首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthetic peptides based on amino-acid residues 27-38 of human serum amyloid P component represent a novel type of heparin binders as they do not contain clusters of basic amino acids or other known features associated with protein or peptide heparin binding. Here, we characterize the binding using capillary electrophoresis (CE), surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC). By CE, heparin-binding activity was readily apparent for both a regular peptide and a slightly N-terminally modified form, while a sequence-scrambled peptide had no measurable binding. Dissociation constants in the 1-15 microm range were estimated, but only a minor part of the binding isotherm was covered by the experiments. SPR measurements using immobilized peptides verified heparin binding, the range of the binding constants, and the reduced binding of the sequence-scrambled peptide. Structurally defined heparin oligosaccharides were used to establish that while the tetrasaccharide is too small to exhibit strong binding, little difference in binding strength is observed between hexa- and tetradeca-saccharides. These experiments also confirmed the almost complete lack of activity of the sequence-scrambled peptide. The amino-acid sequence-dependent binding and the importance of a disulfide bond in the peptide were verified by ITC, but the experimental conditions had to be modified because of peptide precipitation and ITC yielded significantly weaker binding constants than the other methods. While the precise function of the peptide in the intact protein remains unclear, the results confirm the specificity of the glycosaminoglycan interaction with regard to peptide sequence by applying two additional biophysical techniques and showing that the N-terminal part of the peptide may be modified without changing the heparin binding capabilities.  相似文献   

2.
Interaction of heparin with annexin V   总被引:5,自引:0,他引:5  
The energetics and kinetics of the interaction of heparin with the Ca2+ and phospholipid binding protein annexin V, was examined and the minimum oligosaccharide sequence within heparin that binds annexin V was identified. Affinity chromatography studies confirmed the Ca2+ dependence of this binding interaction. Analysis of the data obtained from surface plasmon resonance afforded a Kd of approximately 21 nM for the interaction of annexin V with end-chain immobilized heparin and a Kd of approximately 49 nM for the interaction with end-chain immobilized heparan sulfate. Isothermal titration calorimetry showed the minimum annexin V binding oligosaccharide sequence within heparin corresponds to an octasaccharide sequence. The Kd of a heparin octasaccharide binding to annexin V was approximately 1 microM with a binding stoichiometry of 1:1.  相似文献   

3.
Binding of heparin/heparan sulfate to fibroblast growth factor receptor 4   总被引:4,自引:0,他引:4  
Fibroblast growth factors (FGFs) are heparin-binding polypeptides that affect the growth, differentiation, and migration of many cell types. FGFs signal by binding and activating cell surface FGF receptors (FGFRs) with intracellular tyrosine kinase domains. The signaling involves ligand-induced receptor dimerization and autophosphorylation, followed by downstream transfer of the signal. The sulfated glycosaminoglycans heparin and heparan sulfate bind both FGFs and FGFRs and enhance FGF signaling by mediating complex formation between the growth factor and receptor components. Whereas the heparin/heparan sulfate structures involved in FGF binding have been studied in some detail, little information has been available on saccharide structures mediating binding to FGFRs. We have performed structural characterization of heparin/heparan sulfate oligosaccharides with affinity toward FGFR4. The binding of heparin oligosaccharides to FGFR4 increased with increasing fragment length, the minimal binding domains being contained within eight monosaccharide units. The FGFR4-binding saccharide domains contained both 2-O-sulfated iduronic acid and 6-O-sulfated N-sulfoglucosamine residues, as shown by experiments with selectively desulfated heparin, compositional disaccharide analysis, and a novel exoenzyme-based sequence analysis of heparan sulfate oligosaccharides. Structurally distinct heparan sulfate octasaccharides differed in binding to FGFR4. Sequence analysis suggested that the affinity of the interaction depended on the number of 6-O-sulfate groups but not on their precise location.  相似文献   

4.
Circumsporozoite (CS) protein is a predominant surface antigen of malaria sporozoites, the infective form of the parasite, and has been used for making anti-malaria vaccines. For the first time we have examined the interaction of CS protein with various glycosaminoglycans in real time using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). Heparin was the best binder among the glycosaminoglycans tested and bound to CS protein with nanomolar affinity. Using purified and structurally defined small heparin oligosaccharides, we identified a decasaccharide to be the minimum sized CS protein-binding sequence. In an indirect competition assay, this decasaccharide blocked the CS protein interaction with HepG2 cells with an ID(50) of less than 60 nM. The decasaccharide has a structure commonly found in hepatic heparan sulfate, and the same sequence has recently been shown to bind specifically to apolipoprotein E. Examination of porcine liver heparan sulfate in this indirect competition assay showed that it and heparin were the only glycosaminoglycans that could effectively block CS protein interaction with HepG2 cells in culture. These data support the hypothesis that the invasion of liver cells by the parasite shares a common mechanism with the hepatic uptake of lipoprotein remnants from the blood.  相似文献   

5.
Roundabout 1 (Robo1) is the cognate receptor for secreted axon guidance molecule, Slits, which function to direct cellular migration during neuronal development and angiogenesis. The Slit2–Robo1 signaling is modulated by heparan sulfate, a sulfated linear polysaccharide that is abundantly expressed on the cell surface and in the extracellular matrix. Biochemical studies have further shown that heparan sulfate binds to both Slit2 and Robo1 facilitating the ligand–receptor interaction. The structural requirements for heparan sulfate interaction with Robo1 remain unknown. In this report, surface plasmon resonance (SPR) spectroscopy was used to examine the interaction between Robo1 and heparin and other GAGs and determined that heparin binds to Robo1 with an affinity of ∼650 nM. SPR solution competition studies with chemically modified heparins further determined that although all sulfo groups on heparin are important for the Robo1–heparin interaction, the N-sulfo and 6-O-sulfo groups are essential for the Robo1–heparin binding. Examination of differently sized heparin oligosaccharides and different GAGs also demonstrated that Robo1 prefers to bind full-length heparin chains and that GAGs with higher sulfation levels show increased Robo1 binding affinities.  相似文献   

6.
Heparin is a naturally occurring polysaccharide known to interact with complement proteins and regulate multiple steps in the complement cascade. Quantitative information, in the form of affinity constants for heparin-complement interactions, is not generally available and there are no reports of a comprehensive analysis using the same interaction method. Such information should improve our understanding of how exogenously administered pharmaceutical heparin and the related endogenous polysaccharide, heparan sulfate, regulate complement activation. The current study provides the first comprehensively analysis of the binding of various complement proteins to heparin using surface plasmon resonance (SPR). Complement proteins C1, C2, C3, C4, C5, C6, C7, C8, C9, C1INH, factor I, factor H, factor B and factor P all bind heparin but exhibit different binding kinetics and dissociation constants (Kd) ranging from 2 to 320 nM. By taking into account these Kd values and the serum concentrations of these complement proteins, the percentage of each binding to exogenously administered heparin was calculated and found to range from 2% to 41%. This study provides essential information required for the rational design of new therapeutic agents capable of regulating the complement activation.  相似文献   

7.
We assessed the participation of the three known heparin-binding domains of PFn (Hep I, Hep II, Hep III) in their interaction with heparin by making a quantitative comparison of the fluid-phase heparin affinities of PFn and PFn fragments under physiologic pH and ionic strength conditions. Using a fluorescence polarization binding assay that employed a PFn affinity-purified fluorescein-labeled heparin preparation, we found that greater than 98% of the total PFn heparin-binding sites exhibit a Kd in the 118-217 nM range. We also identified a minor (less than 2%) class of binding sites exhibiting very high affinity (Kd approximately 1 nM) in PFn and the carboxyl-terminal 190/170 and 150/136 kDa PFn fragments. This latter activity probably reflects multivalent inter- or intramolecular heparin-binding activity. Amino-terminal PFn fragments containing Hep I (72 and 29 kDa) exhibited low affinity for heparin under physiologic buffer conditions (Kd approximately 30,000 mM). PFn fragments (190/170 and 150/136 kDa) containing both the carboxyl-terminal Hep II and central Hep III domains retained most of the heparin-binding activity of native PFn (Kd = 278-492 nM). The isolated Hep II domain (33-kDa fragment) exhibited appreciable, but somewhat lower (2-5-fold), heparin affinity compared to the 190/170-kDa PFn fragment. Heparin binding to the 100-kDa PFn fragment containing Hep III was barely detectable (Kd greater than 30,000 nM). From these observations, we conclude that PFn contains only one major functional heparin-binding site per subunit, Hep II, that dominates the interaction between heparin and PFn.  相似文献   

8.
The binding of selenoprotein P to glycosaminoglycans using heparin as a model compound was studied by surface plasmon resonance. It was found that heparin contains two binding sites for selenoprotein P, a high-affinity, low-capacity site (Kd approximately 1 nM) and a low-affinity, high-capacity site (Kd approximately 140 nM). Binding at both sites is sensitive to pH and ionic strength, and the high-affinity site is abolished by histidine carbethoxylation with diethylpyrocarbonate. The pH and salt dependence of binding suggests electrostatic interactions with heparin. The concentrations of selenoprotein P in plasma (approximately 50 nM) are sufficiently high to facilitate binding of selenoprotein P to proteoglycans on the vascular endothelium, and this may contribute to the formation of a protective barrier against oxidants such as peroxynitrite or hydroperoxides.  相似文献   

9.
Carbohydrate chip technology has a great potential for the high-throughput evaluation of carbohydrate-protein interactions. Herein, we report syntheses of novel sulfated oligosaccharides possessing heparin and heparan sulfate partial disaccharide structures, their immobilization on gold-coated chips to prepare array-type Sugar Chips, and evaluation of binding potencies of proteins by surface plasmon resonance (SPR) imaging technology. Sulfated oligosaccharides were efficiently synthesized from glucosamine and uronic acid moieties. Synthesized sulfated oligosaccharides were then easily immobilized on gold-coated chips using previously reported methods. The effectiveness of this analytical method was confirmed in binding experiments between the chips and heparin binding proteins, fibronectin and recombinant human von Willebrand factor A1 domain (rh-vWf-A1), where specific partial structures of heparin or heparan sulfate responsible for binding were identified.  相似文献   

10.
Lactoferrin, an iron-binding protein of the transferrin family, is a highly basic protein which interacts with many acidic molecules, including heparin proteoglycans. Such interactions may modify some of the biological properties of lactoferrin. In the present work we found that heparin caused a dose-dependent inhibition of specific binding of both human and bovine lactoferrin to human monocytic THP-1 cells. Low-affinity binding sites (Kd 500 nM) were more susceptible to inhibition by heparin than the high-affinity sites (Kd 100 nM). The effect was mediated by interaction between lactoferrin and heparin rather than by competition between heparin and lactoferrin for common binding sites on the cells. Pretreatment of cells with NaClO3 to prevent sulphation of surface glycosaminoglycans reduced lactoferrin binding, and de-N-sulphated heparin did not inhibit binding of lactoferrin to THP-1 cells. These results suggest that heparin binding and monocyte/macrophage binding by lactoferrin both involve interactions between basic regions in the N1 domain of lactoferrin and sulphate groups. The N-terminal Arg2-Arg5 sequence of human lactoferrin may be involved, but it does not seem to be the key element in these interactions.  相似文献   

11.
This study characterizes the physical-chemical interactions of heparin with human plasma low-density lipoproteins (LDL). A high reactive heparin (HRH) specific for the surface determinants of LDL was isolated by chromatography of commercial bovine lung heparin on LDL immobilized to AffiGel-10. HRH was derivatized with fluoresceinamine and repurified by affinity chromatography, and its interaction with LDL in solution was monitored by steady-state fluorescence polarization. Binding of LDL to fluoresceinamine-labeled HRH (FL . HRH) was saturable, reversible, and specific; HRH stoichiometrically displaced FL . HRH from the soluble complex, and acetylation of lysine residues on LDL blocked heparin binding. Titration of FL.HRH with excess LDL yielded soluble complexes with two LDL molecules per heparin chain (Mr 13,000) characterized by an apparent Kd of 1 microM. Titration of LDL with excess HRH resulted in two classes of heparin binding with two and five heparin molecules bound per LDL and apparent Kd values of 1 and 10 microM, respectively. At physiological pH and ionic strength, the soluble HRH-LDL complexes were maximally precipitated with 20-50 mM Ca2+. Insoluble complexes contained 2-10 HRH molecules per LDL with the final product stoichiometry dependent on the ratio of the reactants. The affinity of HRH for LDL in the insoluble complexes was estimated between 1 and 10 microM. Insoluble LDL-heparin complexes were readily dissociated with 1.0 M NaCl, and their formation was prevented by acetylation of the lysine residues on LDL.  相似文献   

12.
Annexin A2 and heparin bind to one another with high affinity and in a calcium-dependent manner, an interaction that may play a role in mediating fibrinolysis. In this study, three heparin-derived oligosaccharides of different lengths were co-crystallized with annexin A2 to elucidate the structural basis of the interaction. Crystal structures were obtained at high resolution for uncomplexed annexin A2 and three complexes of heparin oligosaccharides bound to annexin A2. The common heparin-binding site is situated at the convex face of domain IV of annexin A2. At this site, annexin A2 binds up to five sugar residues from the nonreducing end of the oligosaccharide. Unlike most heparin-binding consensus patterns, heparin binding at this site does not rely on arrays of basic residues; instead, main-chain and side-chain nitrogen atoms and two calcium ions play important roles in the binding. Especially significant is a novel calcium-binding site that forms upon heparin binding. Two sugar residues of the heparin derivatives provide oxygen ligands for this calcium ion. Comparison of all four structures shows that heparin binding does not elicit a significant conformational change in annexin A2. Finally, surface plasmon resonance measurements were made for binding interactions between annexin A2 and heparin polysaccharide in solution at pH 7.4 or 5.0. The combined data provide a clear basis for the calcium dependence of heparin binding to annexin A2.  相似文献   

13.
Heparan sulfate (HS) and heparin are highly sulfated polysaccharides. Heparin is a commonly used anticoagulant drug that inhibits the activities of factors Xa and IIa (also known as thrombin) to prevent blood clot formation. Here, we report the synthesis of a series of size-defined oligosaccharides to probe the minimum size requirement for an oligosaccharide with anti-IIa activity. The synthesis was completed by a chemoenzymatic approach involving glycosyltransferases, HS sulfotransferases, and C(5)-epimerase. We demonstrate the ability to synthesize highly purified N-sulfo-oligosaccharides having up to 21 saccharide residues. The results from anti-Xa and anti-IIa activity measurements revealed that an oligosaccharide longer than 19 saccharide residues is necessary to display anti-IIa activity. The oligosaccharides also exhibit low binding toward platelet factor 4, raising the possibility of preparing a synthetic heparin with a reduced effect of heparin-induced thrombocytopenia. The results from this study demonstrate the ability to synthesize large HS oligosaccharides and provide a unique tool to probe the structure and function relationships of HS that require the use of large HS fragments.  相似文献   

14.
Liquid chromatography/mass spectrometry (LC/MS) is applied to the analysis of complex mixtures of oligosaccharides obtained through the controlled, heparinase-catalyzed depolymerization of heparin. Reversed-phase ion-pairing chromatography, utilizing a volatile mobile phase, results in the high resolution separation of highly sulfated, heparin-derived oligosaccharides. Simultaneous detection by UV absorbance and electrospray ionization-mass spectrometry (ESI-MS) provides important structural information on the oligosaccharide components of this mixture. Highly sensitive and easily interpretable spectra were obtained through post-column addition of tributylamine in acetonitrile. High resolution mass spectrometry afforded elemental composition of many known and previously unknown heparin-derived oligosaccharides. UV in combination with MS detection led to the identification of oligosaccharides arising from the original non-reducing end (NRE) of the heparin chain. The structural identification of these oligosaccharides provided sequence from a reading frame that begins at the non-reducing terminus of the heparin chain. Interestingly, 16 NRE oligosaccharides are observed, having both an even and an odd number of saccharide residues, most of which are not predicted based on biosynthesis or known pathways of heparin catabolism. Quantification of these NRE oligosaccharides afforded a number-averaged molecular weight consistent with that expected for the pharmaceutical heparin used in this analysis. Molecular ions could be assigned for oligosaccharides as large as a tetradecasaccharide, having a mass of 4625 Da and a net charge of -32. Furthermore, MS detection was demonstrated for oligosaccharides with up to 30 saccharide units having a mass of >10000 Da and a net charge of -60.  相似文献   

15.
The interactions between cell surface receptors and sulfated glucosamineglycans serve ubiquitous roles in cell adhesion and receptor signaling. Heparin, a highly sulfated polymer of uronic acids and glucosamine, binds strongly to the integrin receptor alphaXbeta2 (p150,95, CD11c/CD18). Here, we analyze the structural motifs within heparin that constitute high affinity binding sites for the I domain of integrin alphaXbeta2. Heparin oligomers with chain lengths of 10 saccharide residues or higher provide strong inhibition of the binding by the alphaX I domain to the complement fragment iC3b. By contrast, smaller oligomers or the synthetic heparinoid fondaparinux were not able to block the binding. Semipurified heparin oligomers with 12 saccharide residues identified the fully sulfated species as the most potent antagonist of iC3b, with a 1.3 microM affinity for the alphaX I domain. In studies of direct binding by the alphaX I domain to immobilized heparin, we found that the interaction is conformationally regulated and requires Mg2+. Furthermore, the fully sulfated heparin fragment induced conformational change in the ectodomain of the alphaXbeta2 receptor, also demonstrating allosteric linkage between heparin binding and integrin conformation.  相似文献   

16.
Collagen-proteoglycan interactions participate in the regulation of matrix assembly and in cell-matrix interactions. We reported previously that a fragment (Ile824-Pro950) of the collagen alpha1(V) chain, HepV, binds to heparin via a cluster of three major basic residues, Arg912, Arg918, and Arg921, and two additional residues, Lys905 and Arg909 (Delacoux, F., Fichard, A., Cogne, S., Garrone, R., and Ruggiero, F. (2000) J. Biol. Chem. 275, 29377-29382). Here, we further characterized the binding of HepV and collagen V to heparin and heparan sulfate by surface plasmon resonance assays. HepV bound to heparin and heparan sulfate with a similar affinity (KD approximately 18 and 36 nM, respectively) in a cation-dependent manner, and 2-O-sulfation of heparin was shown to be crucial for the binding. An octasaccharide of heparin and a decasaccharide of heparan sulfate were required for HepV binding. Studies with HepV mutants showed that the same basic residues were involved in the binding to heparin, to heparan sulfate, and to the cell surface. The contribution of Lys905 and Arg909 was found to be significant. The triple-helical peptide GPC(GPP)5G904-R918(GPP)5GPC-NH2 and native collagen V molecules formed much more stable complexes with heparin than HepV, and collagen V bound to heparin/heparan sulfate with a higher affinity (in the nanomolar range) than HepV. Heat and chemical denaturation strongly decreased the binding, indicating that the triple helix plays a major role in stabilizing the interaction with heparin. Collagen V and HepV may play different roles in cell-matrix interactions and in matrix assembly or remodeling mediated by their specific interactions with heparan sulfate.  相似文献   

17.
Heparin and related heparan sulfate interact with a number of cytokines and growth factors, thereby playing an essential role in many physiological and pathophysiological processes by involving both signal transduction and the regulation of the tissue distribution of cytokines/growth factors. Follistatin (FS) is an autocrine protein with a heparin-binding motif that serves to regulate the cell proliferative activity of the paracrine hormone, and member of the TGF-β family, activin A (ActA). Follistatin is currently under investigation as an antagonist of another TGF-β family member, myostatin (Mstn), for the promotion of muscle growth in diseases associated with muscle atrophy. In this study, we employ surface plasmon resonance (SPR) spectroscopy to dissect the binding interactions between the heparin polysaccharide and both free follistatin (FS288) and its complexes (FS288-ActA and FS288-Mstn). FS288 complexes show much higher heparin binding affinity than FS288 alone. SPR solution competition studies using heparin oligosaccharides showed that the binding of FS288 and its complex to heparin is dependent on chain length. Full chain heparin or large oligosaccharides, having 18-20 sugar residues, show the highest binding activity for FS288 and the FS288-ActA complex, whereas smaller heparin molecules could interact with the FS288-Mstn complex. These interactions were also analyzed in normal physiological buffers and at different salt concentrations and pH values. Unbound follistatin was much more sensitive to all salt concentrations of >150 mM. The binding of heparin to the FS288-ActA complex was disrupted at 500 mM salt, whereas it was actually strengthened for the FS288-Mstn complex. At acidic pH values, binding of heparin to FS288 and the FS288-ActA complex was enhanced. While slightly acidic pH values (pH 6.2 and 5.2) enhanced the binding of the FS288-Mstn complex to heparin, at pH 4 heparin binding was inhibited. Overall, these studies demonstrate that binding of a specific ligand to FS288 differentially regulates its affinity and behavior for heparin molecules.  相似文献   

18.
Hjelm R  Schedin-Weiss S 《Biochemistry》2007,46(11):3378-3384
Idraparinux is a synthetic O-sulfated, O-methylated pentasaccharide that binds tightly to antithrombin (AT) and thereby specifically and efficiently induces the inactivation of the procoagulant protease, factor Xa. In this study, the affinity and kinetics of the interaction of this high-affinity pentasaccharide with alpha- and beta-AT were compared with those of a synthetic pentasaccharide comprising the natural AT-binding sequence of heparin. Dissociation equilibrium constants, Kd, for the interactions of Idraparinux with alpha- and beta-AT were approximately 0.4 and 0.1 nM, respectively, corresponding to an over 100-fold enhancement in affinity compared with that of the normal pentasaccharide. This large enhancement was due to a approximately 400-fold tighter conformationally activated complex formed in the second binding step, whereas the encounter complex established in the first step was approximately 4-fold weaker. The high-affinity and normal pentasaccharides both made a total of four ionic interactions with AT, although the high-affinity saccharide only established one ionic interaction in the first binding step and was compensated by three in the second step, whereas the normal pentasaccharide established two ionic interactions in each step. In contrast, the affinities of the nonionic interactions (Kd approximately 450 and 90 nM for the binding to alpha- and beta-AT, respectively) were considerably higher than those for the normal pentasaccharide and the highest of all AT-saccharide interactions reported so far. The nonionic contribution to the total free energy of the high-affinity pentasaccharide binding to AT thus amounted to approximately 70%. These findings show that nonionic interactions can play a predominant role in the binding of highly charged saccharide ligands to proteins and can be successfully exploited in the design of such biologically active ligands.  相似文献   

19.
The last step of heparin biosynthesis is thought to involve the action of 3-O-sulfotransferase resulting in the formation of an antithrombin III (ATIII) binding site required for heparin's anticoagulant activity. The isolation of a significant fraction of heparin chains without antithrombin III-binding sites and having low affinity for ATIII suggests the presence of a precursor site, lacking the 3-O-sulfate group. Porcine mucosal heparin was depolymerized into a mixture of oligosaccharides using heparin lyase. One of these oligosaccharides was derived from heparin's ATIII-binding site. In an effort to find the ATIII-binding site precursor, the structures of several minor oligosaccharides were determined. A greater than 90% recovery of oligosaccharides (on a mole and weight basis) was obtained for both unfractionated and affinity-fractionated heparins. An oligosaccharide arising from the ATIII-binding site precursor was found that comprised only 0.8 mol % of the oligosaccharide product mixture. This oligosaccharide was only slightly enriched in heparin having a low affinity for ATIII and only slightly disenriched in high affinity heparin. The small number of these ATIII-binding site precursors, found in unfractionated and fractionated heparins, suggests the existence of a low ATIII affinity heparin may not simply be the result of the incomplete action of 3-O-sulfotransferase in the final step in heparin biosynthesis. Rather these data suggest that some earlier step, involved in the formation of placement of these precursor sites, may be primarily responsible for high and low ATIII affinity heparins.  相似文献   

20.
Oligosaccharides with different affinities for antithrombin were isolated following partial deaminative cleavage of pig mucosal heparin with nitrous acid. The smallest high-affinity component obtained was previously identified as an octasaccharide with the predominant structure: (Formula: see text). The interaction of this octasaccharide, and of deca- and dodecasaccharides containing the same octasaccharide sequence, with antithrombin was studied by spectroscopic techniques. The near-ultraviolet difference spectra, circular dichroism spectra, and fluorescence enhancements induced by adding these oligosaccharides to antithrombin differed only slightly from the corresponding parameters measured in the presence of undegraded high-affinity heparin. Moreover, the binding constants obtained for the oligosaccharides and for high-affinity heparin were similar (1.0-2.9 X 10(7) M-1 at I = 0.3). In contrast, two hexasaccharides corresponding to units 1-6 and 3-8, respectively, of the above sequence showed about a 1000-fold lower affinity for antithrombin, and also induced considerably different spectral perturbations in antithrombin. Since the 1-6 hexasaccharide contains a reducing-terminal anhydromannose residue instead of the N-sulfated glucosamine unit 6 of the intact sequence, these results strongly support our previous conclusion that the N-sulfate group at position 6 is essential to the interaction with antithrombin. The low affinity of the hexasaccharide 3-8 provides further evidence that a pentasaccharide sequence 2-6 constitutes the actual antithrombin-binding region in the heparin molecule. Structural analysis of the various oligosaccharides revealed natural variants with an N-sulfate group substituted for the N-acetyl group at position 2. The preponderance of N-acetyl over N-sulfate groups at this position may be rationalized in terms of the mechanism of heparin biosynthesis, assuming that the D-gluco configuration of unit 3 is an essential feature of the antithrombin-binding region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号