首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyanobacteria, the progenitors of plant and algal chloroplasts, enabled aerobic life on earth by introducing oxygenic photosynthesis. In most cyanobacteria, the photosynthetic membranes are arranged in multiple, seemingly disconnected, concentric shells. In such an arrangement, it is unclear how intracellular trafficking proceeds and how different layers of the photosynthetic membranes communicate with each other to maintain photosynthetic homeostasis. Using electron microscope tomography, we show that the photosynthetic membranes of two distantly related cyanobacterial species contain multiple perforations. These perforations, which are filled with particles of different sizes including ribosomes, glycogen granules and lipid bodies, allow for traffic throughout the cell. In addition, different layers of the photosynthetic membranes are joined together by internal bridges formed by branching and fusion of the membranes. The result is a highly connected network, similar to that of higher-plant chloroplasts, allowing water-soluble and lipid-soluble molecules to diffuse through the entire membrane network. Notably, we observed intracellular membrane-bounded vesicles, which were frequently fused to the photosynthetic membranes and may play a role in transport to these membranes.  相似文献   

2.
The effects of osmotic stress due to sorbitol on the photosynthetic machinery were investigated in the cyanobacterium Synechococcus R-2. Incubation of cells in 1.0 M sorbitol inactivated photosystems I and II and decreased the intracellular solute space by 50%. These effects of sorbitol were reversible: Photosynthetic activity and cytoplasmic volume returned to the original values after removal of the osmotic stress. A blocker of water channels prevented the osmotic-stress-induced inactivation and shrinkage of the intracellular space. It also prevented the recovery of photosynthetic activity and cytoplasmic volume when applied just before release from osmotic stress. Inhibition of protein synthesis by lincomycin had no significant effects on the inactivation and recovery processes, an observation that suggests that protein synthesis was not involved in these processes. Our results suggest that osmotic stress decreased the amount of water in the cytoplasm via the efflux of water through water channels (aquaporins), with resultant increases in intracellular concentrations of ions and a decrease in photosynthetic activity.  相似文献   

3.
A cationic azolato-bridged dinuclear platinum(II) complex, [{cis-Pt(NH3)2}2(μ-OH)(μ-methyl-pyrazolate)]2+ (4M-PzPt), was developed to overcome resistance to cisplatin (CDDP). This study aimed to assess the cytotoxicity of 4M-PzPt against a CDDP-resistant cell line, H4-II-E/CDDP, and compare the intracellular accumulation of CDDP and 4M-PzPt. H4-II-E and H4-II-E/CDDP displayed similar sensitivity to 4M-PzPt; however, the sensitivity of H4-II-E/CDDP to CDDP was approximately 19-fold lower than that of H4-II-E. The difference in the sensitivity to both platinum complexes corresponded with the difference in the amount of intracellular platinum accumulation after exposure to CDDP or 4M-PzPt in both cell lines. In H4-II-E, HepG2, and HuH-7 cells, the intracellular uptake of CDDP and 4M-PzPt occurred via active transport and passive transport. Results of co-exposure with the transport inhibitors ouabain, tetraethylammonium, and cimetidine indicated that the intracellular uptake of CDDP was dependent on Na+/K+-ATPase and that of 4M-PzPt was dependent on organic cation transporters (OCTs), probably OCT1. This study suggested that 4M-PzPt could inhibit the growth of a CDDP-resistant tumor via an intracellular uptake mechanism different from that of CDDP.  相似文献   

4.
Rehabilitation of mine tailings dams is often a challenge due to a lack of nutrients and a poor humus reservoir prevailing in tailings soils. This is especially true for establishing longer lived species such as trees. For these reasons the effects of different soil ameliorants (woodchips compost, vermicompost, mature sewage sludge), added to the root system of Karee (Searsia lancea) saplings were tested in pot trials. Those pots were filled with platinum and gold tailings substrate as well as red clay soil, respectively. For three months plants remained in a greenhouse and were subsequently moved to a test field outside. Throughout the test period regular chl a fluorescence measurements were taken and subjected to JIP-test quantifying changes in photosynthetic vitality status. Additionally, growth measurements and one-off leaf analysis were carried out. Test plants growing on mine tailings experienced an up to 35% higher average photosynthetic vitality (PI(ABS)) and improved nutrient supply, when treated with mature sewage sludge. Consequently, sewage sludge treated plants showed a higher biomass build-up rate and an up to 55% higher diameter growth, compared to control. In summary the experiments present a low cost alternative for reforestation enterprises on platinum and gold tailings dams in South Africa.  相似文献   

5.
The Langmuir-Blodgett (LB) film technique has been successfully applied to the construction of stable and photo-active films of chromatophore membranes and isolated reaction centers from two species of photosynthetic bacteria, Rhodobacter sphaeroides and Rhodopseudomonas viridis. LB films of these preparations were characterized at the air/water interface through compression isotherms and film stabilities. Films deposited on glass slides were analyzed by spectrophotometric and redox potentiometric techniques. The results obtained indicate that the in vivo properties of the photosynthetic apparatus in the deposited films are essentially unchanged. Furthermore, the pigments and redox cofactors in the films are highly oriented and offer a unique opportunity for structural and functional studies of the kind described in the accompanying paper (Biochim. Biophys. Acta 1057 (1991) 258-272).  相似文献   

6.
With an account of the literature data that platinum drugs react with many cellular targets, including ATP and proteins, the authors suggested that disturbance of the function of energy-dependent ABC-transporters (markers of multidrug resistance, MDR) under the effect of platinum drugs could be a cause of increased efficacy of MDR agents (agents, MDR to which is developed by the classical mechanism) when used in combination with platinum drugs even in the treatment of multidrug resistant lung cancer. The cisplatin and carboplatin effect on accumulation of MDR doxorubicin in cells of non-small cell cancer was studied by flow cytometry with the use of biopsy specimens. The MDR phenotype of the tumors was determined by a change in doxorubicin intracellular accumulation under the action of the ABC-transporter(s)' inhibitors: verapamil and genistein (specific inhibitors of Pgp and MRP respectively) and sodium azide (an inhibitor of all energy-dependent ABC-transporters). The MDR phenotypes, i.e. Pgp-MRP+ or Pgp+MRP+, were detected in all the tumors investigated. Two types of changes in doxorubicin intracellular accumulation under the action of the inhibitors and the platinum drugs were shown: (a) an increase in doxorubicin cytoplasmic accumulation and (b) a change in subcellular distribution of the anthracycline (increased accumulation of doxorubicin in the cell nucleus and its higher binding to DNA). Cisplatin and carboplatin had an inhibitory effect on ABC-transporter(s) in all the tumors investigated but the effect of carboplatin was less pronounced. It was concluded that cisplatin and carboplatin stimulation of doxorubicin intracellular accumulation, as well as a change in subcellular distribution of the anthracycline under the action of the platinum drugs (increased doxorubicin accumulation in the cell nucleus) in multidrug resistant lung tumors could be at least partly explained by inhibition of the MDR transporter(s)' function. The results could provide a basis for the use of the sequential combination cisplatin (or carboplatin)-->doxorubicin in the treatment of multidrug resistant lung cancer.  相似文献   

7.
The fluorescent lanthanide, terbium has been employed to study the effect of a series of platinum and anthracycline drugs and an anthrapyrazole (oxanthrazole) on terbium binding to mouse thymocytes. It was observed that terbium fluorescence intensity was markedly decreased by two platinum drugs (cis-dichlorodiammine platinum(II) (cis-DDP) and cis-dichloro-trans-dihydroxybis(isopropylammine) platinum(IV) (CHIP)) and an anthrapyrazole (oxanthrazole), but that the lipophylic derivative cis-diammine-1,1-cyclobutanedicarboxylate platinum(II) had a small but significant effect and the anthracyclines (at low concentrations) had no effect. The calcium channel blocker, verapamil also had no effect. The effect of cis-DDP was markedly dependent on ionic strength in contradistinction to CHIP. The decreases in phosphorescence decay produced by cis-DDP also showed a marked dependence on ionic strength. It is proposed that cis-DDP interacts with the membrane primarily by a charge effect, but that CHIP may produce a conformational change in the membrane. These data are interesting, since the lipophylic platinum drugs (CHIP and CBDCA) also increased significantly the amount of bound intracellular calcium, but all the drugs decreased mitogen-stimulated calcium uptake into mouse thymocytes.  相似文献   

8.
Resistance of hormone-dependent mammary carcinoma to cisplatin as a potent antitumor agent led to the synthesis of other estrophilic platinum complexes. In this investigation, the effects of a newly synthesized estrogen-receptor affine platinum complex on the mouse uterus were studied using light and electron-microscopy. The results have been compared with Tamoxifen, cisplatin and the estrophilic ligand. Both estrophilic ligand and estrophilic platinum complex produced strong estrogenic effects as well as features characteristic of the uterine epithelial cell in the luteal phase of the cycle, corresponding to a massive stimulation of the surface and glandular epithelial cells. The uteri showed large glandular lumina. An increase in the number of multivesicular and residual bodies, accompanied by a proliferation of eosinophilic granulocytes, was also seen. The appearance of inter- and intracellular lumina and the activation of smooth muscle cells represent further characteristic effects of the estrophilic ligand and estrophilic platinum complex. Anticipated increases in the incidence of cell death and/or deviant cyto-nuclear architecture in the uteri treated with cisplatin or platinum complex, were not observed.  相似文献   

9.
Arthrospira (Spirulina) platensis (A. platensis) is a model organism for investigation of adaptation of photosynthetic organisms to extreme environmental conditions: the cell functions in this cyanobacterium are optimized to high pH and high concentration (150–250 mM) of Na+. However, the mechanism of the possible fine-tuning of the photosynthetic functions to these extreme conditions and/or the regulation of the cellular environment to optimize the photosynthetic functions is poorly understood. In this work we investigated the effect of Na-ions on different photosynthetic activities: linear electron transport reactions (measured by means of polarography and spectrophotometry), the activity of photosystem II (PS II) (thermoluminescence and chlorophyll a fluorescence induction), and redox turnover of the cytochrome b 6 f complex (flash photolysis); and measured the changes of the intracellular pH (9-aminoacridine fluorescence). It was found that sodium deprivation of cells in the dark at pH 10 inhibited, within 40 min, all measured photosynthetic reactions, and led to an alkalinization of the intracellular pH, which rose from the physiological value of about 8.3–9.6. These were partially and totally restored by readdition of Na-ions at 2.5–25 mM and about 200 mM, respectively. The intracellular pH and the photosynthetic functions were also sensitive to monensin, an exogenous Na+/H+ exchanger, which collapses both proton and sodium gradients across the cytoplasmic membrane. These observations explain the strict Na+-dependency of the photosynthetic electron transport at high extracellular pH, provide experimental evidence on the alkalization of the intracellular environment, and support the hypothesized role of an Na+/H+ antiport through the plasma membrane in pH homeostasis (Schlesinger et al. (1996). J. Phycol. 32, 608–613). Further, we show that (i) the specific site of inactivation of the photosynthetic electron transport at alkaline pH is to be found at the water splitting enzyme; (ii) in contrast to earlier reports, the inactivation occurs in the dark and, for short periods, without detectable damage in the photosynthetic apparatus; and (iii) in contrast to high pH, Na+ dependency in the neutral pH range is shown not to originate from PSII, but from the acceptor side of PSI. These data permit us to conclude that the intracellular environment rather than the machinery of the photosynthetic electron transport is adjusted to the extreme conditions of high pH and high Na+ concentration.  相似文献   

10.
The properties of glucose sensors fabricated by immobilization of glucose oxidase in a layer of electrochemically deposited polyaniline were investigated. Selective amperometric glucose sensors were prepared by immobilization of glucose oxidase on a Prussian Blue-modified platinum electrode in a layer of polyaniline during a one-step electropolymerization procedure from phosphate buffer. The influence of ascorbic acid and acetaminophen was completely eliminated due to impermeability of polyaniline to these substances.  相似文献   

11.
The light-induced voltage and current changes under continuous illumination have been investigated in pigmented self-assembled lipid bilayer membranes deposited on a platinum electrode. Such self-organized pigmented bilayer-platinum system containing Zn-Phthalocyanine (ZnPc) as a photosensitizer and glycerol-dioleate (GDO) as a bilayer forming solution has been found to shift its electrode potential to more positive value on light irradiation as well as to increase the cathodic current across the membrane. The results indicate a direct electron transfer from the platinum electrode to hydrogen ion in the electrolyte solution. Furthermore, it has also been demonstrated a dramatic increase of the photocurrent over the time course of BLM formation visualizing a role of the bulk quenching processes which are significantly diminished in thin bilayer membrane.  相似文献   

12.
Cobalt‐based electrolytes are highly tunable and have pushed the limits of dye‐sensitized solar cells, enabling higher open‐circuit voltages and new record efficiencies. However, the performance of these electrolytes and a range of other electrolytes suffer from slow electron transfer at platinum counter electrodes. High surface area platinum would enhance catalysis, but pure platinum structures are too expensive in practice. Here, a material‐efficient host‐guest architecture is developed that uses an ultrathin layer of platinum deposited upon an electrically conductive scaffold, niobium‐doped tin oxide (NTO). This nanostructured composite enhances the counter electrode performance of dye‐sensitized solar cells (DSCs) using a Co(II/III)BPY3 electrolyte with an increased fill factor and power conversion efficiency (11.26%), compared to analogous flat films. The modular strategy is elaborated by integrating a light scattering layer onto the counter electrode to reflect unabsorbed light back to the photoanode to improve the short‐circuit current density and power conversion efficiency.  相似文献   

13.
Chlamydomonas reinhardtii is a green microalga capable of turning its metabolism towards H2 production under specific conditions. However this H2 production, narrowly linked to the photosynthetic process, results from complex metabolic reactions highly dependent on the environmental conditions of the cells. A kinetic model has been developed to relate culture evolution from standard photosynthetic growth to H2 producing cells. It represents transition in sulfur-deprived conditions, known to lead to H2 production in Chlamydomonas reinhardtii, and the two main processes then induced which are an over-accumulation of intracellular starch and a progressive reduction of PSII activity for anoxia achievement. Because these phenomena are directly linked to the photosynthetic growth, two kinetic models were associated, the first (one) introducing light dependency (Haldane type model associated to a radiative light transfer model), the second (one) making growth a function of available sulfur amount under extracellular and intracellular forms (Droop formulation). The model parameters identification was realized from experimental data obtained with especially designed experiments and a sensitivity analysis of the model to its parameters was also conducted. Model behavior was finally studied showing interdependency between light transfer conditions, photosynthetic growth, sulfate uptake, photosynthetic activity and O2 release, during transition from oxygenic growth to anoxic H2 production conditions.  相似文献   

14.
Platinum nanoparticles have industrial application, for example in catalysis, and are used in consumer products such as cosmetics and supplements. Therefore, among the many nanoparticles, platinum is one of the more accessible nanoparticles for consumers. Most platinum nanoparticles that are used in cosmetics and supplements which have an anti-oxidant activity are modified particles. However, the cellular influences of pristine platinum nanoparticles are still unclear, although it has been reported that platinum nanoparticles induce oxidative stress. In this study, we investigated the cellular influences induced by pure pristine platinum nanoparticles. Platinum nanoparticles of 100% purity were dispersed in a cell culture medium and stable medium dispersion was obtained. The platinum nanoparticle medium dispersion was applied to two kinds of cultured cells, A549 and HaCaT cells, and the cellular influences were examined. Cell viability (MTT assay), cell proliferation (clonogenic assay), apoptosis induction (caspase-3 activity), intracellular ROS level (DCFH assay), and lipid peroxidation level (DPPP assay) were measured as markers of cellular influences. Transmission electron microscope observation showed cellular uptake of platinum nanoparticles. However, the platinum nanoparticles did not drive any markers. It is known that some metal oxide nanoparticles such as NiO and CuO show severe cytotoxicity via metal ion release. Compared with these toxic nanoparticles, the platinum nanoparticles used in this study did not release platinum ions into the culture media. These results suggest that the physically and chemically inactive cellular influences of platinum nanoparticles are small.  相似文献   

15.
During the photosynthetic process, highly organized membranal assemblies convert light into biochemical energy with high efficiency. We have used whole-mount cryo-electron tomography to study the intracellular architecture of the photosynthetic membranes of the anaerobic purple photosynthetic bacterium Rhodopseudomonas viridis, as well as the organization of the photosynthetic units within the membranes. Three-dimensional reconstruction demonstrates a continuity of the plasma membrane with the photosynthetic membranes that form tunnel-like structures with an average diameter of 31 nm ± 8 nm at the connection sites. The spacing between the photosynthetic membranes at their cytoplasmic faces was found to be 11 nm, thus enforcing a highly close packaging of the photosynthetic membranes. Analysis of successive tomographic slices allowed for derivation of the spacing between adjacent photosynthetic core complexes from a single-layered photosynthetic membrane, in situ. This analysis suggests that most, if not all, photosynthetic membranes in R. viridis are characterized by a similar two-dimensional hexagonal lattice organization.  相似文献   

16.
This work describes the synthesis and characterization of six new dinuclear platinum complexes having N,N'-di-(2-aminoethyl)-1,3-diamino-2-propanol, aryl substituted N-benzyl-1,4-butanediamines and N-benzyl-1,6-hexanediamines as ligands. They were prepared by the reaction of cis-[PtCl(2)(DMSO)(2)] (DMSO=dimethyl sulfoxide) with the appropriate ligand in water, except for one of them, which was prepared from K(2)PtCl(4). We also report the cytotoxic activity and cellular accumulation of three of these complexes in a human small-cell lung carcinoma cell line and its resistant subline. Resistant cells exhibited a lesser degree of cross-resistance to these compounds when compared to cisplatin. The accumulation of platinum in both cell lines followed the same pattern, i.e. approximately the same intracellular platinum concentration yielded the same cytotoxic effect independent of the nature of the platinum complex used.  相似文献   

17.
Three cell lysis methods—freeze-thaw, osmosis, and a chemical detergent-based method—were evaluated as sample treatment procedures for platinum metallomic studies of in vitro grown human malignant cells exposed to cisplatin. The lysis methods are relatively mild, resemble those commonly used in proteomic studies, and were selected because of the proven reactivity of platinum drug metabolites and indications that platinum in exposed cells and plasma is mainly associated with proteins. The chemical method gave an absolute lysis efficiency of greater than 80%, whereas the freeze-thaw and osmosis methods gave approximately 30% lower efficiency. The within- and between-batch lysis reproducibilities were, for all methods, better than 20 and 24% relative standard deviations, respectively. Total platinum concentration normalized to lysate protein content was statistically the same for all lysis methods. Reagents in the chemical lysis buffer did, however, react with platinum analyte compounds, making this method unsuitable for analysis of reactive compounds or for metallome profiling encompassing analytes with unknown reactivity. Of the lysis methods evaluated here, osmosis gave the highest cisplatin recovery, likely because this protocol is chemically inert and can be carried out at a constant low temperature. Therefore, it is the recommended cell lysis method for the determination of reactive and unknown intracellular platinum compounds.  相似文献   

18.
T Yasukawa  I Uchida    T Matsue 《Biophysical journal》1999,76(2):1129-1135
The effects of p-benzoquinone (BQ) on photosynthetic and respiratory electron transport in a single algal protoplast (radius, 100 microm) was investigated quantitatively by amperometric measurements using microelectrodes. Under light irradiation (25 kLx) in the presence of 1.00 mM BQ, a single protoplast consumed BQ by (2.9 +/- 0.2) x 10(-13) mol/s and generated p-hydroquinone (QH2) by (2.7 +/- 0.3) x 10(-13) mol/s, suggesting that BQ was quantitatively reduced to QH2 via the intracellular photosynthetic electron-transport chain. The generation of QH2 increased with light intensity and with concentration of BQ added to the outside solution but became saturated when the light intensity was above 15 kLx or the BQ concentration was higher than 0.75 mM. The addition of 3-(3, 4-dichlorophenyl)-1,1-dimethylurea, a photosynthetic electron-transport inhibitor, decreased the generation of QH2 upon light irradiation, suggesting that BQ accepts electrons from a site in the photosynthetic electron-transport chain after the photosystem II site. The presence of 1.00 mM BQ increased the generation of photosynthetic oxygen by approximately (2.6 +/- 1.0) x 10(-13) mol/s, which was approximately 1.5-2 times larger than that expected from the consumption of BQ. The electrons produced by the additional generation of oxygen is used to reduce intracellular species as well as to reduce BQ.  相似文献   

19.
蓝细菌是重要的光合自养微生物,也是最具潜力的光合微生物底盘之一,被广泛应用于光驱固碳细胞工厂的开发.糖原是蓝细菌最重要的天然碳汇物质,糖原代谢对蓝细菌光合碳流的分配和调控具有重要意义.为了优化蓝细菌光合细胞工厂的合成效能,驱动更多的光合碳流重定向至目标代谢产物的合成,已经有多种策略和方法被成功开发用于调控蓝细菌的糖原代...  相似文献   

20.
The adsorption of the protein avidin from hen egg white on patterns of silicon dioxide and platinum surfaces on a microchip and the use of fluorescent microscopy to detect binding of biotin are described. A silicon dioxide microchip was formed using plasma-enhanced chemical vapor deposition while platinum was deposited using radiofrequency sputtering. After cleaning using a plasma arc, the chips were placed into solutions containing avidin or bovine serum albumin. The avidin was adsorbed onto the microchips from phosphate-buffered saline (PBS) or from PBS to which ammonium sulfate had been added. Avidin was also adsorbed onto bovine serum albumin (BSA)-coated surfaces of oxide and platinum. Fluorescence microscopy was used to confirm adsorption of labeled protein, or the binding of fluorescently labeled biotin onto previously adsorbed, unlabeled avidin. When labeled biotin in PBS was presented to avidin adsorbed onto a BSA-coated microchip, the fluorescence signal was significantly higher than for avidin adsorbed onto the biochip alone. The results show that a simple, low-cost adsorption process can deposit active protein onto a chip in an approach that has potential application in the development of protein biochips for the detection of biological species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号