4 strongly increased from E14 to E15. At E15, BMP-4 was detected in the internal part of the enamel knot where apoptosis was intense. In contrast to TGFbeta1, BMP-2 and -4 did not show accumulation at the epithelial-mesenchymal junction where the odontoblast started differentiation. When odontoblasts became functional, BMP-2 and BMP-4 were detected at the apical and basal poles of preameloblasts. BMP-2, which induces ameloblast differentiation in vitro, may also be involved physiologically. The decrease in FGF-4 from E14 to E15 supports a possible role for the growth factor in the control of mesenchymal cell proliferation. The relative amount of FGF-4 was maximal at E17. The subsequent decrease at E19 showed correlation with the withdrawal of odontoblasts and ameloblasts from the cell cycle. WNT10b might also stimulate cell proliferation. At E14-15, WNT10b was present in the mesenchyme and epithelium except for the enamel knot, where the mitotic activity was very low. At E19 there was a decreasing gradient of staining from the cervical loop where cells divide to the tip of the cusp in the inner dental epithelium where cells become postmitotic. The target cells for FGF-4 and WNT10b appeared different.  相似文献   

17.
18.
We previously performed cDNA subtraction between the mouse mandibles on embryonic day 10.5 (E10.5) in the pre-initiation stage of the odontogenesis and E12.0 in the late initiation stage to identify genes expressed at its beginning. Adenosine triphosphate synthase subunit a (Atpase6) is one of the highly expressed genes in the E12.0 mandible including tooth germs. In situ hybridization was conducted using the mouse mandibular first molar from E10.5 to E18.0 to determine the precise expression patterns of Atpase6 mRNA in the developing tooth germ. Atpase6 mRNA was strongly expressed in the presumptive dental epithelium and the underlying mesenchyme at E10.5, and in the thickened dental epithelium at E12.0 and E13.0. Strong in situ signals were observed in the epithelium at E14.0, and in the enamel organ excluded the area of the primary enamel knot at E15.0. Atpase6 was strongly expressed in the inner enamel epithelium, the adjacent stratum intermedium, and the outer enamel epithelium in the cervical loops from E16.0 to E18.0. In addition, strong Atpase6 signals were coincidently demonstrated in various developing cranio-facial organs. These results suggest that Atpase6 participates in the high energy-utilizing functions of the cells related to the initiation and the development of the tooth germ as well as those of the other cranio-facial organs.  相似文献   

19.
We previously performed cDNA subtraction between the mouse mandibles at embryonic day 10.5 (E10.5) and E12.0 to make a profile of the regulator genes for odontogenesis. Fifteen kDa interferon alpha responsive gene (Ifrg15) is one of several highly-expressed genes in the E12.0 mandible. The current study examined the precise expression patterns of Ifrg15 mRNA in the mouse mandibular first molar by in situ hybridization to evaluate the possible functional roles of this gene in odontogenesis. Ifrg15 mRNA was expressed in the epithelial and mesenchymal tissues of the mandible at E10.5 and E12.0. The Ifrg15 in situ signal was detected in the epithelial bud and the surrounding mesenchyme at E14.0, and was present in the enamel organ including the primary enamel knot, and in the underlying mesenchyme at E15.0. The in situ signal was restricted in the inner and outer enamel epithelia and the stratum intermedium at E16.0. The signal of Ifrg15 mRNA was further restricted to the inner enamel epithelium and the adjacent stratum intermedium at E17.0 and E18.0. Consequently, the expression of Ifrg15 mRNA was localized in the ameloblasts and odontoblasts at postnatal days 1.0 to 3.0. However, the in situ signal was markedly weaker than at the embryonic period. The expression of Ifrg15 mRNA was coincidently observed in various craniofacial organs as well as in the tooth germ. These results suggest that Ifrg15 is closely related to odontogenesis, especially the differentiation of the ameloblasts and odontoblasts, and to the morphogenesis of the craniofacial organs.  相似文献   

20.
Dental trigeminal nerve fiber growth and patterning are strictly integrated with tooth morphogenesis, but it is still unknown, how these two developmental processes are coordinated. Here we show that targeted inactivation of the dental epithelium expressed Fgfr2b results in cessation of the mouse mandibular first molar development at the degenerated cap stage and the failure of the trigeminal molar nerve to establish the lingual branch at E13.5 stage while the buccal branch develops properly. This axon patterning defect correlates to the histological absence of the mesenchymal dental follicle and adjacent Semaphorin3A-free dental follicle target field as well as appearance of ectopic Sema3A expression domain in the lingual side of the epithelial bud. Although the mesenchymal ligands for Fgfr2b, Fgf3 and -10 were present in the Fgfr2b(-/)(-) dental mesenchyme, mutant dental epithelium showed dramatically reduced proliferation and the lack of Fgf3. Tgfbeta1, which controls Sema3A was absent from the Fgfr2b(-/-) tooth germ, and Sema3A was specifically downregulated in the dental mesenchyme at the bud and cap stage. In addition, the epithelial primary enamel knot signaling center although being molecularly present neither was histologically detectable nor expressed Bmp4 and Fgf3 as well as Fgf4, which is essential for tooth morphogenesis and stimulates mesenchymal Fgf3 and Tgfbeta1. Fgf4 beads rescued Tgfbeta1 in the Fgfr2b(-/-) dental mesenchyme explants and Tgfbeta1 induced de novo Sema3A expression in the dental mesenchyme. Collectively these results demonstrate that epithelial Fgfr2b controls tooth morphogenesis and dental axon patterning, and suggests that Fgfr2b, by mediating local epithelial-mesenchymal interactions, integrates these two distinct developmental processes during odontogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号