首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M. K. Nelson  T. Kurihara    P. A. Silver 《Genetics》1993,134(1):159-173
Mutations in the SEC63 gene of Saccharomyces cerevisiae affect both nuclear protein localization and translocation of proteins into the endoplasmic reticulum. We now report the isolation of suppressors of sec63-101 (formerly npl1-1), a temperature-sensitive allele of SEC63. Five complementation groups of extragenic mutations, son1-son5 (suppressor of npl1-1), were identified among the recessive suppressors. The son mutations are specific to SEC63, are not bypass suppressors, and are not new alleles of previously identified secretory (SEC61, SEC62, KAR2) or nuclear protein localization genes (NPL3, NPL4, NPL6). son1 mutations show regional specificity of suppression of sec63 alleles. At low temperatures, son1 mutants grow slowly and show partial mislocalization of nuclear antigens. The SON1 gene maps to chromosome IV and encodes a nuclear protein of 531 amino acids that contains two acidic stretches and a putative nuclear localization sequence. We show that son1 mutations suppress sec63-101 by elimination of Son1p function.  相似文献   

2.
To identify components involved in nuclear protein import, we used a genetic selection to isolate mutants that mislocalized a nuclear-targeted protein. We identified temperature-sensitive mutants that accumulated several different nuclear proteins in the cytoplasm when shifted to the semipermissive temperature of 30 degrees C; these were termed npl (nuclear protein localization) mutants. We now present the properties of yeast strains bearing mutations in the NPL4 gene and report the cloning of the NPL4 gene and the characterization of the Np14 protein. The npl4-1 mutant was isolated by the previously described selection scheme. The second allele, npl4-2, was identified from an independently derived collection of temperature-sensitive mutants. The npl4-1 and npl4-2 strains accumulate nuclear-targeted proteins in the cytoplasm at the nonpermissive temperature consistent with a defect in nuclear protein import. Using an in vitro nuclear import assay, we show that nuclei prepared from temperature-shifted npl4 mutant cells are unable to import nuclear-targeted proteins, even in the presence of cytosol prepared from wild-type cells. In addition, npl4-2 cells accumulate poly(A)+ RNA in the nucleus at the nonpermissive temperature, consistent with a failure to export mRNA from the nucleus. The npl4-1 and npl4-2 cells also exhibit distinct, temperature-sensitive structural defects: npl4-1 cells project extra nuclear envelope into the cytoplasm, whereas npl4-2 cells from nuclear envelope herniations that appear to be filled with poly(A)+ RNA. The NPL4 gene encodes an essential M(r) 64,000 protein that is located at the nuclear periphery and localizes in a pattern similar to nuclear pore complex proteins. Taken together, these results indicate that this gene encodes a novel nuclear pore complex or nuclear pore complex-associated component required for nuclear membrane integrity and nuclear transport.  相似文献   

3.
We have isolated mutants of the yeast Saccharomyces cerevisiae that are defective in localization of nuclear proteins. Chimeric proteins containing the nuclear localization sequence from SV40 large T-antigen fused to the N-terminus of the mitochondrial F1 beta-ATPase are localized to the nucleus. Npl (nuclear protein localization) mutants were isolated by their ability to grow on glycerol as a consequence of no longer exclusively targeting SV40-F1 beta-ATPase to the nucleus. All mutants with defects in localization of nucleolar proteins and histones are temperature sensitive for growth at 36 degrees C. Seven alleles of NPL3 and single alleles of several additional genes were isolated. NPL3 mutants were studied in detail. NPL3 encodes a nuclear protein with an RNA recognition motif and similarities to a family of proteins involved in RNA metabolism. Our genetic analysis indicates that NPL3 is essential for normal cell growth; cells lacking NPL3 are temperature sensitive for growth but do not exhibit a defect in localization of nuclear proteins. Taken together, these results indicate that the mutant forms of Npl3 protein isolated by this procedure are interfering with nuclear protein uptake in a general manner.  相似文献   

4.
The Ire1p transmembrane receptor kinase/endonuclease transduces the unfolded protein response (UPR) from the endoplasmic reticulum (ER) to the nucleus in Saccharomyces cerevisiae. In this study, we analyzed the capacity of a highly basic sequence in the linker region of Ire1p to function as a nuclear localization sequence (NLS) both in vivo and in vitro. This 18-residue sequence is capable of targeting green fluorescent protein to the nucleus of yeast cells in a process requiring proteins involved in the Ran GTPase cycle that facilitates nuclear import. Mutagenic analysis and importin binding studies demonstrate that the Ire1p linker region contains overlapping potential NLSs: at least one classical NLS (within sequences 642KKKRKR647 and/or 653KKGR656) that is recognized by yeast importin alpha (Kap60p) and a novel betaNLS (646KRGSRGGKKGRK657) that is recognized by several yeast importin beta homologues. Kinetic binding data suggest that binding to importin beta proteins would predominate in vivo. The UPR, and in particular ER stress-induced HAC1 mRNA splicing, is inhibited by point mutations in the Ire1p NLS that inhibit nuclear localization and also requires functional RanGAP and Ran GEF proteins. The NLS-dependent nuclear localization of Ire1p would thus seem to be central to its role in UPR signaling.  相似文献   

5.
Expression of the recombinase proteins RAG-1 and RAG-2 is discordant: while RAG-1 is relatively long lived, RAG-2 is degraded periodically at the G(1)-S transition. Destruction of RAG-2 is mediated by a conserved interval in the recombination-dispensable region. The need for RAG-2 to reaccumulate in the nucleus at each cell division suggested the existence of an intrinsic RAG-2 nuclear localization signal (NLS). RAG-1 or RAG-2, expressed individually, is a nuclear protein. A screen for proteins that bind the recombination-dispensable region of RAG-2 identified the nuclear transport protein Importin 5. Mutation of residues 499 to 508 in RAG-2 abolished Importin 5 binding, nuclear accumulation, and periodic degradation of RAG-2. The Importin 5 binding site overlaps an NLS, defined by mutagenesis. RAG-1 rescued the localization of degradation-defective, RAG-2 NLS mutants; this required an intact RAG-1 NLS. Mutations in RAG-2 that abolish intrinsic nuclear accumulation but spare periodic degradation impaired recombination in cycling cells; induction of quiescence restored recombination to wild-type levels. Recombination defects were correlated with a cell cycle-dependent defect in the ability of RAG-1 to rescue localization of the RAG-2 mutants. These results suggest that the intrinsic RAG-2 NLS functions in the nuclear uptake of RAG-2 following its reexpression in cycling cells.  相似文献   

6.
The effect of cytochrome b on the assembly of the subunits of complex III into the inner mitochondrial membrane has been studied in four mutants of yeast that lack a spectrally detectable cytochrome b and do not synthesize apocytochrome b. Quantitative analysis of intact mitochondria by immunoprecipitation or immunoblotting techniques with specific antisera revealed that the core proteins and the iron-sulfur protein were decreased 50% or more in the mitochondria from the mutants as compared to the wild type. Sonication of wild-type mitochondria did not result in any decrease in any of these proteins from the membrane; however, sonication of mitochondria from the four mutants resulted in a further decrease in the amount of these proteins suggesting that they are not as tightly bound to the mitochondrial membrane in the absence of cytochrome b. By contrast, the amounts of cytochrome c1 in the mitochondria, as determined both spectroscopically and immunologically, were not significantly affected by the absence of cytochrome b. In addition, no loss of cytochrome c1 was observed after sonication of the mitochondria suggesting that this protein is tightly bound to the membrane. These results suggest that the processing and/or assembly of these subunits of complex III into the mitochondrial membrane is affected by the absence of cytochrome b.  相似文献   

7.
The herpes simplex virus type 1 (HSV-1) immediate-early protein ICP27 is an essential regulatory protein that localizes to the nuclei of infected cells. The strong nuclear localization signal (NLS) of ICP27 was identified recently and shown to reside in the amino-terminal portion of the polypeptide from residues 110 to 137 (W.E. Mears, V. Lam, and S.A. Rice, J. Virol. 69:935-947, 1995). There are also two arginine-rich regions directly succeeding the NLS. The first of these arginine-rich sequences (residues 141 to 151), together with the NLS, has been shown by Mears et al. to form the nucleolar localization signal. Arginine-rich motifs are common in domains involved in nuclear localization and RNA binding. To analyze the role of the arginine-rich regions in ICP27, we constructed stably transformed cell lines containing ICP27 mutants with deletions of all or parts of the NLS and arginine-rich regions. We also constructed mutants in which these regions were replaced with heterologous NLSs or RNA-binding domains. Characterization of these mutants indicated that the arginine-rich regions were required but not sufficient for wild-type localization of ICP27. More importantly, the NLS and arginine-rich regions were also essential to the function of ICP27. Mutants lacking these sequences were defective in late gene expression during infection even when ICP27 was properly localized to the nucleus by substitution of the NLS from simian virus 40 large T antigen. Further, the defect in late gene expression could not be overcome by replacement with the highly basic RNA-binding domain of human immunodeficiency virus type 1 Tat. The deficiency in late gene expression was independent of ICP27's role in stimulating viral DNA replication. In addition, localization of the HSV-1 proteins ICP4, ICP0, and ICP8 was unaffected by ICP27 mutants in this region. These results suggest that the arginine-rich regions are required for efficient nuclear localization and for the regulatory activity of ICP27 involved in viral late gene expression.  相似文献   

8.
Short stretches of amino acids, termed nuclear localization sequences (NLS), can mediate assembly of proteins into the nucleus. Proteins from the yeast, Saccharomyces cerevisiae, have been identified that specifically recognize nuclear localization peptides (Silver, P., I. Sadler, and M. A. Osborne. 1989. J. Cell Biol. 109:983-989). We now further define the role of one of these NLS-binding proteins in nuclear protein localization. The NLS-binding protein of 70-kD molecular mass can be purified from salt extracts of nuclei. Antibodies raised against the NLS-binding protein localized the protein mainly to the nucleus with minor amounts in the cytoplasm. These antibodies also inhibited the association of NLS-protein conjugates with nuclei. Incubation of nuclei with proteases coupled to agarose removed NLS-binding protein activity. Extracts enriched for NLS-binding proteins can be added back to salt or protease-treated nuclei to restore NLS-binding activity. These results suggest that the first step of nuclear protein import can be reconstituted in vitro.  相似文献   

9.
10.
The cytomegalovirus (CMV) assembly protein precursor (pAP) interacts with the major capsid protein (MCP), and this interaction is required for nuclear translocation of the MCP, which otherwise remains in the cytoplasm of transfected cells (L. J. Wood et al., J. Virol. 71:179–190, 1997). We have interpreted this finding to indicate that the CMV MCP lacks its own nuclear localization signal (NLS) and utilizes the pAP as an NLS-bearing escort into the nucleus. The CMV pAP amino acid sequence has two clusters of basic residues (e.g., KRRRER [NLS1] and KARKRLK [NLS2], for simian CMV) that resemble the simian virus 40 large-T-antigen NLS (D. Kalderon et al., Cell 39:499–509, 1984) and one of these (NLS1) has a counterpart in the pAP homologs of other herpesviruses. The work described here establishes that NLS1 and NLS2 are mutually independent NLS that can act (i) in cis to translocate pAP and the related proteinase precursor (pNP1) into the nucleus and (ii) in trans to transport MCP into the nucleus. By using combinations of NLS mutants and carboxy-terminal deletion constructs, we demonstrated a self-interaction of pAP and cytoplasmic interactions of pAP with pNP1 and of pNP1 with itself. The relevance of these findings to early steps in capsid assembly, the mechanism of MCP nuclear transport, and the possible cytoplasmic formation of protocapsomeric substructures is discussed.  相似文献   

11.
M. Henry  C. Z. Borland  M. Bossie    P. A. Silver 《Genetics》1996,142(1):103-115
The NPL3 gene of the yeast Saccharomyces cerevisiae encodes a protein with similarity to heterogeneous nuclear ribonucleoproteins (hnRNPs). Npl3p has been implicated in many nuclear-related events including RNA export, protein import, and rRNA processing. Several temperature-sensitive alleles of NPL3 have been isolated. We now report the sequence of these alleles. For one allele, npl3-1, four complementation groups of suppressors have been isolated. The cognate genes for the two recessive mutants were cloned. One of these is the previously known RNA15, which, like NPL3, also encodes a protein with similarity to the vertebrate hnRNP A/B protein family. The other suppressor corresponds to a newly defined gene we term HRP1, which also encodes a protein with similarity to the hnRNP A/B proteins of vertebrates. Mutations in HRP1 suppress all npl3 temperature-sensitive alleles but do not bypass an npl3 null allele. We show that HRP1 is essential for cell growth and that the corresponding protein is located in the nucleus. The discovery of two hnRNP homologues that can partially suppress the function of Np13p, also an RNA binding protein, will be discussed in terms of the possible roles for Npl3p in RNA metabolism.  相似文献   

12.
Saez L  Derasmo M  Meyer P  Stieglitz J  Young MW 《Genetics》2011,188(3):591-600
Regulated nuclear entry of the Period (PER) and Timeless (TIM) proteins, two components of the Drosophila circadian clock, is essential for the generation and maintenance of circadian behavior. PER and TIM shift from the cytoplasm to the nucleus daily, and the length of time that PER and TIM reside in the cytoplasm is an important determinant of the period length of the circadian rhythm. Here we identify a TIM nuclear localization signal (NLS) that is required for appropriately timed nuclear accumulation of both TIM and PER. Transgenic flies with a mutated TIM NLS produced circadian rhythms with a period of ~30 hr. In pacemaker cells of the brain, PER and TIM proteins rise to abnormally high levels in the cytoplasm of tim(ΔNLS) mutants, but show substantially reduced nuclear accumulation. In cultured S2 cells, the mutant TIM(ΔNLS) protein significantly delays nuclear accumulation of both TIM and wild-type PER proteins. These studies confirm that TIM is required for the nuclear localization of PER and point to a key role for the TIM NLS in the regulated nuclear accumulation of both proteins.  相似文献   

13.
Garbitt RA  Bone KR  Parent LJ 《Journal of virology》2004,78(24):13534-13542
The Rous sarcoma virus Gag protein undergoes transient nuclear trafficking during virus assembly. Nuclear import is mediated by a nuclear targeting sequence within the MA domain. To gain insight into the role of nuclear transport in replication, we investigated whether addition of a "classical " nuclear localization signal (NLS) in Gag would affect virus assembly or infectivity. A bipartite NLS derived from nucleoplasmin was inserted into a region of the MA domain of Gag that is dispensable for budding and infectivity. Gag proteins bearing the nucleoplasmin NLS insertion displayed an assembly defect. Mutant virus particles (RC.V8.NLS) were not infectious, although they were indistinguishable from wild-type virions in Gag, Gag-Pol, Env, and genomic RNA incorporation and Gag protein processing. Unexpectedly, postinfection viral DNA synthesis was also normal, as similar amounts of two-long-terminal-repeat junction molecules were detected for RC.V8.NLS and wild type, suggesting that the replication block occurred after nuclear entry of proviral DNA. Phenotypically revertant viruses arose after continued passage in culture, and sequence analysis revealed that the nucleoplasmin NLS coding sequence was deleted from the gag gene. To determine whether the nuclear targeting activity of the nucleoplasmin sequence was responsible for the infectivity defect, two critical basic amino acids in the NLS were altered. This virus (RC.V8.KR/AA) had restored infectivity, and the MA.KR/AA protein showed reduced nuclear localization, comparable to the wild-type MA protein. These data demonstrate that addition of a second NLS, which might direct MA and/or Gag into the nucleus by an alternate import pathway, is not compatible with productive virus infection.  相似文献   

14.
The heterogeneous nuclear RNP (hnRNP) A1 protein is one of the major pre-mRNA/mRNA binding proteins in eukaryotic cells and one of the most abundant proteins in the nucleus. It is localized to the nucleoplasm and it also shuttles between the nucleus and the cytoplasm. The amino acid sequence of A1 contains two RNP motif RNA-binding domains (RBDs) at the amino terminus and a glycine-rich domain at the carboxyl terminus. This configuration, designated 2x RBD-Gly, is representative of perhaps the largest family of hnRNP proteins. Unlike most nuclear proteins characterized so far, A1 (and most 2x RBD-Gly proteins) does not contain a recognizable nuclear localization signal (NLS). We have found that a segment of ca. 40 amino acids near the carboxyl end of the protein (designated M9) is necessary and sufficient for nuclear localization; attaching this segment to the bacterial protein beta- galactosidase or to pyruvate kinase completely localized these otherwise cytoplasmic proteins to the nucleus. The RBDs and another RNA binding motif found in the glycine-rich domain, the RGG box, are not required for A1 nuclear localization. M9 is a novel type of nuclear localization domain as it does not contain sequences similar to classical basic-type NLS. Interestingly, sequences similar to M9 are found in other nuclear RNA-binding proteins including hnRNP A2.  相似文献   

15.
Nuclear and nucleolar targeting of human ribosomal protein S6.   总被引:11,自引:1,他引:10       下载免费PDF全文
Chimeric proteins were constructed to define the nuclear localization signals (NLSs) of human ribosomal protein S6. The complete cDNA sequence, different cDNA fragments and oligonucleotides of the human ribosomal proteins S6, respectively, were joined to the 5' end of the entire LacZ gene of Escherichia coli by using recombinant techniques. The hybrid genes were transfected into L cells, transiently expressed, and the intracellular location of the fusion proteins was determined by their beta-galactosidase activity. Three NLSs were identified in the C-terminal half of the S6 protein. Deletion mutagenesis demonstrated that a single NLS is sufficient for targeting the corresponding S6-beta-galactosidase chimera into the nucleus. Removal of all three putative NLSs completely blocked the nuclear import of the resulting S6-beta-galactosidase fusion protein, which instead became evenly distributed in the cytoplasm. Chimeras containing deletion mutants of S6 with at least one single NLS or unmodified S6 accumulated in the nucleolus. Analysis of several constructs reveals the existence of a specific domain that is essential but not sufficient for nucleolar accumulation of S6.  相似文献   

16.
17.
The NS1 protein of influenza A virus has been shown to enter and accumulate in the nuclei of virus-infected cells independently of any other influenza viral protein. Therefore, the NS1 protein contains within its polypeptide sequence the information that codes for its nuclear localization. To define the nuclear signal of the NS1 protein, a series of recombinant simian virus 40 vectors that express deletion mutants or fusion proteins was constructed. Analysis of the proteins expressed resulted in identification of two regions of the NS1 protein which affect its cellular location. Nuclear localization signal 1 (NLS1) contains the stretch of basic amino acids Asp-Arg-Leu-Arg-Arg (codons 34 to 38). This sequence is conserved in all NS1 proteins of influenza A viruses, as well as in that of influenza B viruses. NLS2 is defined within the region between amino acids 203 and 237. This domain is present in the NS1 proteins of most influenza A virus strains. NLS1 and NLS2 contain basic amino acids and are similar to previously defined nuclear signal sequences of other proteins.  相似文献   

18.
在人乳头瘤病毒(human papillomavirus,HPV)次要衣壳蛋白L2的N端和C端,有大量带正电荷的氨基酸残基组成核定位信号(nuclear localization signal,NLS)。细胞的核结构域10(nuclear domain 10,ND10)是细胞周期和病毒生活周期的重要调节者。L2定位到ND10的过程不仅会受到早幼粒细胞白血病蛋白(promyleocytic leukaemia protein,PML)、死亡结构域相关蛋白(deathdomain-associated protein,Daxx)、Sp100核抗原(Sp100 nuclear antigen)等细胞蛋白的影响,也会与L1在ND10发生相互作用。在HPV感染和组装过程中,L2的核定位信号有着重要作用。  相似文献   

19.
Retinitis pigmentosa (RP) is a genetically heterogeneous disease characterized by degeneration of the retina. A mutation in a new ceramide kinase (CERK) homologous gene, named CERK-like protein (CERKL), was found to cause autosomal recessive retinitis pigmentosa (RP26). Here, we show a point mutation of one of two putative nuclear localization signal (NLS) sequences inhibited the nuclear localization of the protein. Furthermore, the tetra-GFP-tagged NLS, which cannot passively enter the nucleus, was observed not only in the nucleus but also in the nucleolus. Our results provide the first evidence of the active nuclear import of CERKL and suggest that the identified NLS might be responsible for nucleolar retention of the protein. As recent studies have shown other RP-related proteins are localized in the nucleus or the nucleolus, our identification of NLS in CERKL suggests that CERKL likely plays important roles for retinal functions in the nucleus and the nucleolus.  相似文献   

20.
Prepro-parathyroid hormone-related protein (ppPTHrP) has two targeting signals, an N-terminal signal sequence and a nuclear localization signal (NLS). In fact, the protein is not only secreted from the cell but also found in the nucleus and/or nucleolus. In order to understand the function of the PTHrP signal sequence for the dual localization, the signal sequence cleavage of a series of ppPTHrP deletion mutants fused to Escherichia coli leader peptidase was analysed in vitro and in several cell lines. Efficiency of the PTHrP signal sequence cleavage was intrinsically low in the in vitro reconstitution system. In cultured cells, cleavage efficiency of the PTHrP signal sequence varied significantly, being lowest in COS-1 cells, but rising in HeLa, HEK293 and CV-1 cells. However, virtually complete signal sequence cleavage was observed in CHO cells. In addition, the NLS of PTHrP had a negative effect on its own signal sequence cleavage, which could be enhanced by deletion of the spacer sequence between the signal sequence and the NLS. There was a roughly inverse relationship between the signal sequence cleavage and the nuclear localization of PTHrP. Thus, the final destination of PTHrP could be regulated at the ER membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号