首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Folate cofactors in most cells contain polyglutamate side chains, which since the late 1940s have been assumed to be linked via their gamma-COOH groups. We report here an investigation of the structure of the polyglutamate chain attached to the folates of Escherichia coli. Folates were extracted from E. coli grown with [7-14C] p-aminobenzoate and cleaved to p-aminobenzoyl polyglutamates of varying chain lengths (pAB(Glu)n) by the method of Foo et al. (Foo, S. K., Cichowicz, D. J., and Shane, B. (1980) Anal. Biochem. 107, 109-115). The pAB(Glu)n derived from E. coli did not co-chromatograph with chemically synthesized pAB(gamma-Glu)n-Glu on several high performance liquid chromatography (HPLC) systems, except for the triglutamate which did elute with pAB(gamma-Glu)2-Glu. E. coli-derived pAB(Glu)3-8 were purified by HPLC on C18 columns eluted with acetonitrile/trifluoroacetic acid, and the structures were determined through mass spectrometry, chiral amino acid analysis, and peptidase digestion experiments. Molecular weight determinations on the methyl ester derivatives of E. coli-derived pAB(Glu)n by liquid secondary ion mass spectrometry and sequence analysis using collision-activated dissociation on a tandem mass spectrometer confirmed the structures as pAB(Glu)3-8. Chiral HPLC of hydrolyzed and dansylated E. coli-derived materials, on a beta-cyclodextrin column, identified the glutamate as the L-enantiomer. pAB(Glu)n were digested with carboxypeptidase Y, which specifically cleaved glutamates linked at their alpha-carboxyls; E. coli-derived pAB(Glu)4-8 (but not synthetic pAB(gamma-Glu1-6-Glu) were sequentially digested to pAB(gamma-Glu)2-Glu. Thus, in E. coli folylpolyglutamates, glutamate residues 4-8 were each linked to the polyglutamate chain at the alpha-carboxyl of the preceding glutamate.  相似文献   

2.
Summary The purification and properties of folylpolyglutamate synthetase fromCorynebacterium sp, and some properties of partially purified enzyme fromLactobacillus casei, Streptococcus faecalis, Neurospora crassa, pig liver, and Chinese hamster ovary cells, are described.TheCorynebacterium enzyme catalyzes a MgATP-dependent addition of glutamate to a variety of reduced pteroate and pteroylmono-, di-, and triglutamate substrates, with the concomitant production of MgADP and phosphate. Although glutamate moieties are added in a sequential fashion, the kinetic mechanism, which is Ordered Ter Ter, precludes the sequential addition of glutamate moieties to enzyme-bound folate. It is suggested that catalysis precedes via the formation of a pteroyl--glutamyl phosphate intermediate.Thein vivo distribution of folylpolyglutamates in bacteria and mammalian cells, which differ from source to source, appear to be a reflection of the ability of folylpolyglutamates to act as substrates for folylpolyglutamate synthetases from different sources.Only one enzyme appears to be involved in the conversion of pteroylmonoglutamates to polyglutamate forms in both bacteria and mammalian cells. Bacterial folylpolyglutamate synthetases use a variety of pteroylmonoglutamates as their preferred monoglutamate substrate, but use 5,10-methylenetetrahydropteroylpolyglutamates as their preferred, and sometimes only, polyglutamate substrate. Mono- and polyglutamyl forms of tetrahydrofolate are the preferred substrates of mammalian folylpolyglutamate synthetases.  相似文献   

3.
The regulation of folate and folate analogue metabolism was studied in vitro by using purified hog liver folylpolyglutamate synthetase as a model system and in vivo in cultured mammalian cells. The types of folylpolyglutamates that accumulate in vivo in hog liver, and changes in cellular folate levels and folylpolyglutamate distributions caused by physiological and nutritional factors such as changes in growth rates and methionine, folate, and vitamin B12 status, can be mimicked in vitro by using purified enzyme. Folylpolyglutamate distributions can be explained solely in terms of the substrate specificity of folylpolyglutamate synthetase and can be modeled by using kinetic parameters obtained with purified enzyme. Low levels of folylpolyglutamate synthetase activity are normally required for the cellular metabolism of folates to retainable polyglutamate forms, and consequently folate retention and concentration, while higher levels of activity are required for the synthesis of the long chain length derivatives that are found in mammalian tissues. The synthesis of very long chain derivatives, which requires tetrahydrofolate polyglutamates as substrates, is a very slow process in vivo. The slow metabolism of 5-methyltetrahydrofolate to retainable polyglutamate forms causes the decreased tissue retention of folate in B12 deficiency. Although cellular folylpolyglutamate distributions change in response to nutritional and physiological modulations, it is unlikely that these changes play a regulatory role in one-carbon metabolism as folate distributions respond only slowly. 4-Aminofolates are metabolized to retainable forms at a slow rate compared to folates. Although folate accumulation by cells is not very responsive to changes in folylpolyglutamate synthetase levels and cellular glutamate concentrations, cellular accumulation of anti-folate agents would be highly responsive to any factor that changes the expression of folylpolyglutamate synthetase activity.  相似文献   

4.
Lactobacillus casei and Streptococcus faecalis accumulated labeled folic acid and metabolized this compound to poly-gamma-glutamates of chain lengths of up to 11 and 5, respectively. Octa- and nonaglutamates predominated in L. casei, and tetraglutamates predominated in S. faecalis. The most effective monoglutamate substrates for the L. casei and S. faecalis folylpoly-gamma-glutamate (folylpolyglutamate) synthetases were methylene- and formyltetrahydrofolate, respectively. Methylenetetrahydropteroylpoly-gamma-glutamates were the preferred poly-gamma-glutamate substrates for both enzymes and, in each case, the highest activity was observed with the diglutamate substrate. The final distribution of folylpolyglutamates in these bacteria appeared to reflect the ability of folates with various glutamate chain lengths to act as substrates for the bacterial folylpolyglutamate synthetases. The proportions of individual folylpolyglutamates were markedly affected by culturing the bacteria in medium containing adenine, whereas thymine was without effect. Adenine did not affect the level of folylpolyglutamate synthetase in either organism but caused a large increase in the proportion of intracellular folates containing one-carbon units at the oxidation level of formate, folates which are substrates for enzymes involved in purine biosynthesis. The folates with shorter glutamate chain lengths in bacteria cultured in the presence of adenine resulted from primary regulation of the de novo purine biosynthetic pathway, regulation which caused an accumulation of formyltetrahydropteroyl-poly-gamma-glutamates (folate derivatives that are ineffective substrates for folylpolyglutamate synthetases), and did not result from regulation of folylpolyglutamate synthetase per se.  相似文献   

5.
The relative concentrations of folylpolyglutamates of differing chain length in rat liver and the uptake of exogenous [3H]folic acid (20 microCi, 20 microgram) into liver folylpolyglutamates were examined in rats maintained on (a) standard and folate-supplemented standard diets and (b) semi-defined folate-sufficient and folate-deficient diets. Folylpolyglutamates extracted from liver were cleaved to p-aminobenzoylpolyglutamates which were separated by ion-exchange chromatography. The relative concentrations and ultimate radiolabeling of longer-chain folylpolyglutamates (six, seven and eight glutamate residues) were greatest in the livers of folate-deficient rats, whereas the intermediate-chain folylpolyglutamates (three, four and five glutamate residues) were the greatest portion of total liver folates of folate-supplemented rats. Thus, the length of the polyglutamate chain added to liver folates is inversely related to the total concentration of liver folates. These data suggest that folylpolyglutamate biosynthesis in the liver may be controlled by the liver folate concentrations. In folate insufficiency such a control mechanism would serve to enhance the affinity of folates for folate-dependent enzymes and to conserve the liver folate concentration.  相似文献   

6.
Summary The folylpolyglutamate hydrolase activities of mouse liver, kidney, muscle and brain were examined by incorporation of methylenetetrahydrofolate polyglutamate reaction products into a stable ternary complex with tritiated fluorodeoxyuridylate and L. casei thymidylate synthetase. Complexes were separated electrophoretically on the basis of charge associated with the polyglutamyl moieties to determine distribution of chain lengths throughout the time course of the reaction. Tissue folylpolyglutamate hydrolase activities were allowed to utilize endogenous folylpolyglutamate as substrates by incubating crude tissue extracts at pH 7.4 and pH 4.5. Kidney and muscle contained relatively reactive hydrolases which were capable of generating intermediates of essentially all chain lengths from folylpentaglutamate, the predominant endogenous species. The relatively low activity in brain also gave rise to all possible intermediates. Liver contained a high concentration of methylenetetrahydrofolate but little hydrolase activity. The activity present in liver gave rise to essentially no intermediates but yielded only the monoglutamate form of the cofactor. When purified lysosomal preparations from liver and kidney were allowed to react with synthetic folylpolyglutamates, the same specificity with regard to reaction products was observed as with endogenous substrates.  相似文献   

7.
The folylpolyglutamate synthetase-dihydrofolate synthetase gene (folC) in Escherichia coli was deleted from the bacterial chromosome and replaced by a selectable Kmr marker. The deletion strain required a complementing gene expressing folylpolyglutamate synthetase encoded on a plasmid for viability, indicating that folC is an essential gene in E. coli. The complementing folC gene was cloned into the vector pPM103 (pSC101, temperature sensitive for replication), which segregated spontaneously at 42 degrees C in the absence of selection. This complementing plasmid was replaced in the folC deletion strain by compatible pUC plasmids containing folC genes with mutations generated in vitro, producing strains which express only mutant folylpolyglutamate synthetase. Mutant folC genes expressing insufficient enzyme activity could not complement the chromosomal deletion, resulting in retention of the pPM103 plasmid. Some mutant genes expressing low levels of enzyme activity replaced the complementing plasmid, but the strains produced were auxotrophic for products of folate-dependent pathways. The folylpolyglutamate synthetase gene from Lactobacillus casei, which may lack dihydrofolate synthetase activity, replaced the complementing plasmid, but the strain was auxotrophic for all folate end products.  相似文献   

8.
9.
Most mammalian cells receive exogenous folate from the bloodstream in the form of 5-methyltetrahydropteroylmonoglutamate (CH3-H4PteGlu1). Because this folate derivative is a very poor substrate for folylpolyglutamate synthetase, the enzyme that adds glutamyl residues to intracellular folates, CH3-H4PteGlu1 must first be converted to tetrahydropteroylmonoglutamate (H4PteGlu1), 10-formyltetrahydropteroylmonoglutamate (CHO-H4PteGlu1), or dihydrofolate (H2folate), which are excellent substrates for folylpolyglutamate synthetase. Polyglutamylation is required both for retention of intracellular folates and for efficacy of folates as substrates for most folate-dependent enzymes. Two enzymes are known that will react with CH3-H4PteGlu1 in vitro, methylenetetrahydrofolate reductase and methyltetrahydrofolate-homocysteine methyltransferase (cobalamin-dependent methionine synthase). These studies were performed to assess the possibility that methylenetetrahydrofolate reductase might catalyze the conversion of CH3-H4PteGlu1 to CH2-H4PteGlu1. CH2-H4PteGlu1 is readily converted to CHO-H4PteGlu1 by the action of methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase, and these enzyme activities show very little preference for folypolyglutamate substrates as compared with folylmonoglutamates. We conclude from in vitro studies of the enzyme that methylenetetrahydrofolate reductase cannot convert CH3-H4PteGlu1 to CH2-H4PteGlu1 under physiological conditions and that uptake and retention of folate will be dependent on methionine synthase activity.  相似文献   

10.
Summary Derivatives of folic acid occur in nature predominantly as poly (-glutamyl) derivatives containing 2–8 glutamate residues. The data regarding the function of these derivatives, and their biosynthesis by eucaryotic and procaryotic folylpolyglutamate synthetases, is reviewed.The most universal functions of folylpolyglutamates appear to be (a) as the actual cofactors in vivo for folate dependent enzymes, (b) as inhibitors of folate dependent enzymes for which they are not substrates, and (c) to increase retention of folates after they are transported into cells as monoglutamates. Folylpolyglutamates also have numerous specialized functions in specific organisms, e.g. as structural components of some coliphage, and as allosteric regulators in Neurospora crassa.A single enzyme appears responsible for synthesis of all polyglutamate derivatives, regardless of length. With the recent introduction of sensitive assays this folylpolyglutamate synthetase has begun to be characterized. Although procaryotic and eucaryotic synthetases have many dissimilar properties, both types catalyze the ATP-dependent addition of L-glutamate to the -carboxyl of the glutamate present in the folate. Both types also require a monovalent cation and a relatively high pH. The most significant differences between the two types are in their folate substrate specificity and the product lengths derived from various folates.The mechanism of the bacterial enzyme has been studied and an acyl phosphate intermediate is indicated.  相似文献   

11.
One-carbon metabolism is essential to provide activated one-carbon units in the biosynthesis of methionine, purines, and thymidylate. The major forms of folates in vivo are polyglutamylated derivatives. In organisms that synthesize folate coenzymes de novo, the addition of the glutamyl side chains is achieved by the action of two enzymes, dihydrofolate synthetase and folylpolyglutamate synthetase. We report here the characterization and molecular analysis of the two glutamate-adding enzymes of Saccharomyces cerevisiae. We show that dihydrofolate synthetase catalyzing the binding of the first glutamyl side chain to dihydropteroate yielding dihydrofolate is encoded by the YMR113w gene that we propose to rename FOL3. Mutant cells bearing a fol3 mutation require folinic acid for growth and have no dihydrofolate synthetase activity. We show also that folylpolyglutamate synthetase, which catalyzes the extension of the glutamate chains of the folate coenzymes, is encoded by the MET7 gene. Folylpolyglutamate synthetase activity is required for methionine synthesis and for maintenance of mitochondrial DNA. We have tested whether two folylpolyglutamate synthetases could be encoded by the MET7 gene, by the use of alternative initiation codons. Our results show that the loss of mitochondrial functions in met7 mutant cells is not because of the absence of a mitochondrial folylpolyglutamate synthetase.  相似文献   

12.
The effects of 4-fluoroglutamate on the reaction catalyzed by partially purified rat liver folylpolyglutamate synthetase have been investigated. DL-threo-4-Fluoroglutamate was an effective, concentration-dependent inhibitor of polyglutamylation of both tetrahydrofolate and methotrexate, while the erythro isomer was weakly inhibitory. 4-Fluoroglutamate acted as an alternate substrate; the DL-threo isomer was incorporated only slightly less effectively than L-glutamate, while the erythro isomer was poorly incorporated. The resulting product, a pteroylglutamyl-gamma-(4-fluoro)glutamate, was a very poor substrate for further glutamylation. Thus, when tetrahydrofolate and 4-fluoroglutamate were substrates, the sole Zn/HCl cleavage product co-chromatographed on high performance liquid chromatography with chemically synthesized p-aminobenzoylglutamyl-gamma-(4-fluoro)glutamate. When [3H]methotrexate (4-NH2-10-CH3PteGlu) and 4-fluoroglutamate were the substrates, one product was obtained which co-chromatographed on high performance liquid chromatography with chemically synthesized 4-NH2-CH3PteGlu-gamma-(4-fluoro)glutamate. Further evidence that the product from [3H]methotrexate was a dipeptide came from gamma-glutamyl hydrolase digestion experiments and quantitative amino acid analysis. The appearance of trace amounts of a product having properties consistent with the addition of a second 4-fluoroglutamate occurred only under forcing conditions. The chemically and enzymatically synthesized fluoroglutamate-containing products were at least 15 times poorer than the analogous diglutamyl compound as substrates for rat liver folylpolyglutamate synthetase. These results are consistent with inhibition of polyglutamate synthesis by 4-fluoroglutamate through a "leaky" chain termination mechanism.  相似文献   

13.
Sheng Y  Khanam N  Tsaksis Y  Shi XM  Lu QS  Bognar AL 《Biochemistry》2008,47(8):2388-2396
The folylpolyglutamate synthetase (FPGS) enzyme of Escherichia coli differs from that of Lactobacillus casei in having dihydrofolate synthetase activity, which catalyzes the production of dihydrofolate from dihydropteroate. The present study undertook mutagenesis to identify structural elements that are directly responsible for the functional differences between the two enzymes. The amino terminal domain (residues 1-287) of the E. coli FPGS was found to bind tetrahydrofolate and dihydropteroate with the same affinity as the intact enzyme. The domain-swap chimera proteins between the E. coli and the L. casei enzymes possess both folate or pteroate binding properties and enzymatic activities of their amino terminal portion, suggesting that the N-terminal domain determines the folate substrate specificity. Recent structural studies have identified two unique folate binding sites, the omega loop in L. casei FPGS and the dihydropteroate binding loop in the E. coli enzyme. Mutants with swapped omega loops retained the activities and folate or pteroate binding properties of the rest of the enzyme. Mutating L. casei FPGS to contain an E. coli FPGS dihydropteroate binding loop did not alter its substrate specificity to using dihydropteroate as a substrate. The mutant D154A, a residue specific for the dihydropteroate binding site in E. coli FPGS, and D151A, the corresponding mutant in the L. casei enzyme, were both defective in using tetrahydrofolate as their substrate, suggesting that the binding site corresponding to the E. coli pteroate binding site is also the tetrahydrofolate binding site for both enzymes. Tetrahydrofolate diglutamate was a slightly less effective substrate than the monoglutamate with the wild-type enzyme but was a 40-fold more effective substrate with the D151A mutant. This suggests that the 5,10-methylenetetrahydrofolate binding site identified in the L. casei ternary structure may bind diglutamate and polyglutamate folate derivatives.  相似文献   

14.
A variety of folate analogues were synthesized to explore the specificity of the folate binding site of hog liver folylpolyglutamate synthetase and the requirements for catalysis. Modifications of the internal and terminal glutamate moieties of folate cause large drops in on rates and/or affinity for the protein. The only exceptions are glutamine, homocysteate, and ornithine analogues, indicating a less stringent specificity around the delta-carbon of glutamate. It is proposed that initial folate binding to the enzyme involves low-affinity interactions at a pterin and a glutamate site and that the first glutamate bound is the internal residue adjacent to the benzoyl group. Processive movement of the polyglutamate chain through the glutamate site and a possible conformational change in the protein when the terminal residue is bound would result in tight binding and would position the gamma-carboxyl of the terminal glutamate in the correct position for catalysis. Steric limitations imposed on the internal glutamate residues that loop out and additional steric constraints imposed by binding of different pterin moieties would be expected to effect slight conformational changes in the protein and/or the terminal glutamate and would explain the decrease in on rate and catalytic rate with increased polyglutamate chain length, and the differential effect of one-carbon substitution on the catalytic rate with polyglutamate derivatives. The 4-amino substitution of folate increases the on rate for monoglutamate derivatives but severely impairs catalysis with diglutamate derivatives. Pteroylornithine derivatives are the first potent and specific inhibitors of folylpolyglutamate synthetase to be identified and may act as analogues of reaction intermediates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
An assay for folylpolyglutamate synthetase activity in extracts of uninfected and bacteriophage T4D-infected Escherichia coli B has been developed. T4D infection induced the formation of a new synthetase raising the total synthetase activity three-fold. Extracts obtained after infection with T4 gene 51, 27 or 28 amber mutants showed increased synthetase activities while extracts obtained from cells infected with a T4D gene 29 amber mutant did not show any increase in synthetase activity. The phage-induced synthetase was found to copurify with the gene 29 product and a 100-fold purified synthetase of molecular size of 74,000 daltons has been obtained. The purified synthetase has a folate substrate specificity different from the host synthetase since it added glutamate residues to dihydrofolate as well as to the usual tetrahydrofolate substrate.  相似文献   

16.
The folC gene of Escherichia coli, cloned in a pUC19 vector, was mutagenized by progressive deletions from both the 5' and the 3' ends and by TAB linker insertion. A number of 5'-deleted genes, which had the initiator ATG codon removed, produced a truncated gene product, in reduced amounts, from a secondary initiation site. The most likely position of this site at a GTG codon located 35 codons downstream of the normal start site. This product could complement the folC mutation in E. coli strain SF4 as well as a strain deleted in the folC gene. The specific activity of extracts of the mutant enzyme are 4-16% that of the wild type enzyme for the folylpolyglutamate synthetase activity and 6-19% for the dihydrofolate synthetase activity. The relative amount of protein expressed by the mutant, compared to the wild type, in maxicells was comparable to the relative specific activity, suggesting that the kcat of the mutant enzyme is similar to that of the wild type. Mutants with up to 14 amino acids deleted from the carboxy terminal could still complement the folC deletion mutant. Seven out of ten linker insertions dispersed through the coding region of the gene showed complementation of the folC mutation in strain SF4 but none of these insertion mutants were able to complement the strain containing a deleted folC gene. None of the carboxy terminal or linker insertion mutants had a specific activity greater than 0.5% that of the wild type enzyme. The dihydrofolate synthetase and folylpolyglutamate synthetase activities behaved similarly in all mutants, both retaining a large fraction of the wild type activity in the amino terminal deletions and both being very low in the carboxy terminal deletions and linker insertion mutants. These studies are consistent with a single catalytic site for the two activities catalyzed by this enzyme.  相似文献   

17.
The Escherichia coli gene for folylpolyglutamate synthetase-dihydrofolate synthetase was localized to plasmids pLC22-45, 24-31, and 28-44 of the Clarke-Carbon E. coli colony bank (Clarke, L., and Carbon, J. (1976) Cell 9, 91-99) by screening the bank by replica mating with an E. coli folC mutant. The folC gene was subcloned from pLC22-45 and inserted into a high copy number plasmid containing the lambda replication control region under the control of the temperature-sensitive cI857 repressor and into a high expression plasmid containing the lambda PL promoter and the cI857 repressor. The folC structural gene was located on a 1.52-kilobase PvuI fragment, sufficient to code for a protein of maximum Mr 55,000. E. coli transformants containing the recombinant plasmids, when induced by culturing at 42 degrees C, had folylpolyglutamate synthetase and dihydrofolate synthetase levels that were 100- to 400-fold higher than in wild type strains and which represented up to 4% of the soluble cell protein. The E. coli folylpolyglutamate synthetase-dihydrofolate synthetase has been purified to homogeneity from the transformants. Both activities are catalyzed by a single protein of Mr 47,000. Some kinetic properties of the enzymes and a new spectrophotometric method for assaying dihydrofolate synthetase activity are described.  相似文献   

18.
We have cloned the Pseudomonas aeruginosa folC gene coding for folylpolyglutamate synthetase-dihydrofolate synthetase, which was located between the trpF and purF loci, and determined the nucleotide sequence of the folC gene and its flanking region. The deduced amino acid sequence of P. aeruginosa FolC was highly homologous to that of Escherichia coli FolC. The cloned gene complemented E. coli folC mutations and was found to encode both folylpolyglutamate synthetase and dihydrofolate synthetase activities. The gene organization around the folC gene in P. aeruginosa was completely conserved with that in E. coli; the accD gene was located upstream of the folC gene, and dedD, cvpA and purF genes followed the folC gene in this order. The gene arrangement and the result of the promoter activity assay suggested that the P. aeruginosa accD and folC genes were co-transcribed.  相似文献   

19.
In some bacteria, such as Escherichia coli, the addition of L-glutamate to dihydropteroate (dihydrofolate synthetase activity) and the subsequent additions of L-glutamate to tetrahydrofolate (folylpolyglutamate synthetase (FPGS) activity) are catalyzed by the same enzyme, FolC. The crystal structure of E. coli FolC is described in this paper. It showed strong similarities to that of the FPGS enzyme of Lactobacillus casei within the ATP binding site and the catalytic site, as do all other members of the Mur synthethase superfamily. FolC structure revealed an unexpected dihydropteroate binding site very different from the folate site identified previously in the FPGS structure. The relevance of this site is exemplified by the presence of phosphorylated dihydropteroate, a reaction intermediate in the DHFS reaction. L. casei FPGS is considered a relevant model for human FPGS. As such, the presence of a folate binding site in E. coli FolC, which is different from the one seen in FPGS enzymes, provides avenues for the design of specific inhibitors of this enzyme in antimicrobial therapy.  相似文献   

20.
The formation of folylpolyglutamate derivatives by germinatingpea seeds (Pisum sativum L. cv Homesteader) was examined invivo and in vitro. Differential microbiological assay of cotyledonextracts showed that total folate concentrations increased from163 ng folate equivalents per g fresh weight at day 1 to 680ng per g fresh weight at day 3 of germination. Over a 7 daygermination period, folylpolyglutamate derivatives accountedfor 46–73% of the total cotyledonary folate pool. Theconcentration of these polyglutamate forms of folate increased6.5 fold during the first four days of germination and thenremained relatively constant. Dialyzed extracts of 1–4 day old cotyledons had abilityto incorporate [3H]glutamate and [14C]tetrahydrofolate intofolylpolyglutamates. This activity was mainly associated withprotein precipitating at 35–45% of saturation with ammoniumsulphate. The folylpolyglutamate synthetase of pea cotyledonshad requirements for ATP and the monoglutamate of tetrahydrofolate.The latter folate was a more effective substrate than 5,10-methylenetetrahydrofolatebut the diglutamate of unsubstituted tetrahydrofolate was notutilized. Ion exchange chromatography of the reaction productssuggested that [3H]glutamate and [14C]tetrahydrofolate wereincorporated into di-, and tetraglutamates of tetrahydrofolate.Folates of longer glutamyl chain lengths were only detectedwhen the synthetase reaction proceeded for 12 h or longer. (Received August 23, 1985; Accepted January 22, 1986)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号