首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The apamin-sensitive component of the inhibitory response of the gastrointestinal musculature involves the small conductance Ca(2+)-activated K(+) channel SK3. Kit-immunoreactive (ir) interstitial cells of Cajal appear to be involved in nitrergic inhibition while the role of the recently described CD34-ir fibroblast-like cells adjacent to, but distinct from, the cells of Cajal remains elusive. The distribution of SK3 was studied by immunohistochemistry in the normal human gut, in motility disorders with a lack of cells of Cajal (infantile hypertrophic pyloric stenosis and Hirschsprung's disease) and in mice deficient in cells of Cajal. SK3 immunoreactivity was observed exclusively in Kit-negative interstitial cells adjacent to, but distinct from, the Kit-ir interstitial cells of Cajal in the normal gut. The distribution of SK3-ir cells was not altered in conditions where cells of Cajal were lacking. These cells were CD34-ir fibroblast-like cells in the human gut and in the mouse stomach, while SK3-ir cells in the mouse intestine were CD34 negative. As SK channels are reportedly involved in inhibitory neurotransmission, our morphological observations suggest that SK3-ir interstitial cells, distinct from the Kit-ir interstitial cells of Cajal, may represent a novel cellular component in the control of excitability of the digestive musculature. Further studies will be required to directly address the function of these cells.  相似文献   

3.
Using an embryoid body (EB) culture system, we have made a functional organlike cluster: the "gut" from embryonic stem (ES) cells (ES gut). There are many types of ES clusters, because ES cells have a pluripotent ability to develop into a wide range of cell types. Before inducing specific differentiation by exogenously added factors, we characterized comprehensive physiological and morphological properties of ES guts. Each ES gut has a hemispherical (or cystic) structure and exhibits spontaneous contractions [mean frequency: 13.5 ± 8.8 cycles per min (cpm)]. A dense distribution of interstitial cells of Cajal (ICC) was identified by c-Kit immunoreactivity, and specific subcellular structures of ICC and smooth muscle cells were identified with electron microscopy. ICC frequently formed close contacts with the neighboring smooth muscle cells and occasionally formed gap junctions with other ICC. Widely propagating intracellular Ca2+ concentration oscillations were generated in the ES gut from the aggregates of c-Kit immunopositive cells. Plateau potentials, possibly pacemaker potentials in ICC, and electrical slow waves were recorded for the first time. These events were nifedipine insensitive, as in the mouse gut. Our present results indicate that the rhythmic pacemaker activity generated in ICC efficiently spreads to smooth muscle cells and drives spontaneous rhythmic contractions of the ES gut. The present characterization of physiological and morphological properties of ES gut paves the way for making appropriate models to investigate the origin of rhythmicity in the gut. intracellular calcium concentration oscillation; interstitial cells of Cajal; peristalsis  相似文献   

4.
Calcium-associated mechanisms in gut pacemaker activity   总被引:2,自引:1,他引:1  
A considerable body of evidence has revealed that interstitial cells of Cajal (ICC), identified with c-Kit-immunoreactivity, act as gut pacemaker cells, with spontaneous Ca(2+) activity in ICC as the probable primary mechanism. Namely, intracellular (cytosolic) Ca(2+) oscillations in ICC periodically activate plasmalemmal Ca(2+)-dependent ion channels and thereby generate pacemaker potentials. This review will, thus, focus on Ca(2+)-associated mechanisms in ICC in the gastrointestinal (GI) tract, including auxiliary organs.  相似文献   

5.
The interstitial cells of Cajal (ICC), as pacemaker cells of the gut, contribute to rhythmic peristalsis and muscle excitability through initiation of slow-wave activity, which subsequently actively propagates into the musculature. An E-4031-sensitive K(+) current makes a critical contribution to membrane potential in ICC. This study provides novel features of this current in ICC in physiological solutions and seeks to identify the channel isoform. In situ hybridization and Kit immunohistochemistry were combined to assess ether-a-go-go-related gene (ERG) mRNA expression in ICC in mouse jejunum, while the translated message was assessed by immunofluorescence colocalization of ERG and Kit proteins. E-4031-sensitive currents in cultured ICC were studied by the whole cell patch-clamp method, with physiological K(+) concentration in the bath and the pipette. In situ hybridization combined with Kit immunohistochemistry detected m-erg1 and m-erg3, but not m-erg2, mRNA in ICC. ERG3 protein was colocalized with Kit-immunoreactive ICC in jejunum sections, but ERG1 protein was visualized only in the smooth muscle cells. At physiological K(+) concentration, the E-4031-sensitive outward current in ICC was different from its counterpart in cardiac and gut smooth muscle cells. In particular, inactivation upon depolarization and recovery from inactivation by hyperpolarization were modest in ICC. In summary, the E-4031-sensitive currents influence the kinetics of the pacemaker activity in ICC and contribute to maintenance of the resting membrane potential in smooth muscle cells, which together constitute a marked effect on tissue excitability. Whereas this current is mediated by ERG1 in smooth muscle, it is primarily mediated by ERG3 in ICC.  相似文献   

6.
Using an embryoid body (EB) culture system, we developed a functional organ-like cluster, a "gut", from mouse embryonic stem (ES) cells (ES gut). Each ES gut exhibited various types of spontaneous movements. In these spontaneously contracting ES guts, dense distributions of interstitial cells of Cajal (ICC) (c-kit, a transmembrane receptor that has tyrosine kinase activity, positive cells; gut pacemaker cells) and smooth muscle cells were discernibly identified. By adding Glivec 10(-5)M, a tyrosine kinase receptor c-kit inhibitor, only during EB formation, we for the first time succeeded in suppressing in vitro formation of ICC in the ES gut. The ES gut without ICC did not exhibit any movements. However, it appeared that Glivec 10(-6)-10(-7)M rather increased number of ES guts with spontaneous movements associated with increase of intracellular Ca(2+) concentration ([Ca(2+)](i)). These results suggest ICC is critical for in vitro formation of ES guts with spontaneous movements.  相似文献   

7.
Recent investigation of the ultrastructure and electrophysiology of gastrointestinal smooth muscle layers has revealed a fascinating heterogeneity in cell type, cell structure, intercellular communication, and generated electrical activities. Networks of interstitial cells of Cajal (ICC) have been identified in many muscle layers and evidence is accumulating for a role of these networks in gut pacemaking activity. Synchronized motility in the organs of the gut result from interaction between ICC, neural-tissue, and smooth muscle cells. Regulation of cell to cell communication between the different cell types will be an important area for further research. Progress has been made in the elucidation of the ionic basis of the slow wave type action potentials and the spike-like action potentials. The mechanism underlying smooth muscle autorhythmicity seems different from that encountered in cardiac tissue, and evidence exists for metabolic regulation of the frequency of slow wave type action potentials.  相似文献   

8.
Ramon y Cajal discovered a particular cell type in the gut, which he named ‘interstitial neurons’ more that 100 years ago. In the early 1970s, electron microscopy/electron microscope (EM) studies showed that indeed a special interstitial cell type corresponding to the cells discovered by Cajal is localized in the gut muscle coat, but it became obvious that they were not neurons. Consequently, they were renamed ‘interstitial cells of Cajal’ (ICC) and considered to be pace-makers for gut motility. For the past 10 years many groups were interested in whether or not ICC are present outside the gastrointestinal tract, and indeed, peculiar interstitial cells were found in: upper and lower urinary tracts, blood vessels, pancreas, male and female reproductive tracts, mammary gland, placenta, and, recently, in the heart as well as in the gut. Such cells, now mostly known as interstitial Cajal-like cells (ICLC), were given different and confusing names. Moreover, ICLC are only apparently similar to canonical ICC. In fact, EM and cell cultures revealed very particular features of ICLC, which unequivocally distinguishes them from ICC and all other interstitial cells: the presence of 2–5 cell body prolongations that are very thin (less than 0.2 μm, under resolving power of light microscopy), extremely long (tens to hundreds of μm), with a moniliform aspect (many dilations along), as well as caveolae. Given the unique dimensions of these prolongations (very long and very thin) and to avoid further confusion with other interstitial cell types (e.g. fibroblast, fibrocyte, fibroblast-like cells, mesenchymal cells), we are proposing the term TELOCYTES for them, and TELOPODES for their prolongations, by using the Greek affix ‘telos’.  相似文献   

9.
Rhythmical depolarization and automatic contractions of smooth musculature of the gastrointestinal tract are a consequence of pacemaker activity of c-Kit-immunoreactive cells of mesenchymal origin—interstitial Cajal cells (ICC) that have a peculiar mechanism of intercellular Ca2+ balance, which is controlled by mitochondria. Intermuscular layer cells (ICC-MY) generate pacemaker potentials. Their induced depolarization is enhanced by unitary potentials generated by intracellular population—ICC-IM. Summation of unitary potentials in the tact of the pacemaker ones leads to creation of the second potential of slow waves—plateau potentials. Due to the presence of synapse-like structures, ICC serve messenger of transmission of the enteral nervous system onto the muscle. Long processes and close intercellular contacts similar to tight junction provide conductance and coordination of excitation in the intestinal musculature. Electrical rhythmicity appears in the intestinal muscle at the prenatal development period in parallel with the structural and functional ICC maturation, but establishment of mature rhythm parameters occurs in early postnatal ontogenesis. Features of similarity and difference in organization of control by pacemakers of the heart and musculature of the gastrointestinal tract are discussed.  相似文献   

10.
The stomach harbors a network of interstitial cells of Cajal (ICC) associated with Auerbach's plexus as well as intramuscular ICC within the muscle layers that make close apposition contact with nerve varicosities. ICC are critical for slow-wave generation, making ICC the pacemaker cells of the gut, allowing rhythmic peristaltic motor patterns in the mid- and distal stomach. ICC also play a role in neurotransmission, but its importance relative to direct muscle innervation is still under investigation. The role of ICC in many control functions of gastric motility in humans needs further examination. The pathophysiology of ICC in disease can be partially assessed by immunohistochemistry and electron microscopy on tissue samples. Electrogastrogram measurements may also play a role, but this technique needs further refinement. Communication between ICC and muscle may involve electrical coupling, metabolic coupling through gap junctions, or secretion of nitric oxide or carbon monoxide.  相似文献   

11.
The so-called interstitial cells of Cajal myenteric plexus (ICC-MP), interstitial cells of Cajal intramuscular (ICC-IM) and interstitial cells of Cajal deep muscular plexus (ICC-DMP) are the three types of ICC endowed within the intestinal muscle coat where they play different roles in gut motility. Studies on ICC ontogenesis showed ICC-MP in the human ileum by 7-9 weeks while information on ICC-IM and ICC-DMP in foetuses and newborns are not exhaustive. Functional recordings in the fasting state of prematurely born babies aged 28-37 weeks showed immature ileal motility. To gain more information on the time of appearance of the three ICC types in the human ileum and on the steps of the acquisition of mature features, we studied by c-kit immuno-histochemistry foetuses aged 17-27 weeks and newborns aged 36-41 weeks. In parallel, the maturative steps of enteric plexuses and muscle layers were immunohistochemically examined by using anti-neuron specific enolase (NSE), anti-S-100 and anti-alpha smooth muscle actin (alphaSMA) antibodies. The appearance and differentiation of all the ICC types were seen to occur in concomitance with those of the related nerve plexuses and muscle layers. ICC-MP appeared first, ICC-IM and ICC-DMP later and their differentiation was incomplete at birth. In conclusion, the ICC-MP, the intestinal pacemaker cells, in spite of absence of food intake, are already present during the foetal life and the ICC-IM appear by pre-term life, thus ensuring neurotransmission. The ICC-DMP and their related nerve plexus and smooth muscle cells, i.e. the intestinal stretch receptor, begin to differentiate at birth. These findings might help in predicting neonatal ileal motor behaviour and in interpreting the role of ICC abnormalities in the pathophysiology of intestinal motile disorders of neonates and young children.  相似文献   

12.
The intermediate filament nestin is expressed in neural stem cells, neuroectodermal tumors and various adult tissues. In the gastrointestinal (GI) tract, nestin has been reported in glial cells. Recently, nestin has been reported in interstitial cells of Cajal (ICC) and in gastrointestinal stromal tumors, thought to derive from ICC. Here we investigated nestin immunoreactivity (-ir) in the normal human GI tract, with emphasis on Kit-ir ICC. Two different antibodies specific for human nestin and multicolor high-resolution confocal microscopy were used on material from our human GI tissue collection. The staining pattern of both nestin antibodies was similar. In labeled cells, nestin-ir appeared filamentous. Most intramuscular ICC in antrum and all myenteric ICC (ICC-MP) in small intestine were nestin-ir, while nestin-ir was not detected in deep muscular plexus ICC. In the colon, some - but not all - ICC-MP and most ICC in the circular musculature were nestin-ir while nestin-ir was not detected in ICC in the longitudinal musculature and in the submuscular plexus. In addition, many Kit-negative cells were nestin-ir in all regions. Neurons and smooth muscle cells were consistently nestin negative, while most S100-ir glial cells were nestin-ir. In addition, nestin-ir was also present in some CD34-ir fibroblast-like cells, in endothelium and in other cell types in the mucosa and serosa. In conclusion, nestin-ir is abundantly present in the normal human GI tract. Among a number of cell types, several, but not all, subpopulations of Kit-ir ICC were nestin-ir. The functional significance of nestin in the GI tract remains obscure.  相似文献   

13.
The motility of the gastrointestinal tract is generated by smooth muscle cells and is controlled to a large extent by an intrinsic neural network. A gap of approximately 200 nm usually separates nerve varicosities from smooth muscle cells, which suggests that direct innervation of the smooth muscle by synapses does not occur. Enteric nerves do make synapse-like contact with proposed regulatory cells, the interstitial cells of Cajal (ICC), which in turn may be in gap junction contact with smooth muscle cells. The role played by ICC in enteric innervation is controversial. Experimental evidence has been presented in vitro for the hypothesis that nitrergic inhibitory innervation is strongly reduced in the absence of ICC. However, in vivo data appear to dispute that. The present report provides evidence that explains the discrepancy between in vivo and in vitro data and provides evidence that inhibitory neurotransmitters can reach smooth muscle cells without hindrance when ICC are absent. The fundic musculature shows increased responses to substance P-mediated innervation and shows marked spontaneous activity, which is consistent with increased muscle excitability.  相似文献   

14.
Immunoreactivity for the tyrosine kinase receptor Kit (Kit-ir) is an established marker for the interstitial cells of Cajal (ICC) of the gut. Recently, the presence of CD34 immunoreactivity (CD34-ir) has been reported in Kit-ir ICC around the myenteric plexus in human small intestine. Conversely, we observed that CD34-ir labeled Kit-negative fibroblast-like cells, closely adjacent to, but distinct from, the Kit-ir ICC. The existence of cells expressing both CD34-ir and Kit-ir remains controversial. CD34-ir and Kit-ir were studied by high-resolution confocal microscopy on cryostat sections of human and murine gut as well as murine whole-mounts, using specific antibodies raised to human and murine CD34, respectively. CD34-ir labeled numerous cells in all parts of the gut, in man and in mouse. CD34-ir was consistently observed in Kit-negative cells, distinct from the closely adjacent Kit-ir ICC. Thin processes of both cell types intermingled extensively, often at the limit of resolution for light microscopy. CD34-ir was also observed in Kit-negative mesenchymal cells in the submucosa, in capillaries and in mesothelial cells. CD34-ir is not a marker for Kit-ir ICC in the human and murine gut. No CD34-ir, Kit-ir-expressing cells were encountered. Conversely, CD34-ir cells, closely adjacent to, but distinct from, Kit-ir ICC were consistently identified. The intimate relationship between these cells may offer an alternative explanation for reports of CD34 and Kit co-localization. The ontogeny and function of CD34-ir cells in the gut, as well as the origin of gastrointestinal stromal tumors, remain unclear.  相似文献   

15.
16.
Interstitial cells of Cajal in pancreas   总被引:4,自引:0,他引:4  
We show here (presumably for the first time) a special type of cell in the human and rat exocrine pancreas. These cells have phenotypic characteristics of the enteric interstitial cells of Cajal (ICC). To identify pancreatic interstitial cells of Cajal (pICC) we used routine light microscopy, non-conventional light microscopy (less than 1 mum semi-thin sections of Epon-embedded specimens cut by ultramicrotomy and stained with Toluidine blue), transmission electron microscopy (TEM), and immunocytochemistry. The results showed that pICC can be recognized easily by light microscopy, particularly on semi-thin sections, as well as by TEM. Two-dimensional reconstructions from serial photos suggest a network-like spatial distribution of pICC. pICC represent 3.3+/-0.5% of all pancreatic cells, and seem to establish close spatial relationships with: capillaries (43%), acini (40%), stellate cells (14%), nerve fibres (3%). Most of pICC (88%) have 2 or 3 long processes (tens of mum) emerging from the cell body. TEM data show that pICC meet the criteria for positive diagnosis as ICC (e.g. numerous mitochondria, 8.7+/-0.8% of cytoplasm). Immunocytochemistry revealed that pICC are CD117/c-kit and CD34 positive. We found pICC positive (40-50%) for smooth muscle alpha-actin or S-100, and, occasionally, for CD68, NK1 neurokinin receptor and vimentin. The reactions for desmin and chromogranin A were negative in pICC. At present, only hypotheses and speculations can be formulated on the possible role of the pICC (e.g., juxtacrine and/or paracrine roles). In conclusion, the quite-established dogma: "ICC only in cavitary organs" is overpassed.  相似文献   

17.
The generation of functional neuromuscular activity within the pre-natal gastrointestinal tract requires the coordinated development of enteric neurons and glial cells, concentric layers of smooth muscle and interstitial cells of Cajal (ICC). We investigated the genesis of these different cell types in human embryonic and fetal gut material ranging from weeks 4–14. Neural crest cells (NCC), labelled with antibodies against the neurotrophin receptor p75NTR, entered the foregut at week 4, and migrated rostrocaudally to reach the terminal hindgut by week 7. Initially, these cells were loosely distributed throughout the gut mesenchyme but later coalesced to form ganglia along a rostrocaudal gradient of maturation; the myenteric plexus developed primarily in the foregut, then in the midgut, and finally in the hindgut. The submucosal plexus formed approximately 2–3 weeks after the myenteric plexus, arising from cells that migrated centripetally through the circular muscle layer from the myenteric region. Smooth muscle differentiation, as evidenced by the expression of -smooth muscle actin, followed NCC colonization of the gut within a few weeks. Gut smooth muscle also matured in a rostrocaudal direction, with a large band of -smooth muscle actin being present in the oesophagus at week 8 and in the hindgut by week 11. Circular muscle developed prior to longitudinal muscle in the intestine and colon. ICC emerged from the developing gut mesenchyme at week 9 to surround and closely appose the myenteric ganglia by week 11. By week 14, the intestine was invested with neural cells, longitudinal, circular and muscularis mucosae muscle layers, and an ICC network, giving the fetal gut a mature appearance.A.S.W. is funded by a PhD studentship awarded to A.J.B. by the Child Health Research Appeal Trust.  相似文献   

18.
The roles of the interstitial cells of Cajal in the stomach and intestine are becoming increasingly clear. Interstitial cells of Cajal in the colon are less well known, however. We studied the development and distribution of the interstitial cells of Cajal in the mouse colon, using the tyrosine kinase receptor Kit as a marker. Sections and whole mounts were studied by confocal microscopy after double immunofluorescence with specific antibodies. The ultrastructure of Kit-expressing cells was examined by electron microcopy in KitW-lacz/+ transgenic mice, which carry the lacz gene inserted in place of the first exon of the Kit gene. In the subserosa, the interstitial cells of Cajal formed a two-dimensional plexus. In the myenteric area, the interstitial cells of Cajal formed a dense plexus that gradually merged with the interstitial cells of Cajal in the outer half of the circular muscle. The inner half of the circular layer was devoid of interstitial cells of Cajal whereas in the submuscular region the interstitial cells of Cajal formed a two-dimensional plexus. Tertiary nerves with various chemical codings closely followed interstitial cell of Cajal processes. By electron microscopy, Kit-expressing cells in the outer parts of the musculature had scattered caveolae, inconspicuous basal lamina and numerous mitochondria, whereas in the submuscular region they had more pronounced myoid features. Kit-expressing cells in the mouse colon are identifiable as interstitial cells of Cajal by their ultrastructure. The interstitial cells of Cajal in the mouse colon mature postnatally. They are organized into a characteristic plexus, close to the nerves with various chemical codings.  相似文献   

19.
Telocytes (TC), a cell population located in the connective tissue of many organs of humans and laboratory mammals, are characterized by a small cell body and extremely long and thin processes. Different TC subpopulations share unique ultrastructural features, but express different markers. In the gastrointestinal (GI) tract, cells with features of TC were seen to be CD34‐positive/c‐kit‐negative and several roles have been proposed for them. Other interstitial cell types with regulatory roles described in the gut are the c‐kit‐positive/CD34‐negative/platelet‐derived growth factor receptor α (PDGFRα)‐negative interstitial cells of Cajal (ICC) and the PDGFRα‐positive/c‐kit‐negative fibroblast‐like cells (FLC). As TC display the same features and locations of the PDGFRα‐positive cells, we investigated whether TC and PDGFRα‐positive cells could be the same cell type. PDGFRα/CD34, PDGFRα/c‐kit and CD34/c‐kit double immunolabelling was performed in full‐thickness specimens from human oesophagus, stomach and small and large intestines. All TC in the mucosa, submucosa and muscle coat were PDGFRα/CD34‐positive. TC formed a three‐dimensional network in the submucosa and in the interstitium between muscle layers, and an almost continuous layer at the submucosal borders of muscularis mucosae and circular muscle layer. Moreover, TC encircled muscle bundles, nerve structures, blood vessels, funds of gastric glands and intestinal crypts. Some TC were located within the muscle bundles, displaying the same location of ICC and running intermingled with them. ICC were c‐kit‐positive and CD34/PDGFRα‐negative. In conclusion, in the human GI tract the TC are PDGFRα‐positive and, therefore, might correspond to the FLC. We also hypothesize that in human gut, there are different TC subpopulations probably playing region‐specific roles.  相似文献   

20.
Morphological studies have shown synaptic-like structures between enteric nerve terminals and interstitial cells of Cajal (ICC) in mouse and guinea pig gastrointestinal tracts. Functional studies of mice lacking certain classes of ICC have also suggested that ICC mediate enteric motor neurotransmission. We have performed morphological experiments to determine the relationship between enteric nerves and ICC in the canine gastric antrum with the hypothesis that conservation of morphological features may indicate similar functional roles for ICC in mice and thicker-walled gastrointestinal organs of larger mammals. Four classes of ICC were identified based on anatomical location within the tunica muscularis. ICC in the myenteric plexus region (IC-MY) formed a network of cells that were interconnected to each other and to smooth muscle cells by gap junctions. Intramuscular interstitial cells (IC-IM) were found in muscle bundles of the circular and longitudinal layers. ICC were located along septa (IC-SEP) that separated the circular muscle into bundles and were also located along the submucosal surface of the circular muscle layer (IC-SM). Immunohistochemistry revealed close physical associations between excitatory and inhibitory nerve fibers and ICC. These contacts were synaptic-like with pre- and postjunctional electron-dense regions. Synaptic-like contacts between enteric neurons and smooth muscle cells were never observed. Innervated ICC formed gap junctions with neighboring smooth muscle cells. These data show that ICC in the canine stomach are innervated by enteric neurons and express similar structural features to innervated ICC in the murine GI tract. This morphology implies similar functional roles for ICC in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号